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Abstract

We consider the problem of distributed multi-task learning, where each ma-
chine learns a separate, but related, task. Specifically, each machine learns
a linear predictor in high-dimensional space, where all tasks share the same
small support. We present a communication-efficient estimator based on the
debiased lasso and show that it is comparable with the optimal centralized
method. Main results were summarized in Table 1 and 2. Preprint available
at http://arxiv.org/abs/1510.00633
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Table 1: Lower bound on coefficients required to ensure support recovery with p variables,
m tasks, n samples per task and a true support of size |S|.
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Table 2: Comparison of parameter estimation errors and prediction errors. The DSML guar-
antees improve over Lasso and have the same leading term as the Group lasso as long as
m < n/(|S|2 log p).
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