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Kernel techniques are among the most powerful approaches in machine learning and Bayesian
modelling due to their capability to represent and model complex relations. However, this flex-
ibility and richness of kernels has a price: by resorting to implicit construction of feature maps
these methods operate on the Gram matrix of the data, which raises serious computational chal-
lenges while dealing with large scale data. In order to mitigate this severe numerical limitation,
recently randomized constructions have been proposed in the literature, which allow the appli-
cation of fast linear algorithms.

Random Fourier features (RFF) represent one of the most popular and widely used ap-
proaches for generating such low-dimensional, easily computable feature representations for
shift-invariant kernels: as it has been demonstrated numerically in several applications kernel
machines relying on the RFF approximation not only scale benignly and well-fitted for online
settings, but also show graceful performance degradation compared to the exact solution. An-
other advantage with the RFFs is that unlike the low-rank matrix approximation approach, which
also speeds up kernel machines, it approximates the entire kernel function and not just the Gram
matrix. This property is particularly useful when one is faced with out of sample data problems.

Despite the empirical success and popularity of RFFs, very little is understood theoretically
about their approximation quality and existing theoretical results focus solely on the approxi-
mation of kernel values. However, there are numerous real-world problems where the usage
of kernel derivatives is of central importance. For example, as it has been shown recently in
the Bayesian literature, one can construct efficient, gradient-free adaptive MCMC algorithms
relying on infinite-dimensional exponential family (IDEF) distributions, where the fitting prob-
lem of IDEFs boils down to a linear equation system with entries containing kernel values and
kernel derivatives. Further applications based on kernel derivatives include semi-supervised or
Hermite learning with gradient information, nonlinear variable selection, or (multi-task) gradi-
ent learning.

In this work, we present detailed finite-sample theoretical analysis on the approximation quality
of RFFs for kernels and kernel derivatives. Our first result shows that the RFF based kernel
estimator achieves almost sure convergence uniformly on compact sets with (essentially) expo-
nentially growing diameter as a function of the RFF dimension in contrast to existing guarantees
which only allowed sublinearly increasing set sizes. This asymptotic special case of our result
can be shown to be optimal, similarly to the dependence of our novel guarantee in terms of
the RFF dimension. In addition to the convergence of kernel approximations in uniform norm,
we also provide guarantees in Lp (1 ≤ p < ∞) norm, and propose an RFF approximation to
derivatives of a kernel with a theoretical study on its approximation quality in both uniform and
Lp sense.
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