Historical Highlights of UCL Chemistry

From its inception University College London has pioneered education and science. The list below is a brief historical overview of the department:

The first chair - Edward Turner

A bust of Edward Turner

To get a university degree in England at the beginning of last century you had to belong to the Church of England. University College was set up by subscription in 1826 and was widely supported by the Nonconformist, Roman Catholic and Jewish communities in the country. One of the many revolutionary aspects of the new university was that of having a Chair of Chemistry right from the outset, the first in England, which was held initially by Edward Turner.

The second head - Thomas Graham

Thomas Graham's effusion apparatus

Thomas Graham was the second Head of the Chemistry Department. Although he is best known for his Law of "Effusion" (diffusion), Graham also made some important early observations on colloids, on polybasic acids, and even on the uptake of dihydrogen by palladium. His effusion apparatus is shown.

Ramsay and the noble gases

William Ramsay's Nobel Prize citation

In the 1890's William Ramsay was exploring the properties of gases. Lord Rayleigh's observation that the density of atmospheric nitrogen was slightly greater than that prepared by chemical means ultimately led Ramsay to isolate first argon in 1894 and, over the next few years, neon, krypton, and xenon. For this work, Ramsay was awarded the Nobel Prize in Chemistry for 1904.

Christopher Ingold and the 'English heresy'

The nitration of benzene

The 1940's and 50's saw Christopher Ingold and his group lay the foundations of kinetics and mechanism in organic chemistry. It was in this period that nucleophilic substitution (SN1 and SN2) and aromatic nitration were first understood. His monumental work "Structure and Mechanism in Organic Chemistry" is still a cornerstone of organic chemistry.

Ron Nyholm and the inorganic renaissance

Examples of VSEPR schemes

Ron Nyholm, Head of Department from 1963 to 1971, was one of the principal players in the renaissance of inorganic chemistry. Nyholm and his group pioneered the use of soft-donor ligands (e.g. phosphines and arsines) with transition metals. He is probably best remembered by undergraduates for the Valence Shell Electron Pair Repulsion theory which he developed with Gillespie.

Probing the colours of history - Robin Clark

A picture of an illumination from a byzantine manuscript

Robin Clark, former Head of Department, pioneered the applications of Raman spectroscopy to inorganic, mixed valence compounds and to the identification of pigments in historical artefacts. His developments of the theory of resonance Raman spectroscopy have also led to a detailed understanding of excited state geometries

Creating prototype drugs - Robin Ganellin

A picture of a box of Tagamet

Robin Ganellin is co-inventor of cimetidine, a drug designed to target the acid-secreting cells in the stomach. Marketed since 1977 under the tradename Tagamet, it has revolutionized the treatment of peptic ulcer disease.

The smallest water droplet - David Clary

Using rigorous quantum theory, David Clary predicted that a cluster of just six water molecules would, in its lowest energy state, form a cage that has several properties similar to that of liquid water. This prediction has since been confirmed by infrared spectroscopy, and this water cluster has been dubbed "the smallest water droplet".

Spin ice - Steve Bramwell

Science cover for Bramwell's discovery of spin ice

In crystalline ice (H2O), the oxygen atoms form an ordered structure, while the hydrogen atoms are famous for a very special kind of disorder. Steve Bramwell is a co-discoverer of "spin ice", a new kind of magnetic solid found in the ceramic Ho2Ti2O7, in which the magnetic moments or "spins" of the atoms have exactly the same kind of disorder as the hydrogen atoms in ice. The discovery of spin ice provides new insight into a diverse family of scientific problems in which complexity plays a vital role. This group includes computer optimization, neural networks and biological evolution. The work was recently highlighted in the Financial Times and in UCL News.