Distributed Multitask Learning

Jialei Wang¹, Mladen Kolar², and Nathan Srebro³

¹University of Chicago, jialei@uchicago.edu ²University of Chicago, mkolar@chicagobooth.edu ³TTI Chicago, nati@ttic.edu

Abstract

We consider the problem of distributed multi-task learning, where each machine learns a separate, but related, task. Specifically, each machine learns a linear predictor in high-dimensional space, where all tasks share the same small support. We present a communication-efficient estimator based on the debiased lasso and show that it is comparable with the optimal centralized method. Main results were summarized in Table 1 and 2. Preprint available at http://arxiv.org/abs/1510.00633

Approach	Communication	Assumptions	Min signal strength	Strength type
Lasso	0	Mutual Incoherence	$\sqrt{\log p}$	Element-wise
		Sparse Eigenvalue	$\sqrt{\frac{n}{n}}$	
Group lasso	$\mathcal{O}(np)$	Mutual Incoherence	$\sqrt{1 (1 + \log p)}$	Row-wise
		Sparse Eigenvalue	$\sqrt{\frac{1}{n}}\left(1+\frac{1}{m}\right)$	
DSML	$\mathcal{O}(p)$	Generalized Coherence	$\sqrt{1(1+\log p)} + S \log p$	Row-wise
		Restricted Eigenvalue	$\sqrt{\frac{1}{n}}\left(1+\frac{1}{m}\right)+\frac{1}{n}$	

Table 1: Lower bound on coefficients required to ensure support recovery with p variables, m tasks, n samples per task and a true support of size |S|.

Approach	Assumptions	ℓ_1/ℓ_2 estimation error	Prediction error
Lasso	Restricted Eigenvalue	$\sqrt{\frac{ S ^2 \log p}{n}}$	$\frac{ S \log p}{n}$
Group lasso	Restricted Eigenvalue	$\frac{ S }{\sqrt{n}}\sqrt{1+\frac{\log p}{m}}$	$\frac{ S }{n}\left(1+\frac{\log p}{m}\right)$
DSML	Generalized Coherence	$ S \sqrt{1 + \log p} + S ^2 \log p$	$ S (1 + \log p) + S ^3 (\log p)^2$
	Restricted Eigenvalue	$\frac{1}{\sqrt{n}}\sqrt{1+\frac{1}{m}+\frac{1}{n}}$	$\frac{1}{n}\left(1+\frac{1}{m}\right)+\frac{1}{n^2}$

Table 2: Comparison of parameter estimation errors and prediction errors. The DSML guarantees improve over Lasso and have the same leading term as the Group lasso as long as $m < n/(|S|^2 \log p)$.