A A A

CDB Seminars
All welcome

__

All Seminars are held in the Gavin De Beer Lecture Theatre, Anatomy Building, Thursday 1-2pm (unless otherwise stated)

Monday July 6th - GDB, 1pm

Prof. Miguel Concha (University of Chile, Santiago)

Title: "Migrational coupling to extra-embryonic tissue expansion drives epiboly of embryonic cells in annual killifish"

Host: Dr Rich Poole

____________________________________________________

Thursday 9 July: midday-2.40pm

Host: Yoshiyuki Yamamoto

Room 249, 2nd Floor, Medical Sciences Building, Gower Street

12.00pm  Heather Steele-Stallard: “Human iPS cell-based platforms for disease modelling and therapy screening for laminopathies”
12.15pm  Terry Felton: “Regulation of asymmetric neurogenesis in C. elegans
12.30pm  Marcus Ghosh: “Assigning Behavioural and Neurodevelopmental Functions to Autism-associated Genes”
12.45pm  Giulia Ferrari: “Towards a genomic integration-free, iPS cell and human artificial chromosome-based therapy for Duchenne muscular dystrophy”
1.00pm  Michele Sammut: “Mystery cells in C.elegans: Sex, Glia transdifferation and Learning”
1.15pm  Johanna Buchler: Title TBA
1.30pm  Interval
1.40pm  Renato Martinho: “The Asymmetric Habenula of Zebrafish: from Transcriptome to Behaviour”
1.55pm  Alex Fedorec: “Plasmid persistence: balancing plasmid stability and host competitiveness”
2.10pm  Maryam Khosravi: Title TBA
2.25pm  Marc Williams: “Identification of neutral tumour evolution across cancer types”

See all seminars

Find us on Facebook

Prof Roberto Mayor

Dr Roberto Mayor

Prof Roberto Mayor is a Professor of Developmental and Cellular Neurobiology

He was named International Scholar of the Howard Hughes Medical Institute (HHMI). He is a member of the editorial board of Development and Developmental Dynamics and Associate Editor of the International Journal of Developmental Biology. He was founder and president of the Latin American Society of Developmental Biology (LASDB)

Telephone: 020 7679 3323, (Int: 33323)

r.mayor@ucl.ac.uk

Research Lab website

The primary aim of our research group is to elucidate the mechanism that underlies the development of the Neural Crest.

We would like to know how Neural Crest cells acquire their identity within the ectoderm and how their migration and differentiation is controlled.

The Neural Crest is a group of cells found in all vertebrate embryos. It forms in the neural folds at the border of the neural plate and gives rise to the Peripheral Nervous System,   as well as the cartilage, bone and muscle in the face and neck, pigmented cells in the skin, several endocrine glands and part of the heart. It is this extraordinary ability of the Neural Crest to become many different types of cell that has attracted the attention of many biologists. The second astonishing characteristic of neural crest cells is that they are able to migrate very long distances in the embryo. The neural crest has been called the “explorer of the embryo” as it is one of the embryonic cell types that migrate most during development, eventually colonizing almost every tissue.

The primary aim of our research group is to elucidate the mechanism that underlies the development of the Neural Crest. We would like to know how Neural Crest cells acquire their identity within the ectoderm and how their migration and differentiation is controlled. We study neural crest development in zebrafish and frog ( Xenopus laevis) embryos as these two animal models offer several complementary advantages.

Selected Publications:

Theveneau E, Steventon B, Scarpa E, Garcia S, Trepat X, Streit A, Mayor R. (2013). Chase-and-run between adjacent cell populations promotes directional collective migration. Nature Cell Biology. 15, 763-72 http://www.ncbi.nlm.nih.gov/pubmed/23770678

Barriga EH, Maxwell PH, Reyes AE, Mayor R. 92013). The hypoxia factor Hif-1α controls neural crest chemotaxis and epithelial to mesenchymal transition. J Cell Biol. 201, 759-76. http://www.ncbi.nlm.nih.gov/pubmed/23712262

Carmona-Fontaine C, Theveneau E, Tzekou A, Tada M, Woods M, Page KM, Parsons M, Lambris JD, Mayor R. (2011). Complement fragment C3a controls mutual cell attraction during collective cell migration. Developmental Cell. 21, 1026-37. http://www.ncbi.nlm.nih.gov/pubmed/22118769

Theveneau E, Marchant L, Kuriyama S, Gull M, Moepps B, Parsons M, Mayor R. Collective chemotaxis requires contact-dependent cell polarity. Developmental Cell. 2010 Jul 20;19(1):39-53. http://www.ncbi.nlm.nih.gov/pubmed/20643349

Carmona-Fontaine C, Matthews HK, Kuriyama S, Moreno M, Dunn GA, Parsons M, Stern CD, Mayor R. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature. 2008 Dec 18;456(7224):957-61. http://www.ncbi.nlm.nih.gov/pubmed/19078960

IRIS


Page last modified on 26 sep 14 12:41 by Edward D Whitfield