

MSc Competition 2009

CO₂ Capture and Photocatalytic conversion to a renewable fuel: Nanostructured photocatalysts

- Dr. Junwang Tang
- Prof. Zhengxiao Guo
- Afsoon Jamali (Msc)
- Chemical Engineering
- Chemistry
- **Chemical Engineering**

CO₂ and global warming

While the existence of greenhouse gases (water vapor, CO_2 , methane, NO_x , O_3 and CFCs) in the atmosphere is vital, unnatural rise in atmospheric concentration of greenhouse gases can raise global average temperatures to alarming levels. Of all the greenhouse gases, CO_2 is particularly harmful because it can linger in the atmosphere for tens of thousands of years¹. Efforts to decrease atmospheric CO_2 levels have seen many research and investments activities towards the renewable sources like solar, wind, tidal and geothermal energies.

Photocatalytic conversion of CO₂ to fuel

Currently large funding has been invested to the technology towards "instant" solutions to reduce CO_2 atmospheric level by means of CO_2 capture and sequestration in deep sea or earth mantle³. There is concerns on CCS because it is not sustainable, to some extent encourages higher consumption of the cheap fossil fuel and carries immense risk of leakage⁴. Photocatalytic conversion of CO_2 to a more stable energy carrier like methanol on the other hand uses renewable sunlight energy and offers a sustainable, closed-loop energy recycling, mimicking natural photosynthesis (Fig. 1 and equation 1).

Nanostructured photocatalst film

The main barrier in photocatalytic reduction of CO_2 is the rapid recombination of photogenerated electron-hole, even in

nanoparticles⁵. Nanostructured photocatalyst films at least offer three significant benefits: lower both the electron-hole recombination; oxidation and reduction reactions occur at separated sites to mediate back reactions; do not need facility to separate oxidative and reductive products. We have successfully grown nanostructured TiO₂ (Fig. 2), ZnO and Tabased oxide films using a facile wet colloidal technique that are active in the UV light range for photocatalysis. Continued funding will enable us to step forward and compare the CO₂ reduction activity over diverse materials.

- 1. Archer, D., J. Geophys. Res., 110, C09S05 (2005)
- 2. Somnath C. Roy, Oomman K. Varghese, Maggie Paulose, Craig A. Grimes ACS Nano 2010 4 (3), 1259-1278
- 3. Charles, D., Science, 2009. 323(5918): p. 1158.
- 4. Bockris, J. O' M., International Journal of Hydrogen Energy, 35, 5165-5172 (2010)
- 5. Junwang. T, J.R. Durrant, D.R. Klug, Journal of the American Chemical Society, 130, 13885-13891 (2008)

Fig 2: Nanostructured TiO₂ photocatalyst grown by simple wet-colloidal method.