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Abstract

 

A transdisciplinary research and modelling process is pre-
sented. This goes beyond the metaphor of a 'landscape' of
influences on domestic energy consumption, to construct a
Bayesian Belief Network model of such a landscape.

Bayesian Belief Networks are of both academic and prac-
tical interest. They are applied in many areas governed by
complex sets of socio-technical drivers including manage-
ment of water catchments, ecosystems and fisheries. Such
models allow better understanding of the range of social,
economic and environmental impacts of a given manage-
ment strategy and how benefits in one part of the system
may be offset in another. These interactions between influ-
ences generate the ‘landscape’ of the system.

The research design for development of a Bayesian Belief
Network model of the socio-technical influences on home
energy use is presented. A realist synthesis of the literature
identifies factors influencing domestic energy use, their
strength, and the direction of their interrelationships. These
are represented as a network diagram. This initial network
is presented to experts for elaboration and verification. Data
is used to estimate probabilistic relationships between the
factors. Primary qualitative social research methods identify
new, and contextualise known factors for the UK. Data from
primary or secondary quantitative analysis is integrated to
refine estimates of the influence of key factors. This process
is iterated to build and refine the model.

This research design will be presented, and the policy im-
plications of this modelling approach explored. This re-
search forms part of the UK's recently launched 'Carbon
Vision' programme on carbon reductions in buildings.

 

Introduction

 

The literature on energy use in homes has had a consistent
socio-technical stream since Princeton University's 'Twin
Rivers Project' in the 1970's showed that energy use in tech-
nically similar dwellings, occupied by demographically sim-
ilar families, can vary by 200 to 300% (Lutzenhiser 1993).
The inclusion of demographic variables increases this varia-
bility still further (Gellings 1994). Costanzo notes that

 

'Achieving energy conservation is a twofold challenge, partly tech-
nical and partly human. The development of energy-conserving
technologies is a necessary but insufficient step toward reduced en-
ergy consumption. Unless adopted by a significant segment of con-
sumers, the impact of technical innovations will be negligible.'

 

(1986, p 521). These are key reasons why estimates of theo-
retical technical potential for carbon reduction from build-
ings have not been realised, and why the IPCC Third
Assessment Report finds that the building sector is the sec-
tor with the largest unrealised technical potential for emis-
sions reductions (IPCC 2001 p 7). 

This paper details the research design to be used for con-
structing a Bayesian Belief Network model of the socio-
technical influences on domestic energy consumption in the
UK under the Carbon Vision programme. The Carbon Vi-
sion programme is a major UK research programme address-
ing carbon mitigation. The programme focuses on two areas
- the built environment and process industries. The built
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environment stream, entitled 'Building Low Carbon Com-
munities' (BLOCC) is receiving approx. 7 Million Euro over
4 years (2005-2008). This funding is divided between three
consortia: Carbon Reduction in Buildings 'CaRB' (approx.
4.1 Million Euro ), Technology Assessment for Radically
Improving the Built Asset Base 'TARBASE' (approx.
1.8 Million Euro ) and Building Market Transformation
'BMT' (approx. 1.3 Million Euro ). The work described here
is one of four primary work packages taking place within the
CaRB consortia. It is designated CaRB Socio-Technical
(CaRB-ST) and constitutes approximately 30% of that pro-
gramme of work.

In overview, CaRB Socio-Technical uses 

 

qualitative 

 

social
research methods to understand the socio-technical influ-
ences on household carbon emissions, uses 

 

quantitative

 

methods to measure statistical relationships between these
influences, then uses Bayesian Belief Networks to 

 

model 

 

the
relationships between the influences. The network grows it-
eratively through firstly 

 

understanding, 

 

then 

 

measuring, 

 

the
direct and progressively more indirect socio-technical influ-
ences on household carbon emissions. The research design
is explicitly transdisciplinary with qualitative Bayesian sta-
tistical methods providing a common epistemology accepta-
ble to the technical energy modelling community, policy
makers and the social and psychological sciences.

 

Socio-technical Systems

 

The Socio-Technical Systems (STS) view of energy use in
buildings envisages society (from personal practices through
to institutional structures) and technology as forming co-
evolving 'socio-technical' systems. This socio-technical sys-
tems perspective provides a broad theoretical framework for
understanding how technology is produced, diffused and ul-
timately changes society (Bijker and Law 1992). STS ideas
have informed the application of specific research methods
such as Actor Network Theory (ANT) (Callon 1986) and the
Social Network Analysis (SNA) of the diffusion of innova-
tions (Valente 1995). STS as a theoretical framework is well
suited to the analysis of the complex social, economic and
technical changes necessary to reduce energy use in build-
ings (Rohracher 2001). Early STS theory as developed by
the Tavistock Institute has been strengthened through in-
teraction with both ANT and the wider field of Social Shap-
ing of Technology studies (Williams and Edge 1996).  

In addition to finding application through methods like
ANT and SNA, these theories can be applied using 'tech-
nology assessment' methods from the fields of Constructive
Technology Assessment, Environmental Technology As-
sessment and Real Time Technology Assessment. Such
technology assessment (TA) tools are well established and
are used by environmental organizations (e.g. UNEP's In-
ternational Environmental Technology Centre) to assess the
likely impact of a technology within a socio-technical system
(IETC 1996). Such tools are also used proactively in innova-
tion and market transformation studies (Guston and Sare-
witz 2000; Blumstein, Goldstone et al. 1998) to tailor
technologies to the needs of their recipient socio-technical
systems. These applied technology assessment fields share
common methods and tools applicable to both historical
analysis of successful innovation strategies, and the devel-

opment of research and development strategies for new
technologies. 

These approaches differ markedly from past models of
research, development, demonstration, dissemination and
diffusion. The traditional approach has tended to see these
as sequential and largely independent. The socio-technical
approach and the more recent diffusion of innovations liter-
ature see these as iterative, integrated and of equal impor-
tance (Rogers 1995; Blumstein, Goldstone et al. 1998).
While both approaches are equally technically demanding,
the latter is far more socially demanding, and greatly in-
creases likely uptake of the innovation. It is this process of
engagement with end-users as co-designers in the develop-
ment of the solution that greatly enhances its acceptance
and diffusion. These engaged and iterative approaches to
diffusion of innovations within socio-technical systems are
paralleled by recent approaches to the study of policy for-
mulation. Sabatier (1999) has analysed the policy formula-
tion process and developed a theory of Policy Advocacy Co-
alitions (PAC). The PAC model of policy formation argues
that policies emerge from negotiations between coalitions
of actors. These coalitions of actors coalesce around com-
mon sets of normative beliefs and values. They adopt and
advocate policy ideas concomitant with their shared beliefs.
Acting through, and with, 'policy entrepreneurs' ('change
agents' in SNA terminology) these PACs seek to shape gov-
ernment policy formation in ways which reinforce and pro-
mote their interests, normative beliefs and values. The PAC
model of policy formation reflects lessons from the wider
SST literature onto the policy formation process to envisage
it as contingent, socially embedded, evolutionary and sys-
temic. Understanding policy formation processes is of more
than just academic interest in the context of large-scale gov-
ernment research projects. Those seeking to affect real
change in domestic energy use cannot do so without at least
tacit, or preferably explicit and active support from govern-
ment policy and programmes. If one accepts the PAC policy
model, and the STS diffusion of innovations and market
transformation models, then reflexive application of these
requires adopting knowledge construction and representa-
tion methods for research projects which are themselves
similarly contingent, socially embedded, evolutionary and
systemic. This is one of the open challenges in the energy
research field.

This is reflected in Elizabeth Shove's conclusions from
her ESRC funded review of building energy research as re-
ported in papers to ECEEE 1995 and Energy Policy (1998).
She noted that: 

 

'An alternative or at least additional strategy might therefore
start by describing and perhaps modelling portions of the sociotech-
nical world in all their complexity. Working from this base for-
ward, it might be possible to identify socially as well as technically
viable opportunities for energy conservation.' (p.1110)

 

This call is echoed by Ekins (Johnson & Ekins 2003) in
his capacity as Academic Co-ordinator of the ESRC Envi-
ronment and Human Behaviour Programme. In this broader
context Ekins concludes that:

 

'Understanding human behaviour towards the environment and
how this might change/can be changed is a complex task indeed. As
with most complex realities, seeking an explanation requires this
complexity to be simplified through the use of frameworks, models



 

PANEL 6. DYNAMICS OF CONSUMPTION 6,301 SHIPWORTH

ECEEE 2005 SUMMER STUDY – WHAT WORKS & WHO DELIVERS?

 

1383

 

and theories. Nowhere is this more evident than in the multi-causal
domains of human behaviour and public policy.' (p.2)

 

The CaRB-ST research design has been developed to be
consistent with Socio-Technical Systems theories of energy
us in homes as well as the Policy Advocacy Collation model
of policy development. It explicitly attempts to model ‘so-
cio-technical landscapes’ by subjective statistical modelling
of the multi-causal domain of energy use in homes using
Bayesian Belief Networks. The research design through
which such models are built is itself informed by the need to
engage with the stakeholder communities for which the
model is being developed.

 

INTERDEPENDENT INFLUENCES AND LOCAL CONTEXTS

 

Two additional characteristics of socio-technical systems are
their complex multi-causal structure, and the role of context
and contingency in determining the efficacy of different
change strategies. Models of the factors influencing con-
sumption generally (Jackson 2005); environment and hu-
man behaviour (Johnson & Ekins 2003) and the socio-
technical influences on domestic energy consumption (Ro-
hracher 2003) are consistently complex and multi-causal.
Complexity arises because the causes, or influences, on
home energy use are interdependent. Factors, such as
household head education level, simultaneously increase
the likely uptake of messages from energy efficiency infor-
mation campaigns thus acting to lower energy use, while be-
ing correlated with increased household income which is
itself correlated with increased energy use. Such interde-
pendencies between variables create conflicts within the in-
terdependent and multi-causal network of influences on
home energy use. A consequence of such conflicting inter-
dependences is that programmes targeting change through
one set of influences frequently fail to affect the anticipated
change because of countervailing effects arising through
other parts of the network. 

Modelling such complex interactions between influences,
particularly where the role of influences is uncertain and
hence statistical modelling is required, has traditionally pre-
sented difficulties. Consequently, influences have been
modelled as being independent rather than interdependent,
and the ability to capture important properties of the com-
plex, interdependent, multi-causal correlation structure of
the network of influences has been lost.

Another expression of socio-technical systems’ interde-
pendent multi-causality is the particular role of context in
determining the efficacy of different change strategies.
Much of the sociological literature on energy use in homes
draws particular attention to this issue. Wilhite and Nakaga-
mi (1996) review the implications of cultural contexts and
find them central to domestic energy consumption practices
in Japan and Norway. Evans 

 

et al

 

 (1999) have highlighted the
role of contingency in urban energy policy while Guy and
Shove (2000) have stressed the importance of understanding
how energy consumption practices in buildings are embed-
ded in specific social contexts. From an energy policy pro-
gramme perspective, this embeddeding of practices within
local contexts necessitates being able to understand the role
of context, and the tailoring of programmes to fit. Models
and other forms of knowledge representation on which en-
ergy efficiency programmes are based need to be able to

take such contingencies into account if they are to support
effective programme design.

Collectively, this socio-technical view of energy use in
homes is well captured by Shove’s metaphorical image of
the socio-technical ‘landscape’. 

 

'It is enormously helpful to see the world out there as a bumpy
and uneven terrain in which new and not so new technological
strategies 'make sense' in different ways and at different moments in
time. ... But there is more to come for if we are to take full account
of the diverse contexts of action, and the variety of sociotechnical
landscapes, we must also recognise the multiple contexts in which
expertise and experience is formed.' (Shove 1998 p.1109)

 

While Shove’s use of the term ‘landscape’ is a metaphori-
cal one, there are academic disciplines in which this term
has a carefully defined meaning. Perhaps not coincidentally,
these same disciplines are ones characterised by the study of
complex, interdependent, multi-causal systems. The use of
methods developed in such fields, which are now starting to
be applied more widely, offers the opportunity to step from
landscape as metaphor - to landscape as model.

 

Complex systems

 

Complex Adaptive Systems (CAS) theory studies the be-
haviour of systems consisting of large numbers of interde-
pendent variables. Such systems arise in many fields
including medical diagnosis, genetics, economics, ecology
and sociology. They are characterised by non-linear behav-
iour where changes in input are neither proportional to
changes in output, nor is the input to output relationship
fixed over time. The presence of nonlinearities in CAS is a
direct result of interdependencies between components of
the system (Coveney and Highfield 1995). As Goerner
(1994) notes, it is only through the study and incorporation
of interdependencies that we can understand the behaviour
of, and develop meaningful management strategies for,
complex adaptive systems. 

In such systems, finding the 'optimal' solution for the sys-
tem as a whole cannot be achieved by simply incrementally
changing each of the components in turn. The positive and
negative interdependencies between components means
that optimising one, frequently leads to a sub-optimal solu-
tion for another. In such situations, the system is said to be
‘frustrated’ as the optimal solution for the system cannot be
achieved by optimising each of its components independ-
ently. The consequence of this is that the set of all possible
states of the system (called its 'state-space'), is neither con-
vex nor concave, but has a complex topography with ridges,
plateaus, troughs and peaks. It is this complex topographical
surface representing all possible states of a system which in
the Complex Adaptive Systems literature is referred to as a
‘landscape’. Finding the optimal solution on such complex
landscapes is difficult. In the field of Complex Adaptive Sys-
tems research, graphical models are the dominant underly-
ing mathematical structure for studying such landscapes.
(The term ‘graph’ here is taken in its formal mathematical
meaning as a set of points (called ‘vertices’) connected by
lines (called ‘edges’) – essentially a mathematical version of
‘join the dots’).

As Jordon (1999 p.1) notes in the introduction to ‘Learn-
ing in Graphical Models’: 
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'Graphical models are a marriage between probability theory
and graph theory. ... Probability theory provides the glue whereby
the parts are combined, ensuring that the system as a whole is con-
sistent, and providing ways to interface models to data. The graph
theoretic side of graphical models provides both an intuitively ap-
pealing interface by which humans can model highly-interacting sets
of variables as well as a data structure that lends itself naturally
to the design of efficient general-purpose algorithms.' (Jordon 1999
p.1)

 

A Bayesian Belief Network (BBN) is one form of graphi-
cal model. 

Cooper (1990 p.403) showed that ‘…probabilistic infer-
ence using multiply connected belief networks with unin-
stantiated variables is NP-hard’. This means that virtually
all substantive management applications of BBN decision
support systems will have multiple optima. Multiple optima
means (potentially) large numbers of ‘better’ management
strategies which can be found by changing one variable at a
time and observing whether this makes things better or
worse. A better strategy (local optima) is reached when any
further incremental change to the variables under manage-
ment control makes the system worse. These better man-
agement strategies may, however, be very far from the ‘best’
management strategy (the global optimum) for the system
and it also means that finding the ‘best’ management strate-
gy (the global optimum) can be exceedingly difficult. Mov-
ing from a better management strategy (a local optima) to
the best management strategy (the global optimum) usually
involves making the system worse (over coming a barrier on
the system landscape) before the management dividend can
be realised. Without a model which can capture the interde-
pendencies which create these multiple optima, it is not
possible to explore the landscape of alternate management
strategies in search for more optimal ways to manage the sys-
tem. Without such a model, finding the best management
strategy is akin trying to find the highest peak in the Hima-
laya - without a map and in thick fog with only an altimeter
to guide you. There is no option but to simply walk up hill
until you can go no higher, take a reading, and then head
back down to try again in some other random location. This
is a rather inefficient way to get to the top of Mt. Everest! 

Recently, with the development of new inference engines
and sufficient computational power BBNs have become suf-
ficiently powerful to be applied to large scale practical appli-
cations. In the case of policy driven BBNs, the joint
probability distribution usually reflects a property of policy
interest which needs to be 'optimised' in some sense. In the
case of BBN's built in the area of integrated water resource
management (e.g. Cain 2001), the joint probability distribu-
tion of the network can represent catchment water demand,
and management of this means balancing the needs of mul-
tiple user communities while minimising water use, and var-
iations in that use, over time. Changing the states of
variables in the interdependent network of variables gov-
erning water use in a catchment, changes total water de-
mand. It follows that some sets of states of the variables are
‘better’ (as measured by total water demand) than others.
Applied BBN models therefore provide a decision support
system for managers of such complex systems involving in-
terdependencies between social, economic and environ-
mental variables. Managers can explore the implications of

changing the states of variables and see the likely impact on
the parameter of the system they wish to manage. As dis-
cussed, incremental change may simply lead to local optima,
but there is no guarantee that this is the global optimum, i.e.
best management solution for the system as a whole. Mov-
ing from local optima, to the global optimum, may involve
climbing up over a ridge or ‘barrier’ in the landscape. In ef-
fect, affecting significant cuts in the parameter of interest, in
this case energy use in homes, may require rather more rad-
ical programmes of change which involve fundamentally
changing the structure of the system or altering several var-
iables at once. Modelling the complex, interdependent net-
work of variables influencing energy use in homes using
Bayesian Belief Networks, and understanding the topogra-
phy of the landscape of such a network, can therefore lead
us to a more concrete, empirically grounded, discussion
around questions of interdependence, context, barriers and
management strategies for change. 

 

Bayesian Belief Networks

 

Bayesian Belief Networks (BBNs) are an intuitive method
for reasoning under uncertainty, combining different data-
types, and learning from new observations as they become
available (Jensen 1999). Developed in the late 1980's, theo-
retical understanding of such networks grew through the
1990's seeing major advances in the applicability of BBN
modelling with a number of public domain, well validated
numerical methods and modelling environments becoming
available. The development of these modelling environ-
ments has reinvigorated applied Bayesian analysis (Carlin
and Louis 1996). Post 2000 has seen applied work expand-
ing rapidly (O'Hagan 1998) particularly in the fields of epi-
demiology, econometrics and environmental management
(Dorfman 1997; Congdon 2003).

Bayesian Belief Networks are a specialisation within the
wider field of Bayesian statistical modelling and share their
methodological advantages. In 

 

Bayesian Methods: A social and
behavioural science approach

 

 Gill (2002) lists advantages of
Bayesian methods as including: the ability to learn as new
information is received or population variables change; the
capacity to systematically integrate a wide variety of data
types and any prior available knowledge; overt and clear
model assumptions and straightforward sensitivity testing. 

Bayesian statistical modelling allows you to progressively
integrate new data into existing probability distributions
and see how this changes the shape of the resulting distribu-
tion over time. As Congdon (2001 p.1) notes: '[Bayesian sta-
tistical modelling]…provides a way of formalising the
process of learning from data to update belief in accord with
recent notions of knowledge synthesis.' In addition BBNs
allow predictions about the likely future state of the system
based on what is currently known about the system and as-
sumptions about future data. Heckerman (1999 p.301)
notes: '…a Bayesian network can be used to learn causal re-
lationships, and hence can be used to gain understanding
about a problem domain and to predict the consequences of
intervention.' BBNs also offer modularity. The structure of
the network can be changed, or the network extended, as
the understanding of the relevant variables and their inter-
dependencies changes improves. This permits growth and
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rearranging of the structure of the network without entailing
the reassessment of all conditional probabilities in the net-
work.

Bayesian Belief Networks also support: 

 

•

 

The construction of consensus based, transparent, deci-
sion support systems;

 

•

 

the clear and intuitive display of relationships between 
variables;

 

•

 

use of categorical and continuous variables; 

 

•

 

the integration of qualitative and quantitative data from 
experts, case studies, data-sets and models;

 

•

 

highlighting the conflicts or synergies between variables. 

BBNs can be used, and their outputs presented, in a number
of ways. The probability of the states of the dependent var-
iables of interest can be given as the joint probability distri-
bution over their influencing variables. Conversely, and
more powerfully from a management perspective, it is pos-
sible to calculate the states of the influencing factors that
would be required to achieve the desired state of a depend-
ent variable of interest. (Marcot et al 2001). 

BBNs are used to represent a complex set of interacting
variables (called nodes) in a domain of substantive interest.
There are two aspects to the network, a graphical part that
describes the relationships between the variables (termed
network structure or architecture), and a probabilistic part
that encodes the correlations between the variables (termed
conditional probabilities). The probabilistic part defines a
joint probability distribution across the set of variables (the
correlation structure). (Jensen 1999) 

Construction of a BBN involves three broad steps: 

1.  Identification of the domain variables; 

2.  Identification of the relationships between these varia-
bles and; 

3.  Identification of the probabilities describing these rela-
tionships (Druzdzel & van der Gaag 2000).

Steps one and two generate the network architecture, while
step three generates the correlation structure. In theory,
these steps are done in turn. In practice however, the rela-
tionship between network architecture and correlation
structure is such that these steps must be performed itera-
tively if the best possible network is to be built within given
time and cost constraints. 

As Cain (2001 p 10) notes: 

 

Tests have shown that Bayesian
networks are usually able to represent the most important factors in
the system effectively. Since the networks are diagrammatically
based, it is relatively easy for users to understand how those factors
interact and, as a result, how the DSS produces its outputs. For the
same reason, it is also fairly easy to communicate the information
on which you have based your decision.

 

 

 

CURRENT USES IN ENVIRONMENTAL MANAGEMENT

 

The use of Bayesian models is expanding rapidly in the field
of environmental management. Uses range from the appli-
cation of Bayesian statistics to the management of fisheries
(Fernandez et al 2002), wildlife (Cohen 1988), and forests
(Crome et al 1996). Dixon and Ellison (1996) and Ellison

(1996) provide good overviews of the application of such
models in ecological research and decision making. 

Bayesian Belief Network models have found wide appli-
cation in environmental management because, as Marcot et
al (2002 p.30) note, they '...provide a means of modelling the
likelihoods of management effects'. BBNs have been used
to model land manager decisions with respect to options for
land use change (Bacon et al 2002); the performance of bird
conservation programmes in the Columbia Basin (Wisdom
et al 2002); the management of fisheries resources (Lee and
Rieman 1997); for participatory agricultural land manage-
ment (Cain et al 2003); for participatory resource manage-
ment (Cain et al 1999); for integrated water resource
management (Bromley et al 2004; Cain et al 2001). 

The interest in applied Bayesian Belief Networks lies
principally in their use as decision support systems. They
are offer the opportunity to capture expert knowledge in the
field as well as structure this in a way supports programme
development and implementation. Their capacity to inte-
grate data of varying quality and type, as well as synthesising
relevant factors in social, economic, ecological and technical
fields, makes them particularly useful in the complex socio-
economic/socio-technical environments of sustainable de-
velopment.

 

BAYESIAN EPISTEMOLOGY

 

The development of BBN models in substantiate applica-
tions almost always involves combining quantitative condi-
tional probabilities derived from analysis of existing
datasets, with qualitative assessments of conditional proba-
bilities derived from expert elicitation. Bayesian statistical
modelling allows the integration of qualitative, semi-quali-
tative (ordinal level) and quantitative data. The basis of the
distinction between the Bayesian and frequentist statistical
approaches lies in their treatment of existing knowledge. By
definition, the classical or 'frequentist' approach to statistics
is based on observed long run frequencies of an event’s oc-
currence. This creates problems where no such data exists.
In the Bayesian approach, '…probability is interpreted as a
numerical measure of the degree of consistent belief in a
proposition, consistency being with the data at hand.’ (Jor-
dan 1999 p.9) The Bayesian approach does not, therefore,
depend on observed long-run frequencies, and is free to use
other sources of knowledge such as expert opinion as an in-
itial basis for modelling uncertainties. Use of expert opinion,
gathered through a range of sociological and psychological
research methods, is frequently used as the basis of prior
knowledge. This prior knowledge is then updated using
semi-qualitative or quantitative data as the situation chang-
es or more accurate data is gathered. This capacity to inte-
grate and weight expert opinion with quantitative data
within modular, extensible statistical models provides a
framework within which energy reductions from a suite of
policies and programmes can be assessed.  This is particular-
ly relevant for modelling the likely effect of 'softer' mitiga-
tion measures such as economic incentives and behavioural
change campaigns the effects of which are real, but often
difficult to quantify. In such cases predicted savings based
on expert opinion or non-representative data can be used as
a basis for initial savings projections.
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NETWORK TERMINOLOGY

 

As noted by Jordon (1999), Bayesian Belief Networks com-
bine two areas of mathematics: graph theory and probability
theory. They take their structure from graph theory and
adopt its nomenclature. In Bayesian Belief Network litera-
ture variables are termed 

 

nodes

 

, and the interdependence re-
lationships between variables are termed 

 

edges

 

 (or links).
There can be three types of nodes: 

 

constants

 

 are fixed and
specified in a data file; 

 

stochastic 

 

nodes are variables that are
given a distribution (stochastic nodes may be observed in
which case they are data, or may be unobserved and hence
be parameters and can be either continuous or discrete); 

 

de-
terministic 

 

nodes are logical functions of other nodes. There
can be two types of edges: 

 

probabilistic

 

 relationships speci-
fied by a probability of occurrence; and 

 

logical

 

 relationships
specified by a mathematical expression. Bayesian Belief
Networks also adopt nomenclature from the structure of
family trees. Variables on which a variable is dependent are
termed its 

 

parent nodes 

 

(or 

 

parents

 

), and variables which are
dependent on a variable are termed its 

 

child nodes

 

 (or 

 

chil-
dren

 

). 
Like conventional Bayesian analysis, BBNs allow for the

continual integration of new observations or data with prior
distributions representing best available current knowledge.
In cases where no other data is available, these prior distri-
butions are frequently constructed using expert elicitation
methods. BBNs usually model such prior knowledge using
discrete Dirichlet distributions which are conjugate to the
multinomial distributions used to represent data. 

In Bayesian Network the 'architecture' of the network re-
fers to the nodes and the links between the nodes. For
CaRB-ST, this architecture is the graphical component of
the model and captures the relationships between the un-
derlying influencing factors (nodes) which cumulatively
give rise to the observed variability of energy use in techni-
cally similar dwellings. Linking nodes allows us to model
and understand why changing one variable does not neces-
sarily lead to a proportionate change in overall energy use, as
that variable may be both positively and negatively correlat-
ed with energy use through different pathways through the
network. Within each discrete stochastic node is a Condi-
tional Probability Table (CPT). This encodes the correla-
tion between nodes through the probability of the variable
being in any given state, given the states of its parents. An
important consequence of this is that BBNs are 'factoriza-
ble', in that the contribution of each node is limited to the
interaction of that node with its parents. This is what makes
networks easily extensible and modifiable as only the CPT's
of nodes directly linked to any changes are affected. 

 

ARCHITECTURE

 

While the bulk of resources invested in constructing a BBN
lies in identifying probabilities, Druzdzel and van der Gaag
(2000) note that 'Experience with constructing probabilistic
networks for various domains of application has established
a consensus that the graphical structure of a network is its
most important part...' p.483. This importance arises for two
reasons. Firstly, the output of the network (its correlation
structure over the domain of variables) is more sensitive to
changes in the architecture than to changes in conditional
probabilities. Secondly, the time required to construct a net-

work is heavily dependant on the number of probabilities
required which is in turn heavily dependent on the architec-
ture (Laskey & Mahoney 2000).

Constructing the network architecture can be done in two
primary ways:

1.  Learning the architecture from the data (possible in very 
data-rich domains) and;

2.  Generating the architecture from literature and expert 
elicitation. (Druzdzel and van der Gaag 2000).

In the domain of socio-technical influences on domestic en-
ergy consumption, the data is incomplete and highly varia-
ble and so and so literature and expert elicitation are used.

 

RELATIONSHIP BETWEEN ARCHITECTURE AND 
PROBABILITIES

 

For nodes with a given number of discrete states, the
number of probabilities required is exponential with the
number of edges between nodes (Druzdzel & van der Gaag
2000). As noted above however, the number of probabilities
is a function of the architecture of the network. This, in turn,
determines the size of the Conditional Probability Tables
within the nodes. The CPT within any node contains the
Cartesian product of the number of states of the variable and
its parents. A three-state variable, with two three-state par-
ents, would have a CPT with 3

 

3

 

 (27) probabilities. Adding
one additional three-state parent means the probability of
each of these 27 states needs to be assessed for each of the 3
states of the new parent node. This increases the required
probabilities to 81 illustrating the exponential relationship
between variable interdependence and data requirements.
The number of probabilities can be reduced buy altering
the architecture of the network. 

Druzdzel and van der Gaag (2000 p.483) note however
that 

 

Changes to the graphical structure of a probabilistic network
and the use of parametric distributions are likely to come at the
price of accuracy. There currently is little insight in whether or
not a fully detailed network with separately specified assess-
ments has a better performance than a network that is carefully
reduced using the approached outlined above. There is no
doubt, however, that the reduced network will have required
considerably less time on the part of the experts involved. The
time thus saved can be exploited for verifying the refining the
network.

 

This point is important and applies to all areas of network
development. Overall network utility is always best served
by directing inevitability limited resources to those aspects
of network development which will yield greatest effect. 

 

PROBABILITIES

 

Determining the probabilities for the correlation structure is
the majority of the effort in constructing a working BBN
model. 

There are three broad approaches to this: 

1.  Statistical analysis of primary or secondary datasets; 

2.  Probabilities reported in the literature and;

3.  Expert elicitation. 
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The method used depends on the quality of the data avail-
able. 

 

Primary and secondary data analysis

 

Ideally, large empirical datasets in the direct context of the
study are used to determine the correlations between varia-
bles. More frequently, secondary data provides estimates of
correlations with low statistical power in a close, but not
matching context to that of the study. All the usual problems
of the meta-analysis and synthesis of data from different
times and places arise, and frequently experts are asked to
make judgements as how best to adjust the statistical data to
the current context. 

 

Literature

 

Data from literature present similar challenges. Findings
from studies seldom report the characteristics of the studies'
population in sufficient detail to determine how closely
these match those of the target population. Probabilistic
findings in literature are also frequently expressed in the re-
verse direction of causation, i.e. the frequency with which a
possible cause is observed in the target population. By way
of example, knowing that 30% of the people who turn off
lights in unoccupied rooms are school aged children does
not tell you the probability that a school aged child will turn
off lights in an unoccupied room. Again, considerable do-
main specific knowledge from experts is required if such
data are to be correctly interpreted and used.

 

Elicitation

 

There is a long history of elicitation of experts' estimates of
uncertainty across many disciplines. Early work in the statis-
tical community stems back to Hogarth (1975). Much of this
work has focused on eliciting full probability distributions,
either for direct use in models where no other data is availa-
ble, or for conventional Bayesian analysis (O'Hagan 1998).
While Bayesian Belief Networks only require point esti-
mates of conditional probabilities rather than full distribu-
tions, useful understandings of the underlying psychology
of uncertainty estimating can be found from in the broader
Bayesian literature as well as direct contributions from psy-
chologists (Anderson 1998). 

O'Hagan (1998), in his work with engineers on estimating
costs of maintaining water treatment works, found that dis-
tinguishing between sources of uncertainty, and having ex-
perts consider these explicitly, aided the elicitation process.
O'Hagan notes that experts estimates of uncertainty are (fre-
quently unconsciously) conditioned by the sources of uncer-
tainty they are considering in making their judgements. One
of the aims of collective elicitation methods, such as modifi-
cations of the Delphi technique, is to expand the pool of fac-
tors experts should consider in arriving at their estimates of
uncertainty. 

O'Hagan also concludes that 'It is essential to ask about
quantities that the experts understand best, and in a lan-
guage that is as simple and familiar as possible' This is sup-
ported by other authors (Kandane and Wolfson 1998 p.4)
who note that 'experts should be asked to assess only ob-
servable quantities, conditioning only on covariates which
are also observable or other observable quantities'. 

Kandane and Wolfson also note that consensus has been
reached on the need for frequent feedback to be given to ex-
perts during the elicitation process and for both conditional
and unconditional probabilities to be elicited on hypotheti-
cal observed data. 

 

The Bayesian Belief Network development 
process

 

Network development progresses through two broad phas-
es. Phase one involves a realist synthesis of the literature, in-
itial construction of the BBN architecture, and population of
the network with preliminary estimates of conditional prob-
abilities. Phase two proceeds iteratively through network
sensitivity analysis; uncertainty analysis; validation; verifica-
tion; expansion; and contextualisation. This creates a proc-
ess of network development intended to focus resources on
those areas to which the output of the network is most sen-
sitive.

 

PHASE 1: REALIST SYNTHESIS OF LITERATURE

 

A 'realist synthesis' or 'realist review' of literature is an ap-
proach to literature analysis recently developed by Pawson
and Greenhalgh (2004) under the auspices of the UK Eco-
nomic and Social Research Council (ESRC). It is intended
to produce policy guidance decision support rather than ex-
plicit policy prescriptions. It is therefore complementary to
the aims of BBN decision support systems. This focus on
guidance, rather than policy prescription, arises from the ex-
plicit recognition of the importance of context and contin-
gency in assessing programme success. In addition, a realist
synthesis is distinguished by its strong emphasis on stake-
holder participation, its focus on understanding and illumi-
nating the theories underlying policy makers' approach to
programme development, its emphasis on testing these the-
ories against empirical evidence, and its iterative nature.
These are discussed in turn.

The realist review is intended to provide decision support
to policy makers in the policy formulation process. As the
authors express it, it gives policy makers' the 'highway code'
- rather than explicit instructions on how to get from A to B.
This emphasis on decision support, rather than decision
making, stems from an overt recognition of the importance
of context and contingency in programme implementation -
something which the proponents say more prescriptive sys-
tems fail to take into account. The success of any given pol-
icy strategy is contingent on the social, cultural and
economic context in which it is implemented. Programmes
which are effective in one region can have minimal effect
another. Realist reviewers contend that through providing
policy makers with an understanding of the context of pro-
gramme success, empowers them to tailor programmes to
their specific environment, thus improving their effective-
ness.

A primary aim of the realist review is to improve policy
formulation through understanding and informing policy
makers. The method places engagement with, and under-
standing of, policy makers' understandings of the world cen-
trally. Through working with policy makers, understanding
the theories implicit in their policy making actions, and as-
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sessing the evidence base for such theories, realist reviewers
are able to engage with policy makers on their own episte-
mological ground. This engagement gives the policy makers
themselves a sense of ownership of the review and the re-
sulting epistemological familiarity makes accepting the re-
view's findings easier. 

The focus on understanding the theories implicit in poli-
cy makers' actions makes realist review particularly useful to
construction of Bayesian Belief Networks. The term 'theo-
ries' here is meant with a lower-case 't'. These are not 'The-
ories' as would be recognisable within academic
communities, but more the entailed assumptions underpin-
ning policy makers’ beliefs as to which factors influence
each other and why. For example, policy makers advocating
use of subsidies for instillation of loft insulation are implicit-
ly assuming that economic rational action model of occupant
behaviour. A realist reviewer having observed this in stake-
holder participation meetings would then assess the evi-
dence base for such a theory.

Realist reviews are iterative to permit ongoing stakehold-
er engagement, to permit focusing of the review around
emerging theories, and to provide an environment for the
learning of both stakeholders and reviewers.

In the context of a realist synthesis conducted for the pur-
poses of generating a Bayesian Belief Network, some addi-
tional and more specific information is required. This is
primarily focused on identifying the factors influencing
home energy use and their relationships for construction of
the architecture of the BBN. These are as follows:

1.  The estimated strength of the relationships between fac-
tors identified in the realist synthesis. 
a) In the context of the research which gave rise to the
finding of an effect. 
b) In a manner which can be explained to an expert com-
munity in context of a probability elicitation exercise. 
This informs the merits of including the variable in the
BBN, and assists in focusing resources on estimating
probability data for the most important correlations.

2.  The direction of the effect (which variable is independ-
ent and which is dependent).
a) For each variable, identify those variables on which it
is dependent (it's 'parents' in BBN terms).
b) For each variable, identify those variables which are
dependent on it (it's 'children' in BBN terms). 
BBN architecture has directionality with edges going
from independent to dependent variables. This allows us
to link the variables to form the architecture of the BBN 

3.  The type of evidence supporting the claim of an effect. 
It is necessary to know the strength of the evidence sup-
porting the correlation between variables (in addition to 
the strength of the correlation covered in point 1). This 
informs the confidence placed on the existence and 
strength of estimates of correlation in the BBN.

4.  Options for the representation of each variable in dis-
crete form. 
This indirectly impacts on the architecture of the BBN
through its iterative relationship with data gathering as it
is one of the primary determinants of the number of
probabilities needed to operationalise BBN model. For

this reason it is strongly preferable to have the minimum
number of states which will capture the correlation be-
tween the variables meaningfully.

This tailored realist synthesis allows the first two steps of
Bayesian Belief Network model construction to be complet-
ed:

1.  The initial architecture of the network is determined 
from the realist synthesis of literature.

2.  Initial estimates of conditional probabilities are estab-
lished from data and literature.

 

PHASE 2: ITERATIVE NETWORK DEVELOPMENT

 

Phase two proceeds iteratively through network sensitivity
analysis; uncertainty analysis; validation; verification; expan-
sion; and contextualisation again with the intention of focus-
ing resources on those areas to which the output of the
network is most sensitive.

1.  Sensitivity analysis is used to uncover to which probabil-
ities network output is most sensitive.

2.  Uncertainty analysis is used to ensure the joint probabil-
ity distribution of the network as a whole remains within 
expected bounds.

3.  Primary quantitative data analysis, secondary data analy-
sis or additional elicitation methods are used to identify 
better estimates of key probabilities.

4.  Nodes and links to which the output of the network is 
insensitive are pruned.

5.  Primary qualitative research is conducted to extend the 
network though expanding our current knowledge. 

6.  Primary quantitative research is conducted to contextu-
alise which variables are influential under which condi-
tions.

Once the first two stages are complete development pro-
ceeds in two parallel streams, one qualitative, one quantita-
tive. Primary qualitative research is used to both extend our
understanding of the influences on domestic energy con-
sumption (extend the network), and clarify our understand-
ing of the contexts in which different influences
predominate (constrain the network). Primary and second-
ary quantitative research is used to refine estimates of those
probabilities to which the network is most sensitive. 

Steps one to six are iterated to refine the architecture and
conditional probability structure of the network and rely on
repeated application of sensitivity analysis and uncertainty
analysis. 

Sensitivity analysis tests the extent to which the output of
the network is sensitive to changes in the estimates of prob-
abilities describing the relationships between the variables.
Sensitivity analysis proceeds by systematically altering each
variable through each of its states while holding all inde-
pendent variables constant. Changes in the joint probability
distribution are observed against changes in each variable,
with greatest changes indicating greatest sensitivity. This is
a mainstay of BBN assessment and development and is au-
tomated with most commercial BBN packages. 
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Uncertainty analysis explores the range of possible out-
puts of a network by changing all probabilities in the net-
work simultaneously. Each probability is drawn from an
underlying distribution and the effect on network output is
recorded, this is repeated until a large proportion of the
probability space has been sampled. This effectively
amounts to performing a Monte Carlo style sampling of the
model space. The intention is to see if the network as a
whole returns estimates of the variable of interest which are
implausible to domain experts. Where this happens, the
network can be reanalysed to assess why this has occurred.
In this sense uncertainty analysis is a form of network verifi-
cation. Uncertainty analysis also reveals the extent to which
the network is sensitive to changes in its probability esti-
mates. 

This iterative procedure allows network builders to focus
resources on those areas which will provide the greatest ben-
efit.

 

Model development and application

 

COSTS

 

The costs of constructing Bayesian Belief Network models
can be considerable. The costs are primarily associated with
the staff time required for stakeholder consultation, synthe-
sising the literature, secondary data analysis and any primary
data collection. These costs are associated with the initial
construction of a BBN model at the national level in a new
field. Potentially the single largest expense is primary data
collection. Social survey work is expensive with collection of
data for the conditional probability tables of even a small
number of nodes at statistically significant sample sizes at
around 100 000 Euro. It is partly for this reason that expert
elicitation methods (while more subjective) are frequently
used. This also underlies the need to use secondary analysis
of existing data, and credible literature sources where ever
possible.

 

SCALE OF IMPLEMENTATION

 

The model can be applied at national, regional, community
or individual home scales. The stochastic nodes that model
the variables influencing home energy consumption have
some number of discrete states. Normally, each stochastic
node will be a multinomial probability distribution. This is
effectively a normalised histogram showing the relative pro-
portion of the population who are in each state. By way of
example, a variable ‘household size’ may have four states {1;
2; 3 or 4; 5 or more}. At the national level, this variable would
be a distribution reflecting the distribution of these house-
hold sizes in the national population. At the regional and
community levels it would likewise be a distribution, but
one based on these populations respectively. At the individ-
ual household level however that variable would be ‘instan-
tiated’ to the household size in question. Some variables
may be instantiated at other levels. For example if the pres-
ence of a community energy programme was found to be in-
fluential, then a variable ‘community energy programme’
may have two states {yes; no} and may be instantiated at the
community level as well as the household level. It is antici-
pated that the CaRB-ST model will be built to include

nodes applicable to national, community and technology
levels. The technology level is include as it is known that
different technologies engender very different use patterns
and it is this socio-technical interaction that is of particular
interest. 

 

EXPECTED USERS

 

The model is primarily intended for policy formulation (na-
tional level) and programme design and implementation (lo-
cal level). It is expected, however, that valuable lesions will
also be learnt regarding the design and installation of tech-
nologies in homes. This is of use not only in formulating pol-
icy such as building regulations, but also to technology
designers, building designers and installers regarding the
impact of their design/installation decisions on likely use
patterns. 

 

Conclusion

 

Bayesian Belief Networks appear to offer considerable po-
tential as a transdisciplinary method for knowledge synthe-
sis across the social, economic and behavioural sciences.
They allow for construction of consensus based, transparent,
decision support systems for use in energy policy and pro-
gramme development. The process of their construction fits
well with the iterative and engaged models current in fields
such as socio-technical systems theory and diffusion of inno-
vations, as well as with current theories of policy advocacy
and formation. 

Bayesian Belief Networks permit synthesis of qualitative
and quantitative data from a variety of sources, modelling
continuous and discrete variables, and the progressive inte-
gration of new data over time. They therefore create ‘live’
models which can be continually refined and updates as
more empirical data is collected or new theoretical light is
shed on a problem.

Bayesian Belief Networks are built on the subjective
Bayesian statistical epistemology that views probability as a
numerical expression of the degree of consistent belief giv-
en the evidence at hand. From a social theory perspective,
this makes them congruent with a social realist perspective
and complementary to current best practice in knowledge
synthesis for policy from literature such as Realist Synthesis. 

The construction of a BBN over a domain of variables,
such as the socio-technical influences on domestic energy
consumption in the UK, generates a ‘landscape’ (in the
mathematical sense of this term) with a specific topography
of peaks, ridges, valleys. This topography allows us to define
terms like ‘barriers’ as ridges on the landscape separating
optimal solutions. Such barriers and optimal solutions can be
identified as specific combinations of states of the variables
defined in the Bayesian Belief Network. The topography of
this landscape therefore has direct implications for the de-
velopment of policy and programme strategies. 

Alternative models of home energy use are conventionally
based on deterministic building thermodynamic modelling
and target-lead scenario projections of market penetration
rates of alternate building technologies and consumer appli-
ances. Such models mask the known large variability in en-
ergy use across even technically similar households. This
variability tells us that some householders are already living
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considerably lower energy lifestyles than average. Under-
standing the causes and extent of this variability is impor-
tant for policy makers for two reasons. Firstly, such low
energy lifestyles provide valuable case study material on do-
mestic practices which use less energy. Secondly, modelling
and explaining this diversity allows us to understand what
factors, or combination of factors, make this possible. To use
a genetic analogy, in any system trying to evolve in a given
direction diversity is essential. Diversity creates a ‘gene-
pool’ of traits which should be favoured for selection.
Knowledge of this diversity, and the detailed factors which
create it, allows us to create policy environments which fa-
vour these desirable traits. Returning to energy policy, if for
example it is known that operant ambient conditioning (giv-
ing more control over their immediate environment build-
ing occupants) decreases net energy use, then this can be
encouraged through building regulations, building stand-
ards and practices. 

In addition to being deterministic, alternative models of
home energy use assume the influences on household ener-
gy use are independent and linearly related (or first order
non-linear in the case of partial equilibrium economic mod-
els). Such models fail to capture the complex, interdepend-
ent and contextual nature of the socio-technical realm.
Understanding and modelling interdependence is impor-
tant for policy makers. Interdependence gives rise to sys-
tems in which finding a ‘better’ management strategy is easy
– but in which finding the ‘best’ management strategy can
be particularly difficult. Finding the ‘best’ strategy will
probably involve policies targeting a combination of factors
simultaneously. The possible combinations of factors that
could be targeted are immense. Without a model which
maps the ‘landscape’ of socio-technical possibilities, the
chances of finding the right combination of factors to man-
age is small and the process of finding them amounts to a
blind search. 

The research design for the CaRB-ST research pro-
gramme will marry the methodological advantages of Baye-
sian Belief Networks with those of the Realist Synthesis in
an attempt to generate a stakeholder engaged, evidence
based model of the interdependent socio-technical influ-
ences on home energy consumption. 
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