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Long-term (trophic) purinergic signalling:
purinoceptors control cell proliferation, differentiation
and death

G Burnstock*,1 and A Verkhratsky2,3

The purinergic signalling system, which uses purines and pyrimidines as chemical transmitters, and purinoceptors as effectors,
is deeply rooted in evolution and development and is a pivotal factor in cell communication. The ATP and its derivatives function
as a ‘danger signal’ in the most primitive forms of life. Purinoceptors are extraordinarily widely distributed in all cell types and
tissues and they are involved in the regulation of an even more extraordinary number of biological processes. In addition to fast
purinergic signalling in neurotransmission, neuromodulation and secretion, there is long-term (trophic) purinergic signalling
involving cell proliferation, differentiation, motility and death in the development and regeneration of most systems of the body.
In this article, we focus on the latter in the immune/defence system, in stratified epithelia in visceral organs and skin,
embryological development, bone formation and resorption, as well as in cancer.
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ATP – The Universal Intercellular Signalling Molecule

The molecule of adenosine 50-triphosphate or ATP was
discovered 80 years ago simultaneously in Heidelberg and
Boston by Lohman,1 Fiske and SubbaRow.2 Very soon
afterwards, the central role of ATP in cell energetics was fully
appreciated.3 In fact, the role of ATP in living matter is unique
and without ATP we, in all probability, would not witness life in
its present forms.

Indeed, the life forms, which we know on earth, are built
around the genetic code that is stored in the relatively simple
molecules of DNA and RNA, composed from the purine
adenine and the pyrimidines, guanine, uracil and thymine. The
purines and pyrimidines, as well as ATP and GTP, most likely
appeared in the prebiotic period, with adenine derivatives
being preferentially synthesised as a result of purely thermal
reactions.4,5 Very early in evolution, ATP was chosen as an
energy substrate, thus shaping the metabolism of all forms of
life.6 The preponderance of ATP stimulated the evolution of
enzymes with preferential binding properties, and adenine

nucleotides began to be used in various intracellular signalling
cascades, such as, for example, the cAMP cascade.7 At the
very same time, ATP probably became the first extracellular
signalling molecule, because of its sheer availability. Indeed,
as every cell contained high concentrations of ATP, cell
damage inevitably results in the appearance of ATP gradients
in the surrounding milieu, which thus became a universal
‘danger’ signal. As a result, virtually every known cell or single-
cell organism has a form of ATP sensitivity, and purinergic
signalling represents the primordial form of chemical
intercellular signalling.8

Although the intracellular signalling and metabolic roles for
ATP were established quite early, its importance as an
extracellular signalling molecule was acknowledged much
later. The possible signalling role for AMP was postulated in
19299 and purinergic signalling (i.e., signalling mediated by
purines and pyrimidines) was initially suggested in 1970,
when ATP was identified as a transmitter in the autonomic
nervous system.10 In 1972, the concept of purinergic nerves
and purinergic transmission was formulated,11 and after initial
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resistance is now widely accepted and has a major role in both
the nervous system12–14 and non-neuronal cells.15 Initially,
the focus was on short-term purinergic signalling in neuro-
transmission, neuromodulation and secretion, but more
recent studies have also established roles in long-term
(trophic) signalling in cell proliferation, differentiation, motility
and death in development and regeneration.16,17

The Omnipresent Purinoceptors

The action of purines and pyrimidines is mediated through
an extended family of purinoceptors,18,19 generally divided
into P1 adenosine receptors20 and P2 receptors for ATP
and related nucleotides.21,22 In the early 1990s, receptors
for purines and pyrimidines were cloned and charac-
terised12,23–25 and it is currently recognised that there are
four subtypes of P1 receptors (A1, A2A, A2B and A3), seven
subtypes of P2X ligand-gated ion channel receptors (P2X1–7)
and eight subtypes of P2Y G-protein-coupled receptors
(P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13 and
P2Y14

26). P2 receptors appeared very early in evolution, for
example, P2X receptors have been found in early prokar-
yotes;27–29 despite little sequence homology with later
evolutionary forms of the receptors, the functional properties
are very much conserved. Similarly, functional metabotropic
(P2Y-like) receptors are present in Protozoa, and in the most
primitive plants in which they regulate numerous vital
functions.8,30

The P1 and P2Y receptors are classical 7-transmembrane
domain receptors, the action of which is mediated through
G-proteins and numerous intracellular second messengers,
including the cAMP and InsP3 cascades. In addition, some of
these receptors are linked to membrane ion channels, thus
mediating plasmalemmal ion fluxes and electrophysiological
effects. P2X receptors are archetypal ligand-operated cationic
channels,31–33 many of which have an appreciable Ca2þ

permeability.34 The P2X channels are assembled (in a homo-
or heteromeric manner) from seven subunits, designated as
P2X1–P2X7, which determines the variability of their biophy-
sical and pharmacological properties.

Probably because of their ancient origin, the extensive
array of purinoceptors has a unique property of being
extraordinarily widely distributed throughout living cells and
tissues (Table 1). In contrast to all other chemical transmitters,
which are, as a rule, segregated to certain cell types and
certain functions, the receptors for purines and pyrimidines
are found everywhere and as a matter of fact it is almost
impossible to find a cell without sensitivity to ATP and its
analogues. Indeed, purinoceptors are extensively present in
the central nervous system, where they mediate fast synaptic
transmission, provide for presynaptic inhibition and regulation
of neuronal excitability and are particularly important for
signalling in neuronal–glial circuitry, being one of the most
important gliotransmitters.12,13,35,36 In the peripheral nervous
system, purinoceptors are involved in sensory37,38 and
autonomic functions.39 Purinoceptors are present in all
peripheral tissues, being involved in the regulation of very
different functions in the gut, kidneys, in the cardiovascular
and respiratory systems, the immunological system, in blood

cells, skin, bones and muscles.8,15 Furthermore, the puriner-
gic signalling system possesses another unique property – the
release of the principal mediator, ATP, initiates the
appearance of a trail of derivatives, ADP, AMP and
adenosine, to which extracellular ATP rapidly degrades due
to the activity of ectonucleotidases that represent an important
component of purinergic signalling.13 As a result of the
single event of ATP release from different cell types (which
occurs through different concomitant mechanisms, including
Ca2þ -regulated exocytosis, membrane transporters and
diffusion through large-permeability plasmalemmal chan-
nels40,41), several classes of receptors (sometimes having
opposite actions) are activated at effector cells. Finally,
purinoceptors are linked to an extensive array of intracellular
signalling cascades that underlie their long-term trophic
effects (Figure 1).

Purinergic Signalling Controls Biological Defence
Systems

The ancient ‘damage signaller’ characteristic of ATP is
evolutionarily conserved in several systems of biological
defence. First, ATP functions as one of the main mediators of
pain, both in acute and chronic contexts, as indeed P2X2/3

receptors are involved in fast pain perception,38,42 whereas
P2X4 and P2Y12 receptors assume a leading role in the
pathogenesis of neuropathic pain.43–45

Second, purinergic agonists regulate the immune response
in various tissues. In particular, in the brain and spinal cord,
activation of several types of purinoceptors (most notably
P2X4, P2X7, P2Y6 and P2Y12), which occurs in a highly
coordinated temporal sequence, controls motility and activa-
tion of microglia, thus being central to the brain immune
response.46,47 In particular, the P2X7 receptor seems to be
critical for microglial activation by b-amyloid, being therefore
pathologically relevant for Alzheimer’s disease.48 Similarly,
purinergic signalling is intimately involved in the activation of
the peripheral immune response being not only a stimulator
but also a precise regulator of the differentiation and function
of immunocompetent cells,49,50 as well as in driving chemo-
taxis of neutrophiles, eosinophiles, macrophages and mast
cells.51–53

Third, ATP and its analogues are directly involved in
tissue remodelling in response to injury and have a key role
in the regulation of subsequent repair and regeneration. In the
nervous system, stimulation of purinoceptors triggers
astrogliosis, the generalised response of astrocytes to brain
damage, which is characterised by cell proliferation and
remodelling of the neural circuitry.54,55 Reactive astrogliosis is
instrumental for both formation of scar and limitation of the
brain damaged area (through anisomorphic astrogliosis), as
well as for post-insult remodelling and recovery of neural
function (by isomorphic astrogliosis). The initial events in
astroglial responses to purinergic signallers are often asso-
ciated with P2Y1/2 receptor-mediated Ca2þ astroglial
signalling in astrocytes,56,57 which, depending on the context,
is instrumental for glial Ca2þ excitability or can initiate long-
term effects.58 These trophic/astrogliotic effects of P2
agonists (manifested by proliferative and morphological
responses) were found both in vitro, in glial cultures, and
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Table 1 Functional consequences of genetic deletion of purinoceptors

Receptor
subtype

Phenotypereference

P1 Adenosine receptors
A1 (i) Behavioural phenotype: increased aggression and anxiety; decreased motor activity

(ii) Neural phenotype: neuroprotection in newborns; hyperalgesia; no inhibition of synaptic transmission; decreased long-term
potentiation; reduced hypoxia-associated decrease in neural activity and recovery after hypoxia
(iii) Kidney phenotype: absent tubuloglomerular feedback
(iv) Metabolic phenotype: increased insulin and glucagon secretion103–106

A2A (i) Behavioural phenotype: increased aggression and anxiety; decreased exploratory activity; attenuated psychostimulant
responses; decreased alcohol sensitivity and withdrawal; decreased amphetamine- and cocaine-induced locomotor response
(ii) Neural phenotype: neuroprotection in adults; hypoalgesia
(iii) Cardiovascular phenotype: increased blood pressure, heart rate and rennin activity
(iv) Haemostatic phenotype: increased platelet aggregation; increased brain damage after focal ischaemia
(v) Immunological phenotype: increased inflammatory response
(vi) Sensory phenotype: decreased pain threshold107–111

A2B (i) Immunological phenotype: increased histamine release but decreased IL-13 release from mast cells112,113

A3 (i) Behavioural phenotype: increased despair and motor activity
(ii) Neural phenotype: reduced neuroprotection; hyperalgesia
(iii) Immunological phenotype: attenuated lipopolysaccharide-induced TNFa production and adenosine-induced histamine
release from mast cells; decreased neutrophil infiltration of damaged myocardium; decreased local inflammatory response
(iii) Cardiovascular phenotype: decreased infarct size following ischaemic–reperfusion injury; loss of adenosine-induced
cutaneous vasopermeability; i.v. adenosine produces and greater drop in blood pressure; increased tolerance to ischaemia;
lower intraocular pressure114–119

P2X receptors
P2X1 (i) Kidney phenotype: absent tubuloglomerular feedback

(ii) Reproductory phenotype: male infertility due to the reduction of sperm in the ejaculate and severely impaired contractility of
vas deference
(iii) haemostatic phenotype: reduced thrombosis associated with injury of the walls of small arterioles120–123

P2X2 (i) Neural phenotype: impaired synaptic facilitation in hippocampal interneurones
(ii) Sensory phenotype: impaired taste
(iii) Chemosensory phenotype: affected excitation of afferent nerves in carotid body by hypoxia
(iv) Gut phenotype: reduced peristalsis of the small intestine124–126

P2X3 (i) Sensory phenotype: affected nociception, impaired temperature sensitivity, impaired taste
(ii) Urinary phenotype: affected voiding reflex39,125,127–129

P2X2&P2X3 (i) Sensory phenotype: affected nociception, impaired temperature sensitivity, severely impaired taste
(ii) Chemosensory phenotype: reduced ventilatory responses to a decrease in the level of inspired O2

39,125

P2X4 (i) Neural phenotype: reduced hippocampal LTP
(ii) Sensory phenotype: reduced chronic pain (both inflammatory and neuropathic)
(ii) Vascular phenotype: impaired flow-sensitivity of blood vessels; decrease in NO production by endothelial cells, decreased
vasodilatation, higher blood pressure130,131

P2X7 (i) Immunological phenotype: impaired immune response
(ii) Sensory phenotype: reduced inflammatory and neuropathic chronic pain
(iii) Exocrine phenotype: impaired saliva production
(iv) Bone phenotype: abnormal bone formation and resorption25,132–134

P2Y receptors
P2Y1 (i) Haemostatic phenotype: mildly prolonged bleeding times

(ii) Metabolic phenotype: increases systemic glucose levels21,135

P2Y2 (i) Epithelial phenotype: abnormal secretion
(ii) Bone phenotype: inhibited bone formation88,136

P2Y4 (i) Epithelial phenotype: abnormal secretion21,137

P2Y6 (i) Immunological phenotype: UDP-induced IL-6 and macrophage-inflammatory protein-2 release to lipopolysaccharide and
macrophage UDP-induced inositol phosphate production are lost
(ii) Cardiovascular phenotype: loss of endothelium-dependent UDP vasodilation138

P2Y12 (i) Haemostatic phenotype: prolonged bleeding time, inhibition of platelet aggregation to ADP, and resistance to arterial
thrombosis139
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in vivo, in nucleus accumbens of rats.17,59–61 Similarly,
purinergic signalling has a fundamental role in remodelling
and healing of lesions in other tissues, including skin and
bone. In the next part of this review, we will focus on the long-
term trophic roles of purines and pyrimidines in cell prolifera-
tion, differentiation and death in the turnover of epithelial cells
in skin and in cells lining visceral organs, in restenosis,
embryological development, bone formation and resorption
and cancer.

Stratified Squamous Epithelia

Stratified squamous epithelia in several sites, including two
non-keratinised cell types, namely, rat cornea and oesopha-
gus, and four keratinised cell types, soft palate, foot pad skin,

vagina and tongue, showed heavy immunostaining of the
P2X5 receptor associated with cell differentiation in spinous
and granular cell layers, but not in basal cuboidal or
keratinised outer layers. In contrast, there was heavy
immunostaining of P2X7 receptors in the outer keratinised
layer, perhaps associated with apoptotic cell death.62

Rapid turnover rates are found in the epithelium of the small
intestine. The crypts contain undifferentiated progenitor cells
from which almost all other epithelial cell types, including
goblet cells and enterocytes, arise. The differentiated cells
glide towards the villus tips where they are finally ejected into
the lumen. In the rat, this whole process takes 3–4 days.63

P2X5 receptors are expressed on the narrow ‘stem’ of villus
goblet cells, whereas P2X7 receptor immunoreactivity is seen
only on the membranes of enterocytes and goblet cells at the
tip of the villus, where cells undergo apoptosis, before
shedding into the lumen.64

Skin

The expression of P2X5, P2X7 and P2Y2 receptor subtypes
was studied in healthy human epidermal keratinocyes in
relation to markers for proliferation (PCNA and Ki-67),
differentiation (cytokeratin KIO and involucrin) and apoptosis
(TUNEL and anti-caspase-3).65 It was shown that P2Y1 and
P2Y2 receptors were immunoreactive in basal and parabasal
keratinocytes, P2X5 receptor immunostaining within the
stratum spinosum and P2X7 receptor immunostaining in the
stratum corneum, associated with cell proliferation, differen-
tiation and apoptotic cell death, respectively (Figure 2).
Functional experiments on cultured keratinocytes were also
carried out in this study, which showed the following: an
increase in cell numbers in response to the P2Y1 receptor
agonist 2-methylthio ADP and the P2Y2 receptor agonist UTP;
and a significant decrease in cell numbers with the P2X5

receptor agonist ATPgS and the P2X7 receptor agonist
BzATP (Figure 3). Later studies from this group examined
the purinergic signalling profile in human fetal epidermis.66

They showed P2Y1 receptors in the basal layer of the
developing epidermis associated with proliferation; P2X5

receptors predominantly in the basal and intermediate layers
associated with differentiation; and P2X7 receptors in the
periderm associated with apoptotic cell death. P2Y2 receptors
were also found in the periderm, where they may have a role in
chloride and fluid secretion into the amniotic fluid.

In a study on purinergic signalling in wound healing67 in
regenerating epidermis of denervated wounds, P2Y1 receptor
protein expression was significantly increased in keratino-
cytes, whereas P2Y2 receptor protein expression was
significantly decreased. However, NGF treatment of dener-
vated wounds reduced the expression of P2Y1 receptors and
enhanced the expression of P2Y2 receptors. In innervated
wounds, NGF treatment enhanced both P2X5 and P2Y1

receptor proteins in keratinocytes. P2X7 receptors were
absent in all experimental wound healing processes.

P2X5 and P2X7 receptors were shown to be present in
human warts and CIN612 organotypic raft cultures of human
papillomavirus-infected keratinocytes and may provide a
novel approach for the treatment of warts.68 P2Y1, P2Y2

and P2X5 receptors are expressed on human anagen hair

Figure 1 Overview of purinergic signalling mechanisms that regulate long-term,
trophic effects. Extracellular nucleotides and nucleosides bind to purinoceptors
coupled to signal-transducing effector molecules. Activation of effectors leads to
generation of second messengers and/or stimulation of protein kinases that regulate
expression of genes needed for long-term, trophic actions. Trophic action of P2X
receptors can be mediated by increases in cytosolic Ca2þ concentration; activation
of P2X7 receptors can also be coupled to protein kinase cascades and caspases
that can mediate proliferation and apoptosis. Cell-specific and/or receptor subtype-
specific differences are likely to account for variations in signalling pathways and
functional outcomes. It should be noted that the list of elements is not meant to be
all-inclusive. Other protein kinases, for example, MEK and PI3K, are upstream of
the listed kinases involved in purinergic signalling, whereas others are downstream,
for example, p70S6K. In addition, dashed arrows indicate that not all listed elements
are activated by the upstream component, for example, not all P1 receptors are
coupled to all listed effectors. AC, adenylyl cyclase; AP-1, activator protein-1;
CaMK, calcium/calmodulin protein kinase; CREB, cAMP response element binding
protein; DG, diacylglycerol; GSK, glycogen synthase kinase; InsP3, inositol
trisphosphate; MAPKs, mitogen-activated protein kinases (including extracellular
signal-regulated protein kinase (ERK), p38 MAPK, and stress-activated protein
kinase (SAPK)/c-Jun NH2-terminal kinase (JNK)); MEK, MAPK/ERK kinase; NO,
nitric oxide; PG, prostaglandin; PI3K, phosphoinositide 3-kinase; PLC, phospha-
tidylinositol-specific phospholipase C; PKA, protein kinase A; PKC, protein kinase C;
PLD, phospholipase D; PLA, phospholipase A; STAT3, signal transducer and
activator of transcription-3 (based on Figure 11 from Burnstock12 with permission
from the American Physiological Society )
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follicles, with P2Y1 receptors present in proliferating cells in
the outer root sheath and bulb, whereas P2X5 receptors were
present on the inner and outer root sheaths and medulla, and
were associated with differentiation.65 P2Y2 receptors were
found in living cells at the edge of the cortex/medulla. P2X7

receptors were not present.

Cancer

There were early reports of the beneficial effect of ATP in the
treatment of cancer,69 and analysis of the purinergic receptor
subtypes involved in the development of tumours in the
prostate,70 bladder,71 melanoma,72,73 breast74–76 and other
organs has been described (see review by White and
Burnstock77). Again, it was shown that P2Y1 and P2Y2

receptors were expressed and involved in cell proliferation,
P2X5 receptors were involved in differentiation (and were
therefore antiproliferative) and P2X7 receptors were involved
in cell death (Figure 4). Human melanomas express functional
P2X7 receptors that mediate the apoptotic functions of ATP,72

whereas P2Y1 and P2Y2 receptor agonists caused a
decrease and increase in cell numbers, respectively.73 In
human squamous cell carcinoma, P2Y2, P2X5 and P2X7

receptors seem to be associated with proliferation, differentia-
tion and cell death, respectively.78

In high-grade bladder cancer, using the HT-1376 cell line,
P2X5 and P2Y11 receptors were shown to mediate the
antineoplastic effects of ATP, whereas P2X7 receptors
mediated apoptotic cell death.71 Similar results are described
for cell lines of hormone-refractory prostate cancer79 and ATP
was shown to reduce the in vivo growth of advanced hormone-
refractory prostate cancer implanted into mice.80

Finally, several clinical trials have demonstrated that
systemic administration of ATP may have beneficial effects
(prolongation of survival and reduced cachexia) in inoperable
lung cancer patients (for details see White and Burnstock77).

Long-Term Purinergic Signalling in Embryological
Development

The transient appearance of P2 receptors during both
embryological and postnatal development suggests that
ATP is involved in the sequential proliferation, differentiation,
motility and death of cells during the complex events involved
in development12,81,82. For example, a novel P2Y8 receptor
was cloned in Xenopus embryos and was shown to be
transiently expressed in the neural plate and tube from stages
13–18 and again at stage 28, when secondary neurulation
occurs in the tail bud, suggesting an involvement of this
receptor in the development of the nervous system.83 P2Y1

receptors were transiently expressed in the limb buds of chick

Figure 2 Double labelling of P2Y1 and P2Y2 receptors with markers of
proliferation shows colocalisation within a sub-population of basal and parabasal
keratinocytes. Double labelling of P2X5 receptors with markers of differentiated
keratinocytes shows colocalisation within the stratum spinosum, and double
labelling of P2X7 receptors with markers of apoptosis in human leg skin shows
colocalisation within the stratum corneum. (a) Ki-67 immunolabelling (a marker for
proliferation) stained the nuclei (green) of a sub-population of keratinocytes in the
basal and parabasal layers of the epidermis. P2Y1 receptor immunostaining (red)
was found in the basal layer on cells also staining for Ki67. Scale bar 30 mm.
(b) PCNA immunolabelling (a marker for proliferation) stained the nuclei (green) of a
sub-population of keratinocytes. These nuclei were often distributed in clusters and
found in the basal and parabasal layers of the epidermis. P2Y2 receptor
immunostaining (red) was also expressed in basal and parabasal epidermal cells.
Scale bar 30mm. (c) P2X5 receptor immunostaining (red) showed overlap (yellow)
with cytokeratin K10 (green), an early marker of keratinocyte differentiation. P2X5

receptors were present in the basal layer of the epidermis up to the mid-granular
layer. Cytokeratin K10 was distributed in most suprabasal keratinocytes. The
stratum basale stained only for P2X5 receptors, indicating that no differentiation was
taking place in these cells. The colocalisation of P2X5 receptors and cytokeratin K10
appeared mainly in the cytoplasm of differentiating cells within the stratum spinosum
and partly in the stratum granulosum. Note that the stratum corneum also stained for
cytokeratin K10, which labelled differentiated keratinocytes, even in dying cells.
Scale bar 30mm. (d) P2X5 receptor immunostaining (red) showed overlap (yellow)
with involucrin (green). P2X5 receptors were present in the basal layer of the
epidermis up to the mid-granular layer. Note that the pattern of staining with
involucrin was similar to that seen with cytokeratin K10, except that cells from the
stratum basale up to the midstratum spinosum were not labelled with involucrin,
which is a late marker of keratinocyte differentiation. Scale bar 30 mm. (e) TUNEL
(green) labelled the nuclei of cells at the uppermost level of the stratum granulosum
and P2X7 antibody (red) mainly stained cell fragments within the stratum corneum.
Scale bar 15mm. (f) Anti-caspase-3 (green) colocalised with areas of P2X7 receptor
immunostaining (red) both at the junction of the stratum granulosum and within the
stratum corneum. Areas of colocalisation were yellow. Note that the differentiating
keratinocytes in the upper stratum granulosum were also positive for anti-caspase-
3. Scale bar 15mm (reproduced with permission from Greig et al.140)
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Figure 3 At 48 h after application of drugs to primary human keratinocyte cultures. (a) ATP (1–10mM) and UTP (100mM) cause an increase in cell number, whereas
ATPgS (100–500mM) and ATP (100mM) cause a significant decrease. Results represent the mean of eight experiments. *Po0.001 compared with that of control.
(b) 2MeSADP (500mM) causes a significant increase in cell number. Results represent the mean of eight experiments. *Po0.05 compared with that of control. (c) BzATP
(100–500mM) causes a significant decrease in cell number. Results represent the mean of nine experiments. *Po0.001 compared with that of control. Error bars represent
mean±S.E.M (reproduced with permission from Greig et al.140)

Figure 4 Schematic diagram illustrating the different mechanisms by which P2 receptor subtypes might alter cancer cell function. P2Y1 and P2Y2 receptors could affect
the rate of cell proliferation through altering the intracellular levels of cAMP by modulating adenylyl cyclase (AC) or by increasing intracellular calcium levels through the
phospholipase C (PLC) pathway. P2X5 and P2Y11 receptor activation might switch the cell cycle from proliferation into a state of differentiation. The P2X7 receptor activates the
apoptotic caspase enzyme system (redrawn from White and Burnstock77 with permission from Elsevier)
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embryos and were shown to mediate rapid cell proliferation.84

Changes in expression in P2X receptor subtypes during
postnatal development of cerebellum have been described.85

Transient changes in P2X receptor subtype expression during
the development of skeletal muscle have been described.86

P2X5 receptors were present during the early development of
the myotube, followed by P2X6 receptor expression and then,
during the development of the neuromuscular junction, P2X2

receptors were expressed. In the chicken retina, ATP-evoked
Ca2þ transients were strongest as early as E3 and were
drastically reduced at E11–13.5.87 Nucleotide signalling in
development probably involves a cross-talk between several
other signalling pathways, including growth factors, cytokines
and extracellular matrix components.82

Trophic Purinergic Signalling in Bone Formation and
Resorption

Activation of P2Y1 receptors by ADP stimulates osteoclast
activity and bone resorption (Figure 5), whereas ATP and UTP
signalling through P2Y2 receptors in osteoblasts inhibits bone
growth and mineralisation.88 More recently, P2X7 receptors
have been shown to have trophic regulatory roles in bone
formation and resorption.89,90 P2X7 receptor activation of
osteoblasts enhances differentiation and bone formation,91

whereas P2X7 receptor activation of osteoclasts results in
apoptosis and bone resorption.92–94

Long-Term Trophic Actions of Purines and Pyrimidines
in the Pathogenesis of Atherosclerosis and Post-
Angioplasty Restenosis

ATP and UTP, acting through P2Y2 receptors, cause
proliferation of vascular smooth muscle cells and proliferation
of endothelial cells through P2Y1 receptors. Adenosine acting
through A2 receptors inhibits smooth muscle proliferation but
stimulates endothelial cell proliferation.95 The increase in
vascular smooth muscle and endothelial cells in both
atherosclerosis and hypertension may be mediated by the
trophic actions of purines and pyrimidines released from
nerves and endothelial cells96–98 and in post-angioplasty
restenosis.99 P2Y4 receptors seem to be regulators of
angiogenesis.100 ATP increases DNA synthesis and migra-
tion of vascular endothelial cells in vasa vasorum in diseased
pulmonary vessels.101 Diabetic patients express microvas-
cular disease characterised by an increased wall–lumen ratio,
mainly because of an increase in vascular smooth muscle
cells, and have higher rates of restenosis after angioplasty.
High glucose-induced release of ATP exerts an effect on P2Y
receptors to stimulate vascular smooth muscle cell growth.102

Conclusions

Purinergic signalling, mediated by ATP, related nucleotides
and adenosine, operates in all types of tissues and cells.
Purinergic agonists mediate fast cell signalling, and exert

Figure 5 Schematic diagram illustrating the potential functions of extracellular nucleotides and P2 receptors in modulating bone cell function. ATP released from
osteoclasts (e.g., through shear stress or constitutively) or from other sources, can be degraded to adenosine 50-diphosphate (ADP) or converted into uridine 50-triphosphate
(UTP) through ecto-nucleotidases. All three nucleotides can function separately on specific P2 receptor subtypes, as indicated by the colour coding. ATP is a universal agonist,
whereas UTP is only active at the P2Y2 receptor and ADP is only active at the P2Y1 receptor. ADP acting on P2Y1 receptors seems to stimulate both the formation (i.e., fusion)
of osteoclasts from haematopoietic precursors and the resorptive activity of mature osteoclasts. For the latter, a synergistic action of ATP and protons has been proposed by
the P2X2 receptor. ADP could also stimulate resorption indirectly through actions on osteoclasts, which in turn release pro-resorptive factors (e.g., receptor activator of nuclear
factor kB ligand, RANKL) ATP at high concentrations might facilitate fusion of osteoclast progenitors through P2X7 receptor pore formation or induce cell death of mature
osteoclasts through P2X7 receptors. In osteoblasts, ATP, through P2X5 receptors, might enhance proliferation and/or differentiation. By contrast, UTP, through P2Y2

receptors, is a strong inhibitor of bone formation by osteoblasts. For some receptors (e.g., P2X4 and P2Y2 receptors on osteoclasts or P2X2 receptors on osteoblasts),
evidence for expression has been found but their role is still unclear (based on schemes from Hoebertz et al.88)
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numerous long-term trophic effects, involved in regulation of
cell replication, proliferation, differentiation and death. It is
hoped that there will be further exploration of the roles of this
primitive and widespread signalling system in cell biology.
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