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A SIMPLE DECLARATIVE LANGUAGE FOR
DESCRIBING NARRATIVES WITH ACTIONS

ANTONIOS KAKAS AND ROB MILLER

. We describe a simple declarative language E for describing the effects of a
series of action occurrences within a narrative. E is analogous to Gelfond
and Lifschitz’s Language A and its extensions, but is based on a different
ontology. The semantics of E is based on a simple characterisation of per-
sistence which facilitates a modular approach to extending the expressivity
of the language. Domain descriptions in A can be translated to equivalent
theories in E . We show how, in the context of reasoning about actions,
E ’s narrative-based ontology may be exploited in order to characterise and
synthesise two complementary notions of explanation. According to the
first notion, explanation may be partly modelled as the process of suitably
extending an apparently inconsistent theory written in E so as to establish
consistency, thus providing a natural method, in many cases, to account for
conflicting sets of information about the domain. According to the second
notion, observations made at later times can sometimes be explained in
terms of what is true at earlier times. This enables domains to be given
an alternative characterization in which knowledge arising from observa-
tions is appropriately separated from other aspects of the domain. We
also describe how E domains may be implemented as Event Calculus style
logic programs, which facilitate automated reasoning both backwards and
forwards in time, and which behave correctly even when the knowledge
entailed by the domain description is incomplete. /

1. INTRODUCTION

This paper largely concerns narrative reasoning, that is, reasoning about actions
which actually occur at various times, and reasoning about the properties that hold
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or do not hold at different times as a consequence of such occurrences. The impor-
tance of narrative reasoning has been recognised elsewhere (see [2], [34] or [31]). For
example, to deal with observations a formalism must allow the representation of a
narrative, since phenomena can only be ‘observed’ at actual times. In the context
of the Situation Calculus it makes little sense to state that Fred is observed to be
alive in the ‘hypothetical’ or ‘projected’ situation

Result(Shoot, Result(Wait, Result(Load, S0)))

unless there is some extra mechanism to relate the sequence of actions Load - Wait
- Shoot to the time at which the observation took place.

For the purposes of discussion, we will informally define a narrative-based for-
malism as a formalism in which the structure or flow of time is represented inde-
pendently from the notion of an action, and in which actions are ‘embedded’ in this
independent structure using an explicit notion of an action occurrence. Examples
of such formalisms are Allen’s interval-based approach [1], Sandewall’s Features and
Fluents framework [36] (where a series of action occurrences are captured as a sched-
ule) and Kowalski and Sergot’s Event Calculus [24]. On the other hand, formalisms
such as McCarthy and Hayes’ Situation Calculus [29], Dynamic Logics (see for ex-
ample [18]) and Gelfond and Lifschitz’s Language A [16] are not narrative-based.
This is not to say that they cannot be extended to deal with narrative information
(see for example [34], [31] or [26]). But the notions of an independent flow of time
and of an action occurrence are not central to their underlying ontology.

In [16] and [17], Gelfond and Lifschitz proposed a particular methodology for
research into reasoning about action. The authors introduced the Language A as
a “simple declarative language for describing actions”, and suggested that, by de-
scribing general translation procedures from A domains into other formalisms, an
insight could be gained into the comparative possibilities and limitations of each
approach. The success of this idea is exemplified in a paper by Kartha [21], which
uses translations from A to show the equivalence of three well-known characterisa-
tions of the Situation Calculus for a whole class of domains. The primary intention
of A was to provide a language and semantics simple enough to be regarded as
uncontroversial and intuitive, even if (initially) somewhat limited in expressivity.
Of course, the ‘neutrality’ of any such language, used as a measuring stick for
other formalisms, will inevitably be compromised to some extent by the necessity
of choosing a particular ontology as a starting point. The ontology underlying the
Language A is inherited from the Situation Calculus.

This paper shows that the methodology described above need not be limited
to this particular ontology. Our central aim is to propose and develop a simple
declarative language for describing narratives, called E , based not upon the ontology
of the Situation Calculus, but instead upon a narrative-based ontology similar to
that of the Event Calculus. Furthermore, we aim to use E as a specification for
developing logic programs for automated reasoning about action and change in a
principled manner. We believe that the use of, and comparison between, different
ontologies is vital in the study of reasoning about action. Central issues such as the
frame problem, the ramification problem and the qualification problem all take on
different flavours when set in different ontological contexts. Comparisons between
approaches can help reveal which aspects of these problems are fundamental, and
which are merely the product of a particular method of representation.
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In particular, the notion of persistence (or ‘inertia’) is somewhat different in a
narrative setting. A simple declarative characterisation of persistence is central
to the semantics of E described below. This semantics, like that of A, is model-
theoretic, and the characterisation of persistence is achieved by listing three specific
conditions which each model must satisfy. The definition of a model is intended
to be modular in the sense that, in future extensions to E , further conditions or
constraints not relating to persistence may simply be added. (To illustrate this
point, two simple extensions to E are given in an appendix.) The semantics gives
rise to a notion of entailment which is independent from any particular method of
derivation or computation. Thus the Language E helps differentiate between the
ontological commitments of the Event Calculus and the computational mechanisms
provided by its original logic programming setting. In this respect it serves a
purpose similar to that of the formalisms described in [40], [41] and [7].

The paper is organised as follows. In Section 2, we describe the basic syntax
and semantics of E , give some examples and discuss some general properties of the
formalism. In Section 3 we show a correspondence between the Languages A and
E by describing a sound and complete translation from theories written in A into
Language E domain descriptions. We also briefly discuss the relationship between
E and the Language L0, a narrative extension of A recently proposed by Baral, Gel-
fond and Provetti [5] [6]. In the next three sections, we use E to characterise two
complementary notions of explanation in temporal domains. In Section 4, we show
how explanation may be partly modelled as the process of extending an apparently
inconsistent theory written in E so as to establish consistency. In particular, we
show that the syntax and semantics of E allows a class of ‘narrative-based’ expla-
nations to be identified in a natural way. We also show how different preference
relations between explanations can be combined with the simple object-level defi-
nition of entailment described previously in order to define a meta-level semantics
with both an abductive and a deductive flavour. In Sections 5 and 6 we show that
observations made at later times may also sometimes be explained in terms of what
is true at earlier times. To do this, we identify a special class of E domain descrip-
tions, and separate out observations from these theories. In Section 7 we describe
how E domains may be implemented as Event Calculus style logic programs. We
do this in a way which avoids potential problems when the information entailed
by the domain is ‘incomplete’, which could otherwise be caused by logic program-
ming’s implicit completion of the HoldsAt predicate. These programs also encode
a limited form of reasoning backwards in time. Finally, in Section 8 we show how,
for a particular class of domains, we may use some of the notions of explanation
developed earlier to add a meta-level component to these implementations, in order
to facilitate a more ‘complete’ form of automated temporal reasoning.

2. A CLASS OF LANGUAGES FOR DESCRIBING NARRATIVES OF AC-
TION OCCURRENCES

First, we will describe the basic syntax of the Language E . Strictly speaking, E
represents a family of languages, all of which use a basic ontology and vocabulary of
fluents (properties), actions and time points. The progression of time is represented
by an ordering relation over the set of time points. Time may either be continuous
or progress via discrete steps, and need not necessarily be linear.



4

Definition 2.1. [Domain Language] A domain language is a tuple 〈Π,�,∆,Φ〉,
where � is a partial (possibly total) ordering1defined over the non-empty set Π
of time points, ∆ is a non-empty set of action constants, and Φ is a non-empty
set of fluent constants.

Except where the context implies otherwise, for the remainder of the paper we
assume a particular domain language E = 〈Π,�,∆,Φ〉. We will often write T1 ≺ T2

to mean T1 � T2 and T1 6= T2.

Definition 2.2. [Fluent literal] A fluent literal of E is an expression either of the
form F or of the form ¬F , where F ∈ Φ.

Three types of statements are possible within E . C-propositions (“c” for “causes”)
express the conditions under which particular actions can potentially initiate or ter-
minate periods (i.e. intervals) in which a property holds. H-propositions (“h” for
“happens”) indicate that a particular action occurs at a particular time, and t-
propositions (“t” for “time point”) express that a particular property holds at a
particular time.

Definition 2.3. [c-proposition] A c-proposition in E is an expression either of the
form

A initiates F when C

or of the form

A terminates F when C

where F ∈ Φ, A ∈ ∆, and C is a set of fluent literals of E .

Notation:
We shall often write c-propositions of the form “A initiates F when ∅” and “A
terminates F when ∅” as “A initiates F” and “A terminates F” respectively.

Definition 2.4. [h-proposition] An h-proposition in E is an expression of the form

A happens-at T

where A ∈ ∆ and T ∈ Π.

Definition 2.5. [t-proposition] A t-proposition in E is an expression of the form

L holds-at T

where L is a fluent literal of E and T ∈ Π.

Definition 2.6. [Domain description] A domain description in E is a triple 〈γ, η, τ〉,

1We mean ‘partial ordering’ in the usual mathematical sense, i.e. � is reflexive, transitive
and anti-symmetric. � should not be regarded as representing partial knowledge about a total
order – our formalism would have to be modified to cope with this type of incomplete information.
Although it might be argued that time is in fact linear, so that � should always be a total ordering,
we consider partial orderings here for the sake of mathematical generality, and because in Section 3
a particular partially ordered set is useful in showing a correspondence between the Languages E
and A.
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where γ is a set of c-propositions, η is a set of h-propositions2, and τ is a set of
t-propositions in E .

The semantics for E is expressed by defining the notion of an interpretation,
and stating when an interpretation qualifies as a model for a given domain descrip-
tion. In the definitions below, an interpretation is defined simply as a mapping
of fluent/time-point pairs to true or false (i.e. a holds relation). A model is an
interpretation that respects four properties. The first three of these are intended
to characterise a ‘commonsense’ notion about the persistence of properties as time
progresses. In particular, they encapsulate the idea that all points at which a prop-
erty starts (ceases) to hold are earmarked by an initiating (terminating) action
occurrence – in other words, actions are the only mechanisms for change3. This is
stated explicitly in condition (1) of Definition 2.10. Conditions (2) and (3) confirm
that the terms initiate and terminate have their intended meanings, relative to this
‘commonsense’ principle.

Definition 2.7. [Interpretation] An interpretation of E is a mapping

H : Φ×Π 7→ {true, false}

Definition 2.8. [Point satisfaction] Given a set of fluent literals C of E and a time
point T ∈ Π, an interpretation H satisfies C at T iff for each fluent constant
F ∈ C, H(F, T ) = true, and for each fluent constant F ′ such that ¬F ′ ∈ C,
H(F ′, T ) = false.

Definition 2.9. [Initiation/termination point] Let H be an interpretation of E ,
let D = 〈γ, η, τ〉 be a domain description, let F ∈ Φ and let T ∈ Π. T is an
initiation-point (respectively termination-point) for F in H relative to D iff there
is an A ∈ ∆ such that (i) there is both an h-proposition in η of the form “A
happens-at T” and a c-proposition in γ of the form “A initiates F when C”
(respectively “A terminates F when C”) and (ii) H satisfies C at T .4

Definition 2.10. [Model] Given a domain description D = 〈γ, η, τ〉 in E , an inter-
pretation H of E is a model of D iff, for every F ∈ Φ and T, T ′, T1, T3 ∈ Π such
that T1 ≺ T3, the following properties hold:

1. If there is no initiation-point or termination-point T2 for F in H relative to
D such that T1 � T2 ≺ T3, then H(F, T1) = H(F, T3).

2. If T1 is an initiation-point for F in H relative to D, and there is no termination-

2Thus, since η can include more than one h-proposition that refers to the same time point, E
allows for a limited form of concurrency (its semantics forces the assumption that concurrently
performed actions do not interfere, for example to cancel each other’s effects). In contrast A
does not allow any concurrency, whereas its extension Ac [4] allows for a more general form of
concurrency.

3This principle might be considered too strong for some domains, e.g. those involving con-
tinuous change. In this case, some distinction will be required between those properties which
naturally persist (frame fluents in Lifschitz’s terminology) and those which do not.

4According to this definition, not all initiation and termination points will be points of change
of the fluent within a particular model. For example, if a fluent already holds before an initiation-
point it will remain unchanged. Thus in Sergot’s terms [37] the semantics uses “weak” initiation
and termination (but see footnote, Appendix A.1).
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point T2 for F in H relative to D such that T1 ≺ T2 ≺ T3, then H(F, T3) =
true.

3. If T1 is a termination-point for F in H relative to D, and there is no
initiation-point T2 for F in H relative to D such that T1 ≺ T2 ≺ T3, then
H(F, T3) = false.

4. For all t-propositions in τ of the form “F holds-at T”, H(F, T ) = true, and
for all t-propositions of the form “¬F holds-at T ′”, H(F, T ′) = false.

Definition 2.11. [Consistency] A domain description is consistent iff it has a model.

Definition 2.12. [Entailment] A domain description D entails the t-proposition
“F holds-at T”, written “D |= F holds-at T”, iff for every model H of D,
H(F, T ) = true. D entails the t-proposition “¬F holds-at T” iff for every
model H of D, H(F, T ) = false.

In keeping with our adopted methodology, two important simplifying assump-
tions are implicitly included in the above semantics. First, the information about
the general effects of actions, expressed as c-propositions, is assumed to be com-
plete. An analogous assumption is made about the e-propositions in a Language
A theory. Second, the information about the occurrence of actions, expressed as
h-propositions, is also assumed to be complete. (There is no directly analogous
assumption in the definition of a Language A model, since the notion of an action
occurrence is not included in its ontology.) Clearly, both these assumptions will
be sources of nonmonotonicity in the language. The h-propositions not only give
complete information about which actions occur, but (since � is assumed to be
well-defined) also give complete information about the order and timing of these
occurrences5.

Condition (4) in Definition 2.10 above expresses pointwise constraints on a model
which arise from the inclusion of t-propositions in the domain description. We en-
visage other such constraints being added in future, more expressive extensions of E .
Such extensions might also require refinements to the definitions of an interpreta-
tion or of an initiation or termination point. But we expect the characterisation of
persistence encapsulated in conditions (1)-(3), which can be regarded as the ‘core’
of the semantics, to remain unaltered. To remain faithful to the methodology we
are using, we wish here to keep the syntax and semantics of E as simple as possible,
even at the loss of some expressivity. However, to illustrate this modular aspect of
the semantics we have included two simple extensions to E in Appendix A (relating
to ‘qualifications’ and ‘ramifications’ of action occurrences).

The following two examples illustrate the effects of our model-theoretic charac-

5Relaxing these assumptions would be an interesting area for future research, but would
inevitably lead to a more complex semantics. For example, it would be straightforward to allow
for incomplete knowledge about the order and timing of action occurrences by using temporal
variables in h-propositions, and including a fourth type of proposition in domain descriptions
with which to express ordering constraints between these variables. An interpretation would then
include a mapping (i.e. variable assignment) from temporal variables to time points as a second
component.



7

terisation of persistence.

Example 2.1. This example is intended to illustrate the necessity of including
the first condition in Definition 2.10 of a Language E model above. It concerns
vaccinations against a particular disease. Vaccine A only provides protection for
people with blood type O, and vaccine B only works on people with blood type
other than O. Fred’s blood type is not known, so he is injected with vaccine A
at 2 o’clock and vaccine B at 3 o’clock. For simplicity we will model time as
the real number line with the usual ordering relation, so that for this example,
Ev = 〈<,≤, {InjectA, InjectB}, {Protected, TypeO}〉. The domain description Dv

consists of two c-propositions, two h-propositions and a single t-proposition:

InjectA initiates Protected when {TypeO}

InjectB initiates Protected when {¬TypeO}

InjectA happens-at 2

InjectB happens-at 3

¬Protected holds-at 1

If we now consider some time later than 3 o’clock, say 4 o’clock, we can see intu-
itively that Fred should be protected. Now by condition (1), in all models of Dv

Fred’s blood group remains constant, so that in any given model, by condition (2),
Fred becomes protected either at 2 o’clock or at 3 o’clock. Consequently,

Dv |= Protected holds-at 4

Had condition (1) not been included in the definition of a model, it would have been
possible to construct a model, for example, in which Fred’s blood type “mysteri-
ously” changed from ¬TypeO to TypeO at 2.30, thus rendering both vaccinations
ineffective.

Example 2.2. This example shows that the Language E can be used to infer infor-
mation about what conditions hold at the time of an action occurrence, given other
information about what held at times before and afterwards. It is similar to Baker’s
‘murder mystery’ scenario [3]. Let Eys = 〈<+,≤, {Shoot}, {Alive, Loaded}〉, where
<+ signifies the non-negative real numbers, and let the domain description Dys

consist of a single c-proposition, a single h-proposition and two t-propositions:

Shoot terminates Alive when {Loaded}

Shoot happens-at 2

Alive holds-at 1

¬Alive holds-at 3

Since by condition (4) in any model H of Dys, H(Alive, 1) 6= H(Alive, 3), then by
condition (1), in all models an action must occur at some time point between 1 and
3 whose initiating or terminating conditions for the property Alive are satisfied at
that point. The only candidate is the Shoot occurrence at 2, whose condition for
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terminating Alive is Loaded. Hence

Dys |= Loaded holds-at 2

Indeed, by applying condition (1) again, it is easy to see that for all n, n ≥ 0,

Dys |= Loaded holds-at n

Two properties of E will prove useful later. The first is that E is monotonic as
regards addition of t-propositions to domain theories (although, as observed ear-
lier, not as regards addition of h-propositions or c-propositions). That is to say, if
H is a model of a domain description 〈γ, η, τ〉 and τ ′ ⊆ τ , H is also a model of
〈γ, η, τ ′〉. This follows directly from Definition 2.10. The second property of interest
concerns the deterministic nature of actions’ effects within a narrative, and is some-
what analogous to Lin and Shoham’s notion of epistemological completeness [27].
Provided the domain description under consideration is consistent and contains no
finite intervals of time in which an infinite number of actions occur, then the set of
fluents which hold at any point T completely determines the set of fluents which
hold at any later time point. This claim is made precise in the following definition
and proposition.

Definition 2.13. [Occurrence Sparsity] Let D = 〈γ, η, τ〉 be a domain description
written in a language E = 〈Π,�,∆,Φ〉. D and η are occurrence-sparse iff for
any two points T1, T2 ∈ Π there are only a finite number of h-propositions in η
of the form“A happens-at T” such that T1 � T ≺ T2.

Proposition 2.1. Let D be an occurrence-sparse domain description written in a
language E = 〈Π,�,∆,Φ〉, and let T1, T2 ∈ Π be such that T1 � T2. Let H and
H ′ be models of D such that for all F ∈ Φ, H(F, T1) = H ′(F, T1). Then for all
F ∈ Φ, H(F, T2) = H ′(F, T2).

Proof. See Appendix B.1

The occurrence of infinite numbers of actions in a finite period of time leads
to interesting and/or unexpected results in many formalisms for reasoning about
action. For a general discussion of this complex issue, the reader may refer to Davis
[9]. However, for the remainder of this paper, we restrict our attention to domain
descriptions which are occurrence-sparse, and thus deterministic in the sense of
Proposition 2.1.

3. SIMULATING THE LANGUAGE A AS A CLASS OF LANGUAGE E DO-
MAINS

Because they use different ontologies, any correspondence between the Languages A
and E must inevitably be expressed in rather artificial terms. In this section we show
that LanguageA domains can be simulated or re-formulated as Language E domains
with a branching structure 〈Π,�〉 of time points, analogous to the branching ‘tree’
of situations often incorporated in formulations of the Situation Calculus. Since
the Language A is not narrative-based and so does not directly include the notion
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of action occurrences, in our re-formulation an appropriate action occurrence has
to be ‘built in’ at each point in this tree structure. In situation calculus terms, we
must ensure that for each situation S in the tree, the action A ‘occurs’ between
the situations S and Result(A,S). To express this, we need to insert an extra
time-point between S and Result(A,S) – in graphical terms, we need to be able to
refer to the arcs connecting the situation nodes in the tree. This is achieved in a
simple way below by considering ‘doubled’ sequences of actions. Sequences of even
length correspond to nodes of the tree structure (i.e. to situations), and sequences
of odd length correspond to the inter-connecting arcs. A temporal ordering relation
is then defined on both nodes and arcs.

Definition 3.1. [∆-sequence] Given a set ∆ of action constants, a ∆-sequence of ∆
is defined inductively as follows:

• The empty sequence 〈〈 〉〉 is a ∆-sequence

• For each A,A′ ∈ ∆, the singleton sequence 〈〈|A|〉〉, the sequence 〈〈|A|, A〉〉
and the sequence 〈〈|A|, A, |A′|〉〉 are all ∆-sequences

• For each A1, . . . , An ∈ ∆, 〈〈|A1|, A1, . . . , |An|, An〉〉 is a ∆-sequence

• For each A′ ∈ ∆ and for each ∆-sequence 〈〈|A1|, A1, . . . , |An|, An〉〉,
〈〈|A1|, A1, . . . , |An|, An, |A′|〉〉 is a ∆-sequence

Definition 3.2. [∆-ordering] Given a set ∆ of action constants and the correspond-
ing set Π∆ of all ∆-sequences, the ∆-ordering ≤∆ over Π∆ is defined as follows

• For all S ∈ Π∆, 〈〈 〉〉 ≤∆ S

• For all 〈〈α1, . . . , αn〉〉 ∈ Π∆ and for all m such that 1 ≤ m ≤ n,
〈〈α1, . . . , αm〉〉 ≤∆ 〈〈α1, . . . , αn〉〉

Examples:
Suppose ∆ = {Wait, Load, Shoot}. The ∆-sequence

〈〈|Load|, Load, |Wait|,Wait, |Shoot|, Shoot〉〉
corresponds to the Situation Calculus term

Result(Shoot, Result(Wait, Result(Load, S0)))

and (regarding situations as arranged in a branching tree structure) the ∆-sequence

〈〈|Load|, Load, |Wait|,Wait, |Shoot|〉〉
corresponds to the inter-connecting arc between the situations

Result(Wait, Result(Load, S0))

and

Result(Shoot, Result(Wait, Result(Load, S0)))

Regarding the ordering ≤∆, it is easy to see that, for example

〈〈|Load|〉〉 ≤∆ 〈〈|Load|, Load〉〉

〈〈|Load|, Load〉〉 ≤∆ 〈〈|Load|, Load, |Wait|,Wait, |Shoot|, Shoot〉〉
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Notation:
We shall sometimes refer to the ∆-sequence

〈〈|A1|, A1, . . . , |An|, An〉〉
simply as A1, . . . , An and refer to the ∆-sequence

〈〈|A1|, A1, . . . , |An|, An, |A′|〉〉
as A1, . . . , An, |A′|. Notice that in this notation

A1, . . . , An, |A′| ≤∆ A1, . . . , An, A′

The next definition allows us to express that, in general, the action A′ occurs at
A1, . . . , An, |A′|, so that the effects of A′ are apparent at the following time point
A1, . . . , An, A′.

Definition 3.3. [Complete occurrence set] Let E = 〈Π∆,≤∆,∆,Φ〉, where Π∆ is
the set of ∆-sequences of ∆ and ≤∆ is the ∆-ordering over Π∆. The set η∆,
called the complete occurrence set of ∆, is the set of all h-propositions of E either
of the form

A happens-at 〈〈|A|〉〉
or of the form

An happens-at 〈〈|A1|, A1, . . . , |An−1|, An−1, |An|〉〉

The following proposition shows a sense in which the Language A may be re-
garded as a special case of the Language E .

Proposition 3.1. Let DA be a consistent theory written in a language A in the sense
of [16], with a set of action constants ∆ and a set of fluent constants Φ. Let
E = 〈Π∆,≤∆,∆,Φ〉, where Π∆ is the set of ∆-sequences of ∆ and ≤∆ is the
∆-ordering over Π∆. Let DE be the domain description 〈γ, η∆, τ〉 in E defined
as follows:

• η∆ is the complete occurrence set of ∆

• For each v-proposition in DA of the form “L after A1; . . . ;Am” there is a
t-proposition in τ of the form “L holds-at A1, . . . , Am”, and for each v-
proposition in DA of the form “ initially L” there is a t-proposition in τ of
the form “L holds-at 〈〈 〉〉”

• For each F ∈ Φ, then for each e-proposition in DA of the form “A causes
F if L1, . . . , Ln” there is a c-proposition in γ of the form “A initiates F
when {L1, . . . , Ln}”

• For each F ∈ Φ, then for each e-proposition in DA of the form “A causes
¬F if L1, . . . , Ln” there is an c-proposition in γ of the form “A terminates
F when {L1, . . . , Ln}”

Then for each F ∈ Φ and each A1, . . . , An ∈ ∆

• DE |= F holds-at 〈〈 〉〉 if and only if
DA entails initially F
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• DE |= ¬F holds-at 〈〈 〉〉 if and only if
DA entails initially ¬F

• DE |= F holds-at A1, . . . , An if and only if
DA entails F after A1; . . . ;An

• DE |= ¬F holds-at A1, . . . , An if and only if
DA entails ¬F after A1; . . . ;An

Proof. Let R be the unique transition function such that there is a model
(σ0, R) of DA (for definitions see [16]). Let σ ⊆ Φ be a set of fluent constants.
For each F ∈ Φ and A1, . . . , An, A′ ∈ ∆ let the interpretation H[σ,R] be defined
as follows:

• H[σ,R](F, 〈〈 〉〉) = H[σ,R](F, 〈〈|A′|〉〉) = true if and only if F ∈ σ

• H[σ,R](F, 〈〈|A1|, A1, . . . , |An|, An〉〉) =
H[σ,R](F, 〈〈|A1|, A1, . . . , |An|, An, |A′|〉〉) = true
if and only if F ∈ R(An, R(An−1, . . . , R(A1, σ) . . .))

Clearly, for each σ ⊆ Φ, H[σ,R] is a model of 〈γ, η, ∅〉, and H[σ,R] is a model of
DE = 〈γ, η, τ〉 if and only if (σ,R) is a model of DA in the sense of [16]. Since
DE is occurrence-sparse, by Proposition 2.1 all models of DE are of this form,
so that there is a one-to-one correspondence between models of DA and such
models of DE , and the proposition follows directly from the definition of H[σ,R].

We conclude this section with some brief remarks about the relationship between
E and the Language L0 recently introduced by Baral, Gelfond and Provetti in [5],
and discussed in more detail in [6]. L0 is a ‘narrative’ extension to A which uses
A’s underlying Situation Calculus based ontology. Conceptually, it is close to the
extension of the Situation Calculus described by Pinto and Reiter in [34]. Both are
concerned with describing and reasoning about an ‘actual path’ through the ‘tree
of situations’.

A model of an L0 domain description is a pair (Ψ,Σ). The “Ψ” component
roughly corresponds to the notion of a (partial) “transition function” in a Lan-
guage A model. For a given domain, Ψ is characterised by a collection of effect
laws in L0, which is equivalent to a set of e-propositions in A and may be trans-
lated into a Language E domain description of the form 〈γ, η∆, τ〉 as described in
Proposition 3.1. Given such a translation, the “Σ” component of an L0 model can
be regarded as an assignment of the situation symbol sN (always included in L0’s
vocabulary) to a particular ∆-sequence δN in Π∆, together with an assignment of
each other situation symbol si to a ∆-sequence δi such that δi ≤∆ δN . (In Pinto
and Reiter’s terms, δN represents the ‘actual path of situations’.) To be accept-
able, the assignment δN must be of minimal length, subject to certain constraints
which are expressed as fluent facts, occurrence facts and precedence facts. For ex-
ample, the occurrence fact “A1, A2 occurs-at si” constrains δN to be of the form
〈〈α1, . . . , αi, |A1|, A1, |A2|, A2, . . . , αn〉〉 (where 〈〈α1, . . . , αi〉〉 is the ∆-sequence δi as-
signed to si), and the precedence fact “si precedes sj” expresses the constraints
δi ≤∆ δj and δi 6= δj . The minimal length requirement for δN corresponds to
the minimisation of the occurs predicate in Pinto and Reiter’s extended Situation
Calculus.
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A number of other papers which discuss the relationship between the Situation
Calculus and the Event Calculus have recently been published, see for example [25],
[30], [35] and [44].

4. DEALING WITH INCONSISTENT DOMAINS BY EXPLANATIONS

Like the Language A, the Language E provides a very rigid way of specifying
the effects of actions. Each separate effect has to be explicitly described by a c-
proposition (analogous to an e-proposition in the Language A), and the definition
of entailment does not facilitate the inference of any other effects. For example,
without an explicit representation of the statement “the action occurrence A ter-
minates the property P” the statement “P is true before A, but false afterwards”
gives rise to an inconsistency. This is in contrast to some other approaches to rep-
resenting persistence, such as representations in circumscribed predicate calculus,
which in this respect are more flexible. The Language E is similarly rigid in its
representation of a narrative – all action occurrences must be explicitly represented
by an h-proposition.

However, greater flexibility can be achieved, without altering the underlying
semantics of E , by introducing the notion of an explanation. Clearly, the statement
that “property P is true before A, but false afterwards” is easily ‘explained’ by the
statement “A terminates P”. In this section we model the task of explanation as the
task of restoring consistency, in some principled or selective way, to an inconsistent
collection of facts, represented as an inconsistent domain description in E . Under
this view, explanation is a form of belief revision. The nonmonotonicity built into
our language sometimes allows an inconsistent domain theory to be ‘revised’ simply
by adding sets of propositions. We will call such sets ‘explanations’. In the present
context, explanations may be either in narrative or in causal terms, or in both.
In other words, a given set of facts may be explained away in terms of what has
happened and/or in terms of what causes what.

In Sections 5 and 6 we will extend the notion of an explanation, showing how in
the context of narrative reasoning it is sometimes appropriate to regard information
about what holds at earlier times as an ‘explanation’ of what holds at later times.

4.1. Explanations in Terms of Action Occurrences

The first class of explanations we will consider are those which can be expressed
entirely in terms of action occurrences, i.e. extra h-propositions. We will use a
version of Kautz’s Stolen Car problem [23] as an illustration.

Example 4.1. Let Esc = 〈N ,≤, {Park, Steal}, {Parked}〉, where N signifies the
natural numbers, and let Dsc be the domain description consisting of the following
two c-propositions, single h-proposition and single t-proposition:

Park initiates Parked

Steal terminates Parked

Park happens-at 2

¬Parked holds-at 6
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By itself, Dsc is inconsistent, since there is no terminating action occurrence

for the fluent Parked between 2 and 6. However, we may restore consistency by
adding one or more h-propositions.

Definition 4.1. [h-explanation] Let D = 〈γ, η, τ〉 be a domain description. An h-
explanation for D is a (possibly empty) occurrence-sparse set ηε of h-propositions,
such that 〈γ, η ∪ ηε, τ〉 is consistent.

For example, the following are all h-explanations for Dsc:

{ Steal happens-at 3, Steal happens-at 4 }

{ Steal happens-at 4, Park happens-at 8 }

{ Steal happens-at 5 }

Indeed, it is obvious that we may construct an h-explanation for Dsc containing
as many h-propositions as we like. Clearly, extra mechanisms are needed which
enable us to prefer some explanations to others. The following definition reflects
a very simple, set-theoretic notion of preference. However, the definition could be
modified for specific domains, for example to reflect the fact that we wish to regard
some types of occurrence as more likely than others.

Definition 4.2. [Preferable h-explanation]6

Let ηε and η′ε be h-explanations for D. ηε is preferable to η′ε iff ηε ⊂ η′ε.

Having identified a class of explanations, such as the class of h-explanations in
Definition 4.1, and a preference criterion such as that of Definition 4.2, it is possi-
ble to construct a corresponding meta-level, explanation-based ‘semantics’ similar
to the semantics of Abductive Logic Programming [19], [20], [13]. We consider
all possible extensions of a given domain description D with optimal explanations,
and accept conclusions if and only if these hold in each such extension. This se-
mantics can then be used to decide what can be safely ‘inferred’ from a seemingly
inconsistent domain description.

Definition 4.3. [Optimal h-explanation] ηε is an optimal h-explanation for D iff ηε

is an h-explanation for D and there is no other h-explanation η′ε for D such that
η′ε is preferable to ηε.

Definition 4.4. [h-model] Let D = 〈γ, η, τ〉 be a domain description. H is an h-
model of D iff there exists an optimal h-explanation ηε for D such that H is a
model of 〈γ, η ∪ ηε, τ〉

Definition 4.5. [h-consistency] A domain description is h-consistent iff it has at
least one h-model.

Definition 4.6. [h-entailment] The domain description D = 〈γ, η, τ〉 h-entails the

6In this definition and throughout the paper “⊂” is intended to mean “is contained in and not
equal to”.
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t-proposition “F holds-at T”, written “D |=h F holds-at T”, iff for every h-
model H of D, H(F, T ) = true. D h-entails the t-proposition “¬F holds-at T”
iff for every h-model H of D, H(F, T ) = false.

H-entailment is an abductive notion in the sense that optimal h-explanations are
not derived from or entailed by a domain description, but are added to it (according
to an external preference criterion). It also has a ‘deductive flavour’ in the sense
that a t-proposition is entailed from a domain description simply if it is true in all
h-models. And any procedure for verifying truth in all h-models will, explicitly or
implicitly, have to take into account all optimal h-explanations.

The important point is that h-entailment is a meta-level concept, whereas the
entailment relation defined in Section 2 is object-level. H-entailment is defined
both in terms of object-level entailment and a particular preference criterion among
explanations. Notice that Definitions 4.3 to 4.6 would still be applicable even if ‘h-
preferability’ were to be defined differently (perhaps according to domain-specific
considerations), but would yield different results.

A desirable property of any such meta-level entailment is that it should coincide
with object-level entailment whenever the domain description is consistent. The
following proposition shows that for h-entailment as defined Definition 4.6 above,
this is indeed the case.

Proposition 4.1. Let D be a consistent domain description. Then H is a model of
D if and only if H is an h-model of D.

Proof. The proposition follows directly from the observation that since D is
already consistent, it has a unique optimal h-explanation ∅.

Returning to the Stolen Car problem, Dsc has three optimal h-explanations:

{ Steal happens-at 3 }

{ Steal happens-at 4 }

{ Steal happens-at 5 }

Dsc is therefore h-consistent, and has a total of six h-models (two corresponding to
each optimal h-explanation), since in any h-model H, H(Parked, 0), H(Parked, 1)
and H(Parked, 2) may either all be true or all be false. It is easy to see, therefore,
that

Dsc |=h Parked holds-at 3

and for all n ≥ 6,

Dsc |=h ¬Parked holds-at n

Hence this example illustrates how the notion of h-entailment exploits the narra-
tive ontology of E to give a natural and simple way to handle such apparently
inconsistent domains.

H-entailment corresponds closely to Shanahan’s formulation of explanation-based
temporal reasoning in [38]. The main difference is that whereas Shanahan’s concern
is to abduce a single explanation for a given fact or observation, ours is to ‘safely’
infer new information by considering all (optimal) explanations. Shanahan’s work
was partly based on earlier work by Eshghi [15] showing how planning could be
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formulated within an abductive Event Calculus framework. In Language E terms,
an initial state I and goal state G can both be represented as sets τI and τG of
t-propositions, domain information can be modelled as a set γ of c-propositions,
and a plan can be regarded as a single h-explanation ηe for 〈γ, ∅, τI ∪ τG〉 such that
〈γ, ηe, τI〉 |= ω for each ω ∈ τG.

Our notion of an h-model is also somewhat analogous to the description of a
Language L0 model given by Baral, Gelfond and Provetti in [5] and [6] (see end
of Section 3). An important difference here is that, whereas the requirement that
action occurrences be minimal is ‘hardwired’ into L0’s object-level semantics, our
minimality requirement is to be found in the particular definition of h-preference,
which could potentially be replaced by or extended with other, domain-specific pref-
erence criteria. Indeed, in the following section we give an example of a preference
criterion among a class of explanations which is not entirely based around a simple
notion of minimality.

4.2. Explanations in Terms of New Causal Rules

It will not always be possible to find an h-explanation for an inconsistent domain
description D. In this section we briefly explore the possibilities of including both
c-propositions and h-propositions in explanations. The discussion here is intended
only to illustrate some of the problems relating to this – we are obviously trespassing
into the related A.I. topic of learning. We will use the following (deliberately
abstract) example to motivate the discussion:

Example 4.2. Let Eex = 〈N ,≤, {A1, A2}, {F1, F2}〉, where N signifies the natural
numbers, and let the domain description Dex consist of three t-propositions:

F1 holds-at 4

F2 holds-at 5

¬F2 holds-at 10

This example is neither consistent nor h-consistent. To establish consistency in
this case we need to consider explanations which include both narrative and causal
information.

Definition 4.7. [hc-explanation] Let D = 〈γ, η, τ〉 be a domain description. An
hc-explanation for D is a pair 〈γε, ηε〉, where γε is a (possibly empty) set of c-
propositions and ηε is a (possibly empty) occurrence-sparse set of h-propositions,
such that〈γ ∪ γε, η ∪ ηε, τ〉 is consistent.

For example, according to Definition 4.7 the following are all hc-explanations for
Dex:

1. 〈{A1 terminates F2 when {F1}}, {A1 happens-at 8}〉

2. 〈{A1 terminates F2}, {A1 happens-at 8}〉

3. 〈{A1 terminates F2 when {¬F1}, A2 terminates F1},
{A2 happens-at 7, A1 happens-at 8}〉
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What qualifies as a ‘reasonable’ preference criterion among hc-explanations? In
practice such a criterion will probably be domain-specific. Nevertheless, it is inter-
esting to speculate at an abstract level, if only to discover the complexity of some
of the issues involved. A simple or liberal view (in the sense that it would allow
a wide class of optimal hc-explanations) would be to prefer hc-explanation ε over
hc-explanation ε′ only if ε’s set of c-propositions was strictly contained in ε′’s. How-
ever, this policy would not yield any preferences between the three hc-explanations
in Example 4.2 above. Regarding Dex as representing three observations at dif-
ferent time points, it seems reasonable that we should prefer explanations which
account for the observed change in F2 but allow F1 to persist. This would, for
example, cut out explanation (3) above. The use of E to describe the process of
learning new c-propositions from such sets of observations is the subject of further
investigation.

5. PROJECTION DOMAIN DESCRIPTIONS

In the following two sections, and again in Section 8, we focus attention on a partic-
ular sub-class of languages and domain descriptions, which we will call the class of
projection languages and the class of projection domain descriptions respectively7.
We have three reasons for doing so. In this section, we will show that it is possible
to state syntactically verifiable conditions under which projection domain descrip-
tions are consistent. In Section 6 we will show how we can use projection domain
descriptions to formulate a notion of explanation complementary to that of Sec-
tion 4. And in Section 8 we will show how for a particular class of domains we can
build on this idea to develop meta-level Prolog implementations which facilitate a
‘complete’ form of automated reasoning both backwards and forwards in time.

The defining characteristic of a projection language is that the set of time points
includes a null or least element, which is given a special status as regards formulation
of projection domain descriptions.

Definition 5.1. [Projection Language] A projection language is a domain language
〈Π,�,∆,Φ〉, where Π includes an element T0 (a null or least element) such that
for all T ∈ Π, T0 � T .

In this section and the next, we assume that E = 〈Π,�,∆,Φ〉 is a projection
language, and that T0 is the null element of Π. It will be convenient to identify a
particular type of t-proposition which we will call an i-proposition (“i” for “initial”).

Definition 5.2. [i-proposition] An i-proposition in E is a t-proposition of the form

L holds-at T0

where L is a fluent literal of E . We shall sometimes write this expression as

initially L

Definition 5.3. [Projection domain description] A projection domain description in

7Note that the class of Situation-Calculus-style languages of the form 〈Π∆,≤∆, ∆, Φ〉 defined
in Proposition 3.1 of Section 3 are all examples of projection languages.
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E is a triple 〈γ, η, τi〉, where γ is a set of c-propositions, η is a set of h-propositions,
and τi is a set of i-propositions in E .

Thus projection domain descriptions are domain descriptions that only allow
t-propositions about the initial time point T0.

Example 5.1. The following projection domain description uses the projection do-
main language Eys = 〈<+,≤, {Shoot}, {Alive, Loaded}〉 of Example 2.2, where <+

signifies the non-negative real numbers (so that T0 = 0).

Shoot terminates Alive when {Loaded}

Shoot happens-at 2

initially Alive

initially Loaded

At first sight it appears that the restriction of the set τi in the definition above
to contain only i-propositions is a major limitation. However, in Section 6 we will
describe a mode of reasoning involving both projection domain descriptions and
extra sets of t-propositions which have been identified as ‘observations’ requiring
explanation.

As stated above, one advantage of projection domains is that it is possible to
characterise a whole class of such domains whose consistency can be easily verified.
To state the appropriate proposition, we first need some extra definitions.

Definition 5.4. [Initial consistency] Let D = 〈γ, η, τi〉 be a projection domain
description. D is initially-consistent iff there is no fluent constant F such that
both the i-proposition “initially F” and the i-proposition “initially ¬F” are in
τi.

The next definition is related to the notion of “e-consistency” defined by Denecker
and De Schreye [11] in the context of the Language A.

Definition 5.5. [Conflicting actions] Let D be a domain description. The action
constants A1 and A2 conflict in D iff D contains two c-propositions of the form
“A1 initiates F when C1” and “A2 terminates F when C2” and there is no
fluent symbol F ′ in E such that both F ′ ∈ C1 ∪ C2 and ¬F ′ ∈ C1 ∪ C2. When
A1 = A2 = A we say that the action constant A self-conflicts in D.

Definition 5.6. [Fluent independence] Let D be a projection domain description.
D is fluent-independent iff (i) there is no time point t and pair of h-propositions
in D of the form “A1 happens-at t” and “A2 happens-at t” such that A1

and A2 conflict in D, and (ii) there is no h-proposition in D of the form “A
happens-at t” such that A self-conflicts in D.

Definition 5.7. [Non-convergence] Let D be a domain description written in a
language E = 〈Π,�,∆,Φ〉. D and E are non-converging iff for every three (not
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necessarily distinct) time points T1, T2 and T3 in Π such that T1 � T3 and
T2 � T3, then either T1 � T2 or T2 � T1.

Proposition 5.1. Let D be a projection domain description which is occurrence-
sparse, non-converging, initially-consistent, and fluent-independent. Then D is
consistent.

Proof. See Appendix B.2.

6. OBSERVATIONS AND EXPLANATIONS

In Section 4 we linked the notion of an explanation to the idea of transforming an
inconsistent domain description into a consistent one. Another aspect of explana-
tion that we might want to capture in the context of temporal domains is to explain
what holds at a later time in terms of what holds at an earlier time. For example,
we might wish to consider the statement “Fred is not alive” as explained by the
statement “the gun was loaded when he was shot”. This is an explanation of what
holds at a later time in terms of what holds at an earlier time.

In this section we consider only a special case of this type of explanation, which
arises specifically in the case of projection domain descriptions. We will regard
information about what holds at the least time point T0 of a projection domain
description as a potential explanation for observations about what holds at all
later times. In doing so, we are implicitly according i-propositions a special sta-
tus among t-propositions – rather than recording ‘observations’, i-propositions are
here regarded as statements about what was true ‘in the beginning’ or ‘originally’
(implicitly, before anyone was around to start recording observations or performing
actions). Other t-propositions are re-introduced not simply as additional state-
ments of the domain description, but as observations that need to be explained (in
terms of what was originally true and/or in terms of events that have occurred).

Definition 6.1. [o-proposition] An o-proposition in E is a t-proposition of the form

L holds-at T

where T 6= T0.

Definition 6.2. [Observation set] An observation set is a non-empty set of o-
propositions.

Definition 6.3. [i-explanation] Let D = 〈γ, η, τi〉 be a projection domain description
and let τob be an observation set. An i-explanation for τob in D is a set τiε of
i-propositions such that 〈γ, η, τi∪τiε〉 is consistent and such that for each p ∈ τob,

〈γ, η, τi ∪ τiε〉 |= p

For simplicity, and in contrast to the discussion of Section 4, we do not include
here any definition of preference between i-explanations, or any definition of op-
timality of an i-explanation. Our motivation for defining ‘i-entailment’ below is
simply to maintain the distinction between observations and other aspects of the
domain theory while allowing conclusions arising from observations to be properly
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characterised. As with h-entailment, we are concerned with capturing a ‘safe’ form
of inference – in terms of abduction, we want to i-entailment to correspond to
‘entailment in all abductive extensions’.

It is important to point out, however, that for specific domains we might well wish
to introduce a definition of preference among i-explanations, and build this into the
definition of i-entailment in exactly the same way as h-preference is incorporated
in the definition of h-entailment. For example, given the observation that “the car
didn’t start after the ignition was turned”, we might prefer the explanations that
“the battery was dead” or that “the car had no petrol” to the explanation that
“the car had no engine”.

Definition 6.4. [i-model] Let D = 〈γ, η, τi〉 be a projection domain description and
let τob be an observation set. H is an i-model of D with τob iff there exists an
i-explanation τiε for τob in D such that H is a model of 〈γ, η, τi ∪ τiε〉.

Definition 6.5. [i-consistency] Let D be a projection domain description and let τob

be an observation set. D is i-consistent with τob iff there is at least one i-model
of D with τob.

Definition 6.6. [i-entailment] Let D be a projection domain description and let
τob be an observation set. D with τob i-entails the t-proposition “F holds-at
T”, written “D, τob |=i F holds-at T”, iff for every i-model H of D with τob,
H(F, T ) = true. D with τob i-entails the t-proposition “¬F holds-at T” iff for
every i-model H of D with τob, H(F, T ) = false.

The following proposition shows that the particular definition of i-entailment
above amounts to a re-characterisation of entailment as defined in Section 2, keeping
the distinction between observation sets and projection domain descriptions. Note,
however, that the proposition would not necessarily hold if we were to incorporate
a (domain-specific) notion of i-preference in the definitions above.

Proposition 6.1. Let D = 〈γ, η, τi〉 be an occurrence-sparse projection domain de-
scription and let τob be an observation set. Then H is a model of 〈γ, η, τi ∪ τob〉
if and only if H is an i-model of D with τob.

Proof. See Appendix B.3

Example 6.1. Let Eysp = 〈<+,≤, {Shoot}, {Alive, Loaded}〉, where <+ signifies
the non-negative real numbers, and let the projection description Dysp consist of a
single c-proposition and a single h-proposition:

Shoot terminates Alive when {Loaded}

Shoot happens-at 2

Let τysp be the observation set containing the following two o-propositions:

Alive holds-at 1

¬Alive holds-at 3
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It is easy to see that there is a unique i-explanation for τysp in Dysp:

{ initially Loaded, initially Alive }
Hence for all n ≥ 0

Dysp, τysp |=i Loaded holds-at n

The notions of i-explanation and h-explanation described in this section and in
Section 4 are complementary and can be combined in an obvious way.

Definition 6.7. [ih-explanation] Let D = 〈γ, η, τi〉 be a projection domain descrip-
tion and let τob be an observation set. An ih-explanation for τob in D is a pair
〈ηε, τiε〉, where ηε is an occurrence-sparse set of h-propositions and τiε is a set of
i-propositions, such that 〈γ, η ∪ ηε, τi ∪ τiε〉 is consistent and such that for each
p ∈ τob,

〈γ, η ∪ ηε, τi ∪ τiε〉 |= p

However, it is less obvious when one ih-explanation should be considered prefer-
able to another. To conclude this section, we compare two preference relations for
ih-explanations, both of which might be reasonable for particular classes of domains.
We illustrate their different effects with an example. The following discussion lends
further weight to the viewpoint that, although the object level semantics of Sec-
tion 2 is domain-independent, decisions as to which explanations for inconsistent
domains or for sets of observations should be preferred will, in general, be based
partly on consideration of the specific domain.

The first preference relation we consider is as follows. It compares only the
h-propositions in two given ih-explanations.

Definition 6.8. [Preferable ih-explanation]
Let ε = 〈ηε, τiε〉 and ε′ = 〈η′ε, τ ′iε〉 be ih-explanations for τob in D. ε is ih-preferable
to ε′ iff ηε ⊂ η′ε.

Definition 6.9. [Optimal ih-explanation] ε is an optimal ih-explanation for τob in
D iff ε is an ih-explanation for τob in D and there is no other ih-explanation ε′

for τob in D such that ε′ is ih-preferable to ε.

Definition 6.10. [ih-model] Let D = 〈γ, η, τi〉 be a projection domain description
and let τob be an observation set. H is an ih-model of D with τob iff there exists
an optimal ih-explanation ε = 〈ηε, τiε〉 for τob in D such that H is a model of
〈γ, η ∪ ηε, τi ∪ τiε〉

Definition 6.11. [ih-entailment] Let D be a projection domain description and let
τob be an observation set. D with τob ih-entails the t-proposition “F holds-at
T”, written “D, τob |=ih F holds-at T”, iff for every ih-model H of D with τob,
H(F, T ) = true. D with τob ih-entails the t-proposition “¬F holds-at T” iff for
every ih-model H of D with τob, H(F, T ) = false.
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Example 6.2. This example involves a video-recorder with an automatic timer.
Suppose Fred returns home one evening and wishes to check if his video-recorder
has automatically started recording his favourite TV show. Although he cannot
look inside the recording machine to check if it is recording directly, he knows that
if the machine is working, when the timer triggers it will both turn the ‘record’
light on and begin recording. Fred also knows that if the machine is not working
it can be repaired. When Fred left home, the record light was not on. When he
returns, the light is on, and Fred concludes that the machine is recording.

We can represent Fred’s domain knowledge with a projection domain description
Drec consisting of three c-propositions:

TimerTrigger initiates LightOn when {Working}

TimerTrigger initiates Recording when {Working}

Repair initiates Working

Fred’s observations, that the recording light was of when he left home but is on
when he returns, are represented by the observation set τrec:

{¬LightOn holds-at TL, LightOn holds-at TR}
where TL, TR ∈ Π represent the times at which Fred left and returned home respec-
tively. It is easy to see that all optimal ih-explanations for τrec in Drec are of the
form

〈{TimerTrigger happens-at T},
{initially Working, initially ¬LightOn}〉

for some T ∈ Π such that TL � T ≺ TR, so that

Drec, τrec |=ih Recording holds-at TR

and hence the notion of ih-entailment correctly models Fred’s reasoning in this
respect.

In the example above, Fred can also use ih-entailment to reason that his video-
recorder was functioning properly at time TL (and indeed at any time point what-
soever), i.e.

Drec, τrec |=ih Working holds-at TL

In doing so, Fred rejects ih-explanations in which an extra Repair action occurs at
some time before the TimerTrigger action. It is a matter of debate as to whether,
for this domain, it is reasonable to do this. But it is not hard to formulate an
alternative preference criterion among ih-explanations which does not cause such
alternatives to be rejected:

Definition 6.12. [Preferable ih-explanation]
Let ε = 〈ηε, τiε〉 and ε′ = 〈η′ε, τ ′iε〉 be ih-explanations for τob in D. ε is ih-preferable
to ε′ iff ηε ⊂ η′ε and τiε = τ ′iε.

In other words, explanations are only “ih-comparable” if they contain the same
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i-propositions. Assuming definitions exactly analogous to Definitions 6.9, 6.10
and 6.11 for an optimal ih-explanation, an ih-model, and ih-entailment respectively,
it is easy to see that all optimal ih-explanations are also optimal ih-explanations,
but that (for the example above) optimal ih-explanations can also be of the form

〈{Repair happens-at T ′, T imerTrigger happens-at T},
{initially ¬Working, initially ¬LightOn}〉

for some T ′, T ∈ Π such that TL � T ≺ TR and T ′ ≺ T . Hence, although (as for
ih-entailment)

Drec, τrec |=ih Recording holds-at TR

Fred cannot use ih-entailment to conclude that his video-recorder was working when
he left the house.

It is not hard to think up examples either where ih-entailment or where ih-
entailment seems more plausible. The choice seems to depend on whether (for the
particular domain) one is more concerned with assuming as few action occurrences
as possible (ih-entailment), or whether one is more concerned with giving equal
consideration to all possible initial conditions, even in the face of observations at
later times (ih-entailment).

7. LOGIC PROGRAMS FOR E DOMAINS

In the following two sections we discuss the implementation of Language E do-
mains. In this section we study how we can construct Event Calculus style logic
programs from domain descriptions in general. In Section 8 we show how, for a
class of projection domain descriptions, (simplified versions of) these programs can
be enhanced using standard Prolog ‘second-order’ programming techniques.

In the original Event Calculus there was an implicit assumption that all predicate
definitions were complete. In other words, it was assumed that for each predicate
its negation (negation as failure) was true whenever the positive instance did not
hold. Although the semantics of E incorporates an analogous assumption for h-
propositions and c-propositions, this assumption does not extend to t-propositions
(equivalent to Holds or HoldsAt literals in Event Calculus programs) – it is possible
for a domain description D to be ‘incomplete’ in the sense that, for some fluent
constant F and time T , neither “F holds-at T” nor “¬F holds-at T” is entailed
by D.

However, we can partly avoid the implementation difficulties that this creates by
representing negative fluent literals inside the HoldsAt predicate. In the program
translations defined below, the t-proposition “¬F holds-at T” is represented by the
positive literal HoldsAt(Neg(F ), T ), whereas the negative literal not HoldsAt(F, T )
is simply interpreted as ‘the t-proposition “F holds-at T” is not provable’. In this
and other respects, the translation method here is similar to that in [30]. Analogous
techniques are used in [16], [14] and [4], although not with Event Calculus style
programs.

Given that our aim is to develop programs able to deal correctly with the form
of incompleteness described above, it is useful to first consider incomplete or partial
interpretations for a domain description and examine what can be computed from
these.



23

Definition 7.1. [Partial interpretation] A partial interpretation of E is a partial
mapping

I : Φ×Π 7→ {true, false}

In the discussion which follows, we assume that Definitions 2.8 and 2.9 of ‘point
satisfaction’ and an ‘initiation’ or ‘termination point’ are extended to cover partial
interpretations as well as interpretations. In addition, we need counterparts to
these notions which deal with cases where I(F, T ) is undefined.

Definition 7.2. [Possible point satisfaction] Given a set of fluent literals C of E
and a time point T ∈ Π, a partial interpretation I possibly satisfies C at T iff
for each fluent constant F ∈ C, I(F, T ) 6= false, and for each fluent constant F ′

such that ¬F ′ ∈ C, I(F ′, T ) 6= true.

Definition 7.3. [Possible initiation/termination point] Let I be a partial interpreta-
tion of E , let D be a domain description, let F ∈ Φ and let T ∈ Π. T is a possible
initiation-point (respectively possible termination-point) for F in I relative to D
iff there is an A ∈ ∆ such that (i) there is both an h-proposition in η of the form
“A happens-at T” and a c-proposition in γ of the form “A initiates F when
C” (respectively “A terminates F when C”) and (ii) I possibly satisfies C at
T .

Let us denote the set of all partial interpretations by I. Motivated by Defini-
tion 2.10 of a model for a domain D, we can define an associated (partial) operator
on I as follows.

Definition 7.4. [Operator F ] Given a domain description D = 〈γ, η, τ〉 the partial
operator F : I 7→ I is defined as follows: For any partial interpretation I ∈ I,
and any F ∈ Φ, T ∈ Π,

1. (a) For any T1 ∈ Π such that T1 ≺ T , if there is no possible initiation-
point or possible termination-point T2 for F in I relative to D such that
T1 � T2 ≺ T , then (F)(I)(F, T ) = I(F, T1).

(b) For any T2 ∈ Π such that T ≺ T2, if there is no possible initiation-
point or possible termination-point T1 for F in I relative to D such that
T � T1 ≺ T2, then (F)(I)(F, T ) = I(F, T2).

2. If T1 is an initiation-point for F in I relative to D, T1 ≺ T and there is no
possible termination-point T2 for F in I relative to D such that T1 ≺ T2 ≺ T ,
then (F)(I)(F, T ) = true.

3. If T1 is a termination-point for F in I relative to D, T1 ≺ T and there is no
possible initiation-point T2 for F in I relative to D such that T1 ≺ T2 ≺ T ,
then (F)(I)(F, T ) = false.

4. If there is a t-proposition in τ of the form “F holds-at T”, then

(F)(I)(F, T ) = true,
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and if there is a t-proposition of the form “¬F holds-at T”,

(F)(I)(F, T ) = false.

5. Otherwise (F)(I)(F, T ) is undefined.

Note that this operator is not always defined, as it is possible for these rules to
require the assignment of both true and false to (F)(I)(F, T ) for some F and T .

It is easy to see that conditions (1) to (4) in the definition above correspond
closely to conditions (1) to (4) of Definition 2.10 of a model. The following definition
and three propositions show the relationship between Language E models and the
operator F .

Definition 7.5. [The ordering ⊆] For any two partial interpretations I1, I2 ∈ I, I1

is contained in I2, written I1 ⊆ I2, iff (i) for any F and T if I1(F, T ) = true then
I2(F, T ) = true, and (ii) if I1(F, T ) = false then I2(F, T ) = false.

Proposition 7.1. Let D be a domain description. If D is consistent then any model
H of D is a greatest (with respect to the ordering ⊆) fixed point of F .

Proof. The proof follows directly from the construction of F and the observa-
tion that since H is a total mapping the definition for possible initiation-point
(respectively possible termination-point) coincides with that of initiation-point
(respectively termination-point).

When a domain D is consistent we can apply the operator F iteratively to
compute a partial interpretation that would be a subset of any model of D.

Proposition 7.2. Let D be a consistent domain description, let H be a model of D
and let I be a partial interpretation such that I ⊆ H. Then F(I) ⊆ H.

Proof. The proof follows by comparing the different cases under which F ap-
plies with conditions (1)–(4) in Definition 2.10 of a model, and noticing that
the following two properties hold for every T ∈ Π and F ∈ Φ: (i) if T is an
initiation-point (resp. termination-point) for F in I then T is an initiation-point
(resp. termination-point) for F in H and (ii) if T is not a possible initiation-point
(resp. possible termination-point) for F in I then T is not an initiation-point
(resp. termination-point) for F in H.

Proposition 7.3. Let D be a consistent domain description and let the sequence
I0, . . . , In, . . . of partial interpretations be defined as follows:

• I0 = ∅

• In+1 = In ∪ F(In) for each countable ordinal n > 0.

Then there exists a least fixed point I+ of this sequence, and D entails any t-
proposition of the form “F holds-at T” (resp. “¬F holds-at T”) such that
I+(F, T ) = true (resp. I+(F, T ) = false).

Proof. By Proposition 7.2 when D is consistent this sequence is well defined.
Also, by construction the sequence is monotonic (with respect to the ordering ⊆
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of Definition 7.5) and hence the least fixed point I+ exists. Again by Proposi-
tion 7.2 I+ ⊆ H for any model H of D and hence the result follows.

Given Proposition 7.3, we can use Definition 7.4 to ‘read off’ a logic program
that implements F and computes consequences belonging to I+. To simplify our
definitions we assume that some logic program or external definition of the order
relation � is available.

Definition 7.6. [Ordering program] Given the language E = 〈Π,�,∆,Φ〉, the
programP (Π,�) is an ordering program for E iff

• for all T, T ′ ∈ Π, P (Π,�) succeeds on the query T � T ′ if and only if T � T ′,
and finitely fails otherwise.

• for all T, T ′ ∈ Π, P (Π,�) succeeds on the query T ≺ T ′ if and only if T ≺ T ′,
and finitely fails otherwise.

• None of the following predicate symbols appear in P (Π,�):
HoldsAt, Given, ClippedBetween, HappensAt, PossiblyInitiates,
Initiates, PossiblyTerminates, Terminates, AffectedBetween.

We will also need the following preliminary definitions.

Definition 7.7. [lp-term and lp-complement] Given a fluent literal L of
E = 〈Π,�,∆,Φ〉, the lp-term of L, written λ(L), is defined to be

• Pos(F ) if L = F for some F ∈ Φ

• Neg(F ) if L = ¬F for some F ∈ Φ

and the lp-complement of L, written λ(L), is defined to be

• Neg(F ) if L = F for some F ∈ Φ

• Pos(F ) if L = ¬F for some F ∈ Φ

Definition 7.8. [Finite domain description] The domain description 〈γ, η, τ〉 is finite
iff γ, η and τ are all finite, and for each c-proposition in γ either of the form
“A initiates F when C” or of the form “A terminates F when C”, C is also
finite.

Our translation from domain descriptions to logic programs can now be given.
In the definition below, the five clauses defining HoldsAt correspond to rules (1a)–
(4) in Definition 7.4 of the operator F (Clauses (LP1a) and (LP1b) are ‘special
cases’ of rules (1a) and (1b)). The use of negation-as-failure and fluent con-
verses in the domain-specific clauses defining the predicates PossiblyInitiates and
PossiblyTerminates reflects Definition 7.3 of a possible initiation and possible ter-
mination point.

Definition 7.9. [LP [D,P (Π,�)]] Given a finite domain description D = 〈γ, η, τ〉
written in the language E = 〈Π,�,∆,Φ〉, and an ordering program P (Π,�),
the logic program LP [D,P (Π,�)] is defined as the program P (Π,�) augmented
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with the following general clauses

HoldsAt(l, t3)← (LP1a)
Given(l, t1), t1 ≺ t3, not AffectedBetween(t1, l, t3).

HoldsAt(l, t1)← (LP1b)
Given(l, t3), t1 ≺ t3, not AffectedBetween(t1, l, t3).

HoldsAt(Pos(f), t3)← (LP2)
HappensAt(a, t1), t1 ≺ t3, Initiates(a, f, t1),
not ClippedBetween(t1, Pos(f), t3).

HoldsAt(Neg(f), t3)← (LP3)
HappensAt(a, t1), t1 ≺ t3, Terminates(a, f, t1),
not ClippedBetween(t1, Neg(f), t3).

HoldsAt(l, t)← Given(l, t). (LP4)

ClippedBetween(t1, Pos(f), t3)← (LP5)
HappensAt(a, t2), t1 � t2, t2 ≺ t3,
PossiblyTerminates(a, f, t2).

ClippedBetween(t1, Neg(f), t3)← (LP6)
HappensAt(a, t2), t1 � t2, t2 ≺ t3,
PossiblyInitiates(a, f, t2).

AffectedBetween(t1, l, t3) ← ClippedBetween(t1, l, t3). (LP7)

AffectedBetween(t1, Neg(f), t3) ← (LP8)
ClippedBetween(t1, Pos(f), t3).

AffectedBetween(t1, Pos(f), t3) ← (LP9)
ClippedBetween(t1, Neg(f), t3).

and the following domain-specific clauses

• For each t-proposition “L holds-at T” in τ , the clause

Given(λ(L), T ).

• For each h-proposition “A happens-at T” in η, the clause

HappensAt(A, T ).

• For each c-proposition “A initiates F when {L1, . . . , Ln}” in γ,
the clause
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Initiates(A,F, t)←
HoldsAt(λ(L1), t), . . . ,HoldsAt(λ(Ln), t).

and the clause

PossiblyInitiates(A,F, t)←
not HoldsAt(λ(L1), t), . . . , not HoldsAt(λ(Ln), t).

• For each c-proposition “A terminates F when {L1, . . . , Ln}” in γ,
the clause

Terminates(A,F, t)←
HoldsAt(λ(L1), t), . . . ,HoldsAt(λ(Ln), t).

and the clause

PossiblyTerminates(A,F, t)←
not HoldsAt(λ(L1), t), . . . , not HoldsAt(λ(Ln), t).

Intuitively, given Propositions 7.1, 7.2 and 7.3 it is easy to see that the programs
described above behave correctly for consistent domain descriptions, since Clauses
(LP1a)–(LP4) either correspond exactly to or are just special cases of conditions
(1a)–(4) in Definition 7.4. The following proposition8confirms this intuition.

Proposition 7.4. Let P (Π,�) be an ordering program for E, and let D be a finite
domain description. Then for any fluent literal L of E and any T ∈ Π, if

LP [D,P (Π,�)] `SLDNF HoldsAt(λ(L), T )

then

D |= L holds-at T

Proof. See Appendix B.4

To a certain extent, the above logic programs overcome the two limitations of
formalizations of action in normal logic programming identified by Gelfond and
Lifschitz in [16]. That is to say, (i) if the values of some fluents at one or more time
points are given, they facilitate automated reasoning about what holds at other time
points before, afterwards or in between, and (ii) as shown by Proposition 7.4, the
programs behave correctly even when the information entailed by their Language
E specifications is incomplete.

However, although they are sound, the above logic programs do not compute all
consequences of every domain under its semantics as given by Definition 2.10. This

8In this and subsequent propositions, the symbol `SLDNF signifies the existence of an SLDNF
derivation, defined as for example in [28]. However, for clarity of presentation, in proposition proofs
we avoid working directly with this type of definition, and instead refer to SLDNF derivations
using the usual (Prolog) programming terminology.
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potential incompleteness is illustrated by the following example.

Example 7.1. Let Ev and Dv be the domain language and domain description re-
spectively of Example 2.1, and suppose that P (<,≤) is an ordering program for Ev.
Then the logic program LP [Dv, P (<,≤)] consists of the program P (<,≤) together
with clauses (LP1a)–(LP9) of Definition 7.9 and the domain-specific clauses

Initiates(InjectA, Protected, t)←
HoldsAt(Pos(TypeO), t).

PossiblyInitiates(InjectA, Protected, t)←
not HoldsAt(Neg(TypeO), t).

Initiates(InjectB, Protected, t)←
HoldsAt(Neg(TypeO), t).

PossiblyInitiates(InjectB, Protected, t)←
not HoldsAt(Pos(TypeO), t).

HappensAt(InjectA, 2).

HappensAt(InjectB, 3).

Given(Neg(Protected), 1).

As it stands, the query HoldsAt(Pos(Protected), 4) will fail on this program even
though the corresponding t-proposition is entailed by its specification. Notice how-
ever that the query can be made to succeed by adding either Given(Pos(TypeO), n)
or Given(Neg(TypeO), n) to the program for some time point n < 2. The example
also illustrates the necessity of using the PossiblyInitiates and PossiblyTerminates
predicates. Had the program definition of ClippedBetween been given simply in
terms of Initiates and Terminates, the query HoldsAt(Neg(Protected), 4) would
succeed, even though the t-proposition “¬Protected holds-at 4” is not entailed by
Dv. Finally, notice that the success of the goal HoldsAt(Neg(Protected), 0) (triv-
ially) demonstrates the utility of this type of program for reasoning backwards in
time.

8. META-LEVEL PROGRAMS FOR COMPUTING I-ENTAILMENT

In this section we show how, for a class of domains, we can exploit the meta-level
characterisation of i-entailment given in Section 6 to build meta-level programs
which facilitate a more ‘complete’ form of reasoning (both backwards and forwards
in time) than the object-level programs of the previous section. The important
characteristic of the programs given below is that they maintain the distinction
between observations, which are dealt with at the meta-level, and other parts of
the domain theory.
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The object-level programs upon which our meta-level implementation is built
are simplified versions of the programs described in Section 7. The simplification
is possible because of the following property of projection domain descriptions.
If D is a projection domain description which contains either the i-proposition
“initially F” or the i-proposition “initially ¬F” for every fluent constant F , then
D is ‘complete’ in the sense that it has at most one model (this follows from
Proposition 2.1). If E is non-converging, and D is fluent-independent, D has exactly
one model (this follows from Proposition 5.1). Hence, in the case where D is
also finite (so that there are only a finite number of fluent constants in E), it is
not hard to construct a simplified Event Calculus style program for D enabling
complete automated reasoning forwards in time from the initial time point T0. For
reasons which will shortly become apparent, we will represent the (‘complete’ set
of) i-propositions of D in list form inside a three-argument version of the HoldsAt
predicate, rather than with a Given predicate as previously. In Definition 8.2
below, HoldsAt(M,L, T ) should be read as “D |= L holds-at T , where M is (a list
representation of) the set of i-propositions in D”.

It is easy to see that clauses (EC7)–(EC11) which define HoldsAt are a simplifi-
cation of clauses (LP1a)–(LP9) in Definition 7.9. Here it is not necessary to distin-
guish between the predicates Initiates (resp. Terminates) and PossiblyInitiates
(resp. PossiblyTerminates), and clauses (LP1a), (LP1b) and (LP4) can be con-
densed into the single clause (EC7). This is because, at the (object) level of calls
to the HoldsAt predicate, complete information is available about what holds at
the initial time point T0, and we are only interested in reasoning forwards in time
from this point. Incompleteness and reasoning backwards in time are instead dealt
with at the meta-level.

We wish to construct a program able to test whether a particular t-proposition
is i-entailed by some projection domain description D′ (which, unlike D above,
may not have an i-proposition for each fluent) together with some observation set
τob. All that remains to be done is to define a meta-level program able to use the
HoldsAt predicate to test the truth of the t-proposition in each extension of D′

with a ‘maximal’ i-explanation for τob. (It is sufficient to consider only maximal
i-explanations, i.e. those which mention every fluent in the language, because of the
monotonicity of E as regards addition of t-propositions to any domain description –
see the remarks at the end of Section 2.) This is achieved in a straightforward way
by clauses (EC1)–(EC6) in Definition 8.2 below. In this definition, IHoldsAt(L, T )
should be read as “D′, τob |=i L holds-at T”. IExplanation(M) should be read as
“M is a (maximal) i-explanation for τob in D′”.

In Definition 8.2, a Prolog-like syntax for lists is used. Thus the term [] represents
the empty list and the term [Head|Remainder] represents a non-empty list whose
first element is Head. Suitable definitions of the standard list predicates Member
and Append are assumed. The two meta-level (or ‘second-order’) predicates Setof
and Forall are also used. To summarise their functions, Forall(Condition,Goal)
succeeds if for all solutions of Condition, Goal succeeds. Setof(X, Goal, Instances)
succeeds if Instances is the set of instances of X for which Goal succeeds, where sets
are represented as (possibly empty) lists without repetitions. For practical details
of the use of these predicates in the context of Prolog programming, the reader
may consult [42]. (It is also assumed that the predicates IHoldsAt, IExplanation,
Permutation, and ConsistentWithObservations do not appear in the ordering
program P (Π,�).)
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Definition 8.1. The domain language E = 〈Π,�,∆,Φ〉 is fluent-finite iff the set Φ
is finite.

Definition 8.2. [EC[D, τob, P (Π,�)]]
Let D = 〈γ, η, τ〉 be a finite projection domain description written in a fluent-
finite projection language E = 〈Π,�,∆,Φ〉. Let T0 be the null element of Π,
and let P (Π,�) be an ordering program for E . Let τob be a finite observation
set. The logic program EC[D, τob, P (Π,�)] is defined as the program P (Π,�)
augmented with the following general clauses

IHoldsAt(l, t)← (EC1)
Forall(IExplanation(m),HoldsAt(m, l, t)).

IExplanation(m)← (EC2)
Setof(l, (Initially(l)), i),
Setof(f,

(Fluent(f), not Initially(Pos(f)), not Initially(Neg(f))),
p),

P ermutation(p, c), Append(c, i,m),
ConsistentWithObservations(m).

P ermutation([], []). (EC3)

Permutation([f |r1], [f |r2])← Permutation(r1, r2). (EC4)

Permutation([f |r1], [Neg(f)|r2])← Permutation(r1, r2). (EC5)

ConsistentWithObservations(m)← (EC6)
Forall(Observation(l, t),HoldsAt(m, l, t)).

HoldsAt(m, l, t3)← (EC7)
Member(l, m), not ClippedBetween(m,T0, l, t3).

HoldsAt(m,Pos(f), t3)← (EC8)
HappensAt(a, t1), t1 ≺ t3, Initiates(m,a, f, t1),
not ClippedBetween(m, t1, Pos(f), t3).

HoldsAt(m,Neg(f), t3)← (EC9)
HappensAt(a, t1), t1 ≺ t3, Terminates(m,a, f, t1),
not ClippedBetween(m, t1, Neg(f), t3).

ClippedBetween(m, t1, Pos(f), t3)← (EC10)
HappensAt(a, t2), t1 � t2, t2 ≺ t3,
Terminates(m,a, f, t2).



31

ClippedBetween(m, t1, Neg(f), t3)← (EC11)
Happens(a, t2), t1 � t2, t2 ≺ t3,
Initiates(m,a, f, t2).

and the following domain-specific clauses

• For each fluent constant F ∈ φ, the clause

Fluent(F ).

• For each i-proposition “initially L” in τi, the clause

Initially(λ(L)).

• For each o-proposition “L holds-at T” in τob, the clause

Observation(λ(L), T ).

• For each h-proposition “A happens-at T” in η, the clause

HappensAt(A, T ).

• For each c-proposition “A initiates F when {L1, . . . , Ln}” in γ,
the clause

Initiates(m,A, F, t)←
HoldsAt(m,λ(L1), t), . . . ,HoldsAt(m,λ(Ln), t).

• For each c-proposition “A terminates F when {L1, . . . , Ln}” in γ,
the clause

Terminates(m,A, F, t)←
HoldsAt(m,λ(L1), t), . . . ,HoldsAt(m,λ(Ln), t).

Example 8.1. Let Eysp, Dysp and τysp be the domain language, domain descrip-
tion and observation set respectively of Example 6.1. Let P (<+,≤) be an ordering
program for Eysp. Then the logic program EC[Dysp, τysp, P (<+,≤)] consists of the
program P (<+,≤) together with clauses (EC1)–(EC11) of Definition 8.2 and the
domain-specific clauses

Terminates(m,Shoot,Alive, t)← HoldsAt(m,Pos(Loaded), t).

F luent(Alive).

F luent(Loaded).
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Observation(Pos(Alive), 1).

Observation(Neg(Alive), 3).

HappensAt(Shoot, 2).

Although potentially somewhat inefficient, the programs described in Defini-
tion 8.2 are of interest because they enable sound derivations9of t-propositions
which would not be possible with the object-level logic programs given in the pre-
vious section. For example, it is easy to verify, either by inspection or using a
Prolog interpreter, that

EC[Dysp, τysp, P (<+,≤)] `SLDNF IHoldsAt(Pos(Loaded), 0)

Indeed, for a wide class of domains they are both sound and ‘complete’, in the
sense of Proposition 8.1 below. Since any finite, consistent Language A domain
as defined in [16] may be translated directly into a Language E projection domain
description together with an observation set (see Section 3), finite A domains may
also be given a meta-level implementation of this type10.

Proposition 8.1. Let E = 〈Π,�,∆,Φ〉 be a fluent-finite, non-converging projection
language, let P (Π,�) be an ordering program for E, and let D = 〈γ, η, τi〉 be
a finite, initially-consistent, fluent-independent projection domain description in
E. Let τob be a finite observation set. Then for any fluent literal L of E and any
T ∈ Π,

EC[D, τob, P (Π,�)] `SLDNF IHoldsAt(λ(L), T )

if and only if

D, τob |=i L holds-at T

Proof. See Appendix B.5

As stated in Proposition 5.1, it is possible to verify the consistency of the
class of projection domain descriptions described in Proposition 8.1 by a syntactic
check. Note that we can now build on this proposition to check for i-consistency
with a given observation set, simply by verifying the success of the unground call
IExplanation(m). Finally, the style of the programs described in this section offers
some clue as to how we might in principle implement a preference criterion added
to the definition if i-entailment, by appropriately extending the program definition
of IExplanation.

9In order to continue to refer to ‘SLDNF derivations’, we assume that the meta-level primitives
Setof and Forall are appropriately re-interpreted (see [42] for details).

10Strictly speaking, the translation method described in Definition 8.2 is not applicable to the
Language A type domain descriptions described in Section 3 Proposition 3.1. This is because the
“complete occurrence set” of h-propositions is infinite (see Definition 3.3). But the appropriate
modification to Definition 8.2 is trivial, and does not necessitate a significant change to the proof
of Proposition 8.1. An example ordering program P (Π∆,≤∆) is given in Appendix C together
with the necessary changes to Definition 8.2.
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9. CONCLUSIONS AND FURTHER WORK

Following the methodology of the Language A introduced in [16], we have presented
a simple declarative language, E , for describing narratives with actions. E is based
on a narrative ontology inherited from the Event Calculus, thus demonstrating that
this methodology is not limited to the particular ontology of A. E ’s semantics is
based around a simple characterisation of persistence which facilitates a modular
approach to extending the expressivity of the language. This characterisation relies
heavily on the notion of a flow of time which is independent from any actions which
may occur. The benefits of this become particularly apparent when representing
domains where periods of time elapse in which a change may or may not have taken
place. It is not necessary to ‘fill in’ time with an artificial ‘action’ such as a ‘Wait’.

The explicit notion of an action occurrence incorporated in E allows an im-
portant class of ‘narrative’ explanations (h-explanations) to be characterised in a
simple way. These enable us to extend an otherwise inconsistent theory written in
E so as to establish consistency, thus providing a natural method, in many cases, to
account for conflicting sets of information about the domain. More generally, our
formalisation of various notions of explanation within E illustrates that common-
sense reasoning need not always be modelled as deduction at a single object level.
Our results are built upon much previous work concerning the role of abduction
in Artificial Intelligence and related areas. Once again we have demonstrated that
reasoning from cause to effect can be modelled at the object level, whereas reason-
ing from effect to cause can be regarded as an essentially meta-level (for example
abductive) activity. In the context of reasoning about action, causation is tempo-
rally directed. Hence in our work this distinction manifests itself in the fact that
reasoning forwards in time is modelled as object-level deduction, whereas reason-
ing backwards in time is captured at the meta-level. The success of this approach
lends extra weight to a developing consensus (see [8] for a general discussion) that
observations should somehow be treated separately from other aspects of theories
of action.

We have also shown how domains in E can be implemented in normal logic pro-
gramming with extended versions of Event Calculus programs that behave correctly
even when the knowledge entailed by the domain description is incomplete. These
programs have the capability of reasoning backwards as well as forwards in time.

We can envisage at least three areas of future research relating to E . Firstly, in
line with the methodology described in our introduction, we could use E as a ‘mea-
suring stick’ to show correspondences between various narrative-based formalisms
for reasoning about action, perhaps in the manner of Katha in [21]. Example
candidates for comparison are the formalisms in [31], [34], [40] and [41].

Secondly, it would be interesting to investigate different styles of implementa-
tion as regards E domains. The approaches followed in this paper are based on a
relatively simple use of normal logic programming and standard techniques within
this. We could develop a more general implementation for computing entailment or
i-entailment using abductive logic programming, building on the work in [10], [11],
[19] and [20]. The ‘abductive flavour’ of our definition of h-entailment suggests that
abductive logic programming could be a useful implementation tool here as well.

Thirdly, the expressivity of E could be increased in various ways. We have already
briefly indicated how E might be extended to partially deal with ramifications
and qualifications (see Appendix A). Since E already allows for actions to occur
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concurrently within a narrative, it seems likely that the language could also be
extended to allow for a theory of cancelling and combined effects of actions similar
to that in [4]. It has already been pointed out [10] [12] [33] that a narrative based
approach offers alternative ways to model non-deterministic effects of actions, and
is a natural setting in which to model continuous change [39] [43] [32] [41]. Finally,
we might extend the syntax and semantics of E to deal with incomplete information
about the order and timing of action occurrences, perhaps building on the ideas in
[10] and [12], and perhaps introducing temporal variables into the language in a
manner similar to [5] and [6].

The utility and appeal of specialised declarative languages such as A and E lies
in their simplicity. They are of sufficiently ‘high level’ to allow various issues to
be aired without immediately becoming involved in technical details, and are per-
haps best regarded as useful stepping stones towards the ultimate goal of develop-
ing comprehensive formal theories of action using general purpose representational
mechanisms. Hence their capacity for retaining their simplicity when extended to
cover more complex domains is a crucial measure of their utility.
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APPENDICES

A. EXTENDING THE EXPRESSIVITY OF E

Two extensions to the syntax and semantics of E are given in this appendix. This
is in order to illustrate that the basic notion of a model, encapsulated in Defini-
tions 2.7 to 2.10, may be modified to accommodate extra types of propositions,
without altering the basic principle of persistence captured in conditions (1)-(3) of
Definition 2.10. Both extensions are very simple, and although they are obviously
related to aspects of the qualification problem and ramification problem respec-
tively, it is not our intention to suggest that, in this short space, we have developed
a comprehensive approach to these subtle and complex issues.

A.1. Describing Conditions under which an Action Cannot Occur

In some circumstances it may be possible to infer knowledge about the conditions
at the time of an action occurrence from the fact that the action did occur. For
example, given that we know that “at 2 o’clock the caretaker unlocked the door”,
we might typically infer that (at 2 o’clock) “she had the key”. This is because
it is impossible to unlock a door without a key, which might be expressed by a
proposition such as

Unlock impossible-if {¬HasKey}
This motivates a general definition for a new type of proposition:

Definition A.1. [q-proposition] A q-proposition in E is an expression of the form

A impossible-if C

where A ∈ ∆, and C is a set of fluent literals of E .

Such propositions may be accommodated in the semantics of E by strengthening
condition (4) of Definition 2.10 (which expresses simple pointwise constraints on a
model), without changing in the basic notion of persistence encapsulated in condi-
tions (1)-(3). Assuming that domain descriptions are now defined as a quadruple
〈γ, η, τ, κ〉, where γ, η and τ are as before, and κ is a set of q-propositions11, the
condition now becomes:

(a) For all t-propositions in τ of the form “F holds-at T”, H(F, T ) = true,
and for all t-propositions of the form “¬F holds-at T”, H(F, T ) = false.

(b) For all pairs of h-propositions and q-propositions in η × κ of the form
“A happens-at T” and “A impossible-if C”, H does not satisfy C at T .

11Note that, if for every c-proposition “A initiates F when C” there is a q-proposition “A
impossible-if C ∪ {F}”, in any model all initiation points for F are actual points of change
for F . An analogous observation holds for termination points. Thus Sergot’s notions of strong
initiation and strong termination [37] can be incorporated into E by addition of q-propositions
where appropriate.
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A.2. Describing Indirect Effects of Actions

The following extension to E is included to illustrate how Definition 2.9 of an
initiation or termination point might be refined, without necessitating a change in
the basic notion of persistence encapsulated in conditions (1)-(3) of Definition 2.10.
Suppose that we wish to express simple constraints between fluents. To take a
canonical example, suppose that we want to express that a room is stuffy when
the window is closed and the ventilator blocked. This might be expressed by a
proposition such as

Stuffy whenever {Closed,Blocked}
Hence we define a new type of proposition as follows:

Definition A.2. [r-proposition] An r-proposition in E is an expression of the form

L whenever C

where L is a fluent literal and C is a set of fluent literals of E .

We now need a recursive definition of an initiation point and of a termina-
tion point, since, for example, if the ventilator is blocked, the action of closing
the window will (indirectly) initiate the property of the room being stuffy. The
modified definitions below assume that domain descriptions are defined as a tuple
〈γ, η, τ, κ, ρ〉, where γ, η and τ are as before, κ is a set of q-propositions and ρ is a
set of r-propositions.

Definition A.3. [Initiation/termination point for domains with r-propositions] Let
H be an interpretation of E , let D = 〈γ, η, τ, κ, ρ〉 be a domain description, let
F ∈ Φ and let T ∈ Π. T is an initiation-point (respectively termination-point)
for F in H relative to D iff one of the following two conditions holds.

1. There is an A ∈ ∆ such that (i) there is both an h-proposition in η of the
form “A happens-at T” and a c-proposition in γ of the form “A initiates
F when C” (respectively “A terminates F when C”) and (ii) H satisfies
C at T .

2. There is an r-proposition in ρ of the form “F whenever C” (respectively
“¬F whenever C”) and a partition {C1, C2} of C such that (i) C1 is non-
empty, for each fluent constant F ′ ∈ C1, T is an initiation point for F ′, and
for each fluent literal ¬F ′ ∈ C1, T is a termination point for F ′, and (ii)
there is some T2 ∈ Π, T ≺ T2, such that for all T1, T � T1 � T2, H satisfies
C2 at T1.

Intuitively, condition (2) above states that in order find time points at which the
fluent F becomes indirectly initiated via the r-proposition F whenever C, we need
to look for points at which one or more of the conditions in C become satisfied,
and at which the remaining conditions were already satisfied (and continue to be
satisfied up to some point T2 beyond the point in question).

Condition (4) of Definition 2.10 is now:

(a) For all t-propositions in τ of the form “F holds-at T”, H(F, T ) = true,
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and for all t-propositions of the form “¬F holds-at T”, H(F, T ) = false.

(b) For all pairs of h-propositions and q-propositions in η × κ of the form
“A happens-at T” and “A impossible-if C”, H does not satisfy C at T .

(c) For all r-propositions in ρ of the form “L whenever C”, if H satis-
fies C at T then H satisfies {L} at T .

B. PROPOSITION PROOFS

B.1. Proof of Proposition 2.1

Proposition statement: Let D be an occurrence-sparse domain description writ-
ten in a language E = 〈Π,�,∆,Φ〉, and let T1, T2 ∈ Π be such that T1 � T2. Let H
and H ′ be models of D such that for all F ∈ Φ, H(F, T1) = H ′(F, T1). Then for
all F ∈ Φ, H(F, T2) = H ′(F, T2).

Proof: Proof is by induction on the number n of h-propositions in η of the form
A happens-at T such that T1 � T ≺ T2.

Base Case: If n = 0 then by the first condition in the definition of a model,
for all F ∈ Φ, H(F, T2) = H(F, T1) = H ′(F, T1) = H ′(F, T2).

Inductive Step: Suppose that n > 0 and that the lemma is true for all m < n. Let
F ′ ∈ Φ be an arbitrary fluent constant. It is sufficient to show that H(F ′, T2) =
H ′(F ′, T2). Since D is occurrence-sparse there exists at least one T ∈ Π such
that (i) T1 � T ≺ T2, (ii) there is at least one h-proposition in η of the form “A
happens-at T”, and (iii) there is no h-proposition in η of the form “A happens-at
T ′” such that T ≺ T ′ ≺ T2. Let Th be such a time point. By the inductive hypothe-
sis, for all F ∈ Φ, H(F, Th) = H ′(F, Th) and by construction there are no initiation
or termination points T ′ (for any fluent) in H or H ′ such that Th ≺ T ′ ≺ T2. There
are three cases to consider (since in any model, F ′ must be unaffected, initiated or
terminated at Th):

Case one: There is not both an h-proposition in η of the form “A happens-at
Th” and a c-proposition in γ either of the form “A initiates F ′ when C” or of the
form “A terminates F ′ when C” such that H (and thus H ′) satisfies C at Th.
Hence by the first condition in the definition of a model, H(F ′, T2) = H(F ′, Th) =
H ′(F ′, Th) = H ′(F ′, T2).

Case two: There is both an h-proposition in η of the form “A happens-at Th” and
a c-proposition in γ of the form “A initiates F ′ when C” such that H (and thus
H ′) satisfies C at Th. Hence by the second condition in the definition of a model,
H(F ′, T2) = true = H ′(F ′, T2).

Case three: There is both an h-proposition in η of the form “A happens-at Th”
and a c-proposition in γ of the form “A terminates F ′ when C” such that H
(and thus H ′) satisfies C at Th. Hence by the third condition in the definition of a
model, H(F ′, T2) = false = H ′(F ′, T2).
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B.2. Proof of Proposition 5.1

Proposition statement: Let D be an occurrence-sparse, non-converging, initially-
consistent, fluent-independent projection domain description. Then D is consistent.

Proof: Let D = 〈γ, η, τi〉 be written in the projection language E = 〈Π,�,∆,Φ〉,
and let T0 be the null element of Π.

Let M : Φ 7→ {true, false} be defined as follows. For each F ∈ Φ,

• M(F ) = true if there is an i-proposition in τi of the form “initially F”,

• M(F ) = false otherwise.

M will be used to construct a model H of D such that for all F ∈ Φ, H(F, T0) =
M(F ). Notice that since D is initially consistent, then for each F ∈ Φ such that
there is an i-proposition in τi of the form “initially ¬F”, M(F ) = false.

Since D is occurrence-sparse and non-converging, each time point T ∈ Π has a
unique, maximal, finite (possibly empty) sequence T1, . . . , Tn associated with it
such that T1 ≺ . . . ≺ Tn ≺ T and such that for each Ti there is an h-proposition in
η of the form “A happens-at Ti”. Moreover, the unique such sequence associated
with Tn is T1, . . . , Tn−1. Therefore, it is possible to define an interpretation H of
D inductively as follows. For each T ∈ Π and F ∈ Φ,

1. H(F, T ) = M(F ) if n = 0 (i.e. the sequence associated with T is empty),

2. H(F, T ) = H(F, Tn) if n > 0 and there is no A ∈ ∆ such that there is both
an h-proposition in η of the form “A happens-at Tn” and a c-proposition in
γ either of the form “A initiates F when C” or of the form “A terminates
F when C” such that H satisfies C at Tn,

3. H(F, T ) = true if n > 0 and there is an A ∈ ∆ such that there is both an
h-proposition in η of the form “A happens-at Tn” and a c-proposition in γ
of the form “A initiates F when C” such that H satisfies C at Tn,

4. H(F, T ) = false if n > 0 and there is an A ∈ ∆ such that there is both an
h-proposition in η of the form “A happens-at Tn” and a c-proposition in γ
of the form “A terminates F when C” such that H satisfies C at Tn.

The fact that D is fluent-independent guarantees that no fluent/time-point pair
(F, T ) satisfies both of conditions 3 and 4 above. Hence H is well defined, and is
clearly a model of D.

B.3. Proof of Proposition 6.1

Proposition statement: Let D = 〈γ, η, τi〉 be an occurrence-sparse projection
domain description and let τob be an observation set. Then H is a model of
〈γ, η, τi ∪ τob〉 if and only if H is an i-model of D with τob.

Proof: Let D be written in the projection language E = 〈Π,�,∆,Φ〉, and let
T0 be the null element of Π.
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“If” half: Suppose H is an i-model of D with τob. Then by the definitions of an
model and of an i-model there exists some set τiε of i-propositions such that H is a
model of 〈γ, η, τi ∪ τiε ∪ τob〉. Hence, by the monotonicity of E as regards addition
of t-propositions to domain descriptions (see the remarks at the end of Section 2),
H is a model of 〈γ, η, τi ∪ τob〉.

“Only if” half: Suppose H is a model of 〈γ, η, τi ∪ τob〉. Let the set τH of i-
propositions be defined as follows. For each F ∈ Φ,

• initially F ∈ τH iff H(F, T0) = true

• initially ¬F ∈ τH iff H(F, T0) = false

Clearly H is a model of 〈γ, η, τi ∪ τH〉 and, by Proposition 2.1, 〈γ, η, τi ∪ τH〉 |= p
for each p ∈ τob, so that τH is an i-explanation for τob in D. Hence H is an i-model
of D with τob.

B.4. Proof of Proposition 7.4

Proposition statement:
Let P (Π,�) be an ordering program for E, and let D be a finite domain description.
Then for any fluent literal L of E and any T ∈ Π, if

LP [D,P (Π,�)] `SLDNF HoldsAt(λ(L), T )

then

D |= L holds-at T

The proof of this proposition which is given below uses induction on the ‘length’
length(α) of the SLDNF derivation α of HoldsAt(λ(L), T ), where length(α) is
defined in Definition B.1 below in terms of successful calls to HappensAt. It is
defined so that each SLDNF sub-derivation of a HoldsAt sub-goal within α (which
must have occurred within some call to Initiates, Terminates, PossiblyInitiates
or PossiblyTerminates) has ‘length’ less than the top-level derivation α.

Definition B.1. [length(α)] Let α be a successful SLDNF derivation of the goal
HoldsAt(λ(L), T ) in LP [D,P (Π,�)]. length(α) is defined inductively as follows:

length(α) = S +
∑

β∈Bα

size(β)

where

• S is the number of successful calls to HappensAt at the top level of α, i.e.
not called within a (negation-as-failure) finitely-failed subsidiary derivation
of α.

• Bα is the set of all finitely-failed subsidiary derivations from negative calls
(to ClippedBetween or AffectedBetween) appearing at the top level of α.

• size(β) = 0 if there is no successful call to HappensAt in any branch of β.
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• size(β) = 1 + max({length(α′) | α′ ∈ Aβ}) if there is a successful call to
HappensAt inside β, where Aβ is the set of all successful SLDNF derivations
of a HoldsAt goal, called as a negated sub-goal in one of the branches of β12.

Proof of proposition. Let α be a successful SLDNF derivation of the goal
HoldsAt(λ(L), T ) in LP [D,P (Π,�)]. We will use induction on length(α) to show
that, given the fixed point I+ as defined in Proposition 7.3, if LP [D,P (Π,�
)] `SLDNF HoldsAt(λ(L), T ) then if L = F for some F ∈ Φ then I+(F, T ) = true,
and if L = ¬F ′ for some F ′ ∈ Φ then I+(F ′, T ) = false. The proposition will then
follow directly from Proposition 7.3.

Base Case (length(α) = 0):
Clearly, if length(α) = 0 the query HoldsAt(Pos(F ), T ) (respectively
HoldsAt(Neg(F ′), T )) can succeed only on clauses (LP1a), (LP1b) or (LP4), as
success on (LP2) or (LP3) would require length(α) ≥ 1. We consider each of these
possibilities in turn:

(i) Success on (LP1a): Clearly, the success of Given(λ(L), T1) for some T1 < T
means that “L holds-at T1” ∈ D and so I+(F, T1) = true (respectively I+(F ′, T1) =
false) by rule (4) in the definition of F . Also, since the call β to AffectedBetween
fails with size(β) = 0, the unground sub-goal HappensAt(a, t2) fails, so that there
are no h-propositions in D. Hence there are no possible initiation points or possible
termination points between T1 and T . Therefore, since I+ is a fixed point of F ,
rule (1a) of F applies to give I+(F, T ) = true (respectively I+(F ′, T ) = false).

(ii) Success on (LP1b): The proof is exactly analogous to (i), but using rule (1b)
of F in place of rule (1a).

(iii) Success on (LP4): Trivially, I+(F, T ) = true (respectively I+(F ′, T ) =
false) by rule (4) in the definition of F .

Inductive Step (length(α) = n):
Suppose that the statement which we wish to prove is true for all SLDNF derivations
α′ of all HoldsAt goals such that length(α′) < n. The query HoldsAt(Pos(F ), T )
(respectivelyHoldsAt(Neg(F ′), T )) can succeed only on clauses (LP4), (LP1a), (LP1b)
or (LP2) (respectively (LP3)). Again, we consider each of these possibilities in turn:

(i) Success on (LP4): Trivially, I+(F, T ) = true (respectively I+(F ′, T ) = false)
by rule (4) in the definition of F .

(ii) Success on (LP1a): Since the sub-goals Given(λ(L), t1), t1 ≺ T succeed,
I+(F, T1) = true (respectively I+(F ′, T1) = false) by rule (4) in the definition
of F (where T1 is the binding to t1). It remains to show that there is no possible
initiation point or possible termination point for F (respectively F ′) between T1 and
T , so that rule (1a) in the definition of F may be applied. Trivially, if the sub-goals
HappensAt(a, t2), T1 � t2 and t2 ≺ T in the body of each ClippedBetween clause
collectively fail, there can be no such point. Now suppose these sub-goals succeed,
binding t2 to T2. Since the call AffectedBetween(T1, λ(L), T3) fails (so that the top
level goal succeeds on clause (LP1a)), both of the calls PossiblyInitiates(A,F, T2)
and PossiblyTerminates(A,F, T2) (respectively PossiblyTerminates(A,F ′, T2)
and PossiblyInitiates(A,F ′, T2)) fail. Hence, if there is a c-proposition in D of the

12We assume the convention that max(∅) = 0.
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form “A initiates F when C” or “A terminates F when C” (respectfully “A
terminates F ′ when C” or “A initiates F ′ when C”), there is a fluent literal
Lp ∈ C such that not HoldsAt(λ(Lp), T2) fails, i.e. HoldsAt(λ(Lp), T2) succeeds, say
with SLDNF derivation α′, where length(α′) < n. By the induction hypothesis,
if Lp = Fp then I+(Fp, T2) = false, and if Lp = ¬F ′

p then I+(F ′
p, T2) = true.

In either case, the c-proposition is therefore not applicable in the definition of a
possible initiation point or possible termination point of F (respectively F ′) relative
to I+. Hence rule (1a) in the definition of F applies to give I+(F, T ) = true
(respectively I+(F ′, T ) = false) as required.

(iii) Success on (LP1b): The argument in this case is exactly analogous to case
(ii), but using rule (1b) (instead of rule (1a)) in the definition of F .

(iv) Success on (LP2): In this case there exists a T1 ∈ Π, T1 ≺ T , such that
for some A ∈ ∆ the propositions “A happens-at T1” and “A initiates F when
{L1, . . . , Lk}” belong to D, and each of the calls HoldsAt(λ(L1), T1), . . . ,
HoldsAt(λ(Lk), T1) succeed. The successful SLDNF derivations of each of these
calls are of length strictly less than n due to the successful call of HappensAt(A, T1)
in the root SLDNF derivation of HoldsAt(Pos(F ), T ). Hence by the inductive hy-
pothesis, for each Li = Fi, I+(Fi, T1) = true, and for each Lj = ¬Fj , I+(Fj , T1) =
false. Hence T1 is an initiation point for F relative to I+. By an argument
exactly analogous to that in case (ii) above, we can show from the finite failure
of ClippedBetween(T1, Pos(F ), T ) that there are no possible termination points
for F between T1 and T , so that rule (2) in the definition of F applies to give
I+(F, T ) = true as required.

(v) Success on (LP3): The argument in this case is exactly analogous to case
(iv), but using rule (3) (instead of rule (2)) in the definition of F to show that
I+(F ′, T ) = false.

B.5. Proof of Proposition 8.1

Lemma B.1. Let E = 〈Π,�,∆,Φ〉 be a fluent-finite, non-converging projection lan-
guage, let P (Π,�) be an ordering program for E, and let D = 〈γ, η, τi〉 be a finite,
initially-consistent, fluent-independent projection domain description in E. Let
H be a model of D. Let M be a ground list term such that the ground query
Member(λ, M) succeeds iff there is a fluent constant F ′ ∈ Φ such that either
λ = Neg(F ′) and H(F ′, T0) = false or λ = F ′ and H(F ′, T0) = true. Then for
all F ∈ Φ and T ∈ Π,

EC[D, ∅, P (Π,�)] `SLDNF HoldsAt(M,Pos(F ), T )

if and only if H(F, T ) = true, and

EC[D, ∅, P (Π,�)] `SLDNF HoldsAt(M,Neg(F ), T )

if and only if H(F, T ) = false.

Proof. Let T and F be an arbitrary time-point and fluent constant. Since D
is finite and non-converging, T has a unique, maximal, finite (possibly empty)
sequence T1, . . . , Tn associated with it such that T1 ≺ . . . ≺ Tn ≺ T and such
that for each Ti there is an h-proposition in η of the form “A happens-at Ti”.
Proof is by induction on the length n of this sequence.
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Base Case:
Clearly, if n = 0 the queries HoldsAt(M,Pos(F ), T ) and HoldsAt(M,Neg(F ), T )
can succeed only on clause (EC7), and will succeed if and only if the queries
Member(Pos(F ),M) and Member(Neg(F ),M) succeed respectively. By the
second condition in Definition 2.10 of a model, H(F, T ) = H(F, T0), so that by
definition of the list term M the lemma is true in the base case.

Inductive Step:
Suppose that the lemma is true for all time-points whose associated sequences
are of length m < n. Then in particular it is true for Tn whose associated se-
quence is of length n− 1. There are three cases to consider:

Case one: There is both an h-proposition in η of the form “A happens-at
Tn” and a c-proposition in γ of the form “A initiates F when C” such that
H satisfies C at Tn. Hence by the third condition in the definition of a model,
H(F, T ) = true.

In this case, by the inductive hypothesis and the program definition of
Initiates, the query HoldsAt(M,Pos(F ), T ) will succeed on clause (EC8) with
the program variable t1 in the body of the clause bound to Tn. The query
HoldsAt(M,Neg(F ), T ) will fail on clause (EC7) because the sub-goal
ClippedBetween(M,T0, Neg(F ), T ) will succeed on clause (EC11) with the pro-
gram variable t2 in the body of the clause bound to Tn. The query
HoldsAt(M,Neg(F ), T ) will fail on clause (EC9) because by the inductive hy-
pothesis and fluent-independence of D it will fail on the sub-goal
Terminates(M,a, F, Tn) for all bindings of the variable a provided by solutions
to Happens(a, Tn). Hence in this case the lemma is true.

Case two: There is both an h-proposition in η of the form “A happens-at
Tn” and a c-proposition in γ of the form “A terminates F when C” such that
H satisfies C at Tn. Hence by the third condition in the definition of a model,
H(F, T ) = false.

In this case, by the inductive hypothesis and the program definition of Initiates,
the query HoldsAt(M,Neg(F ), T ) will succeed on clause (EC9) with the program
variable t1 in the body of the clause bound to Tn. The query
HoldsAt(M,Pos(F ), T ) will fail on clause (EC7) because the sub-goal
ClippedBetween(M,T0, Pos(F ), T ) will succeed on clause (EC10) with the pro-
gram variable t2 in the body of the clause bound to Tn. The query
HoldsAt(M,Pos(F ), T ) will fail on clause (EC8) because by the inductive hy-
pothesis and fluent-independence of D it will fail on the sub-goal
Initiates(M,a, F, Tn) for all bindings of the variable a provided by solutions to
Happens(a, Tn). Hence in this case the lemma is also true.

Case three: There is not both an h-proposition in η of the form “A happens-at
Tn” and a c-proposition in γ either of the form “A initiates F when C” or of
the form “A terminates F when C” such that H satisfies C at Tn. Hence by
the second condition in the definition of a model, H(F, T ) = H(F, Tn).

Clearly in this case, by the inductive hypothesis and by the program defini-
tions of Initiates and Terminates, the queries HoldsAt(M,Pos(F ), T ) and
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HoldsAt(M,Neg(F ), T ) can succeed on the clauses (EC8) and (EC9) respec-
tively only with the variable t1 in the body of each clause bound to some time-
point Ti < Tn. Moreover, by the same argument, for all T ′ < Tn, the queries
ClippedBetween(M,T ′, Pos(F ), T ) and ClippedBetween(M,T ′, Neg(F ), T ) suc-
ceed if and only if the queries ClippedBetween(M,T ′, Pos(F ), Tn) and
ClippedBetween(M,T ′, Neg(F ), Tn) succeed respectively. Hence the queries
HoldsAt(M,Pos(F ), T ) and HoldsAt(M,Neg(F ), T ) succeed if and only if the
queries HoldsAt(M,Pos(F ), Tn) and HoldsAt(M,Neg(F ), Tn) succeed respec-
tively. Hence in this case the lemma is also true.

Statement of Main Proposition: Let E = 〈Π,�,∆,Φ〉 be a fluent-finite, non-
converging projection language, let P (Π,�) be an ordering program for E, and let
D = 〈γ, η, τi〉 be a finite, initially-consistent, fluent-independent projection domain
description in E. Let τob be a finite observation set. Then for any fluent literal L
of E and any T ∈ Π,

EC[D, τob, P (Π,�)] `SLDNF IHoldsAt(λ(L), T )

if and only if

D, τob |=i L holds-at T

Proof:
Let an initial assignment of D be defined as a function M : Φ 7→ {true, false} such
that M(F ) = true whenever there is an i-proposition in D of the form “initially F”,
and M(F ) = false whenever there is an i-proposition in D of the form “initially
¬F”. Since D is initially consistent there exists at least one such function, and
by Propositions 2.1 and 5.1 there is a one-to-one correspondence between initial
assignments of D and models of D. We may therefore unambiguously refer to the
model H generated by the initial assignment M.

Clearly, successive solutions to the sub-goals

Setof(l, (Initially(l)), i),
Setof(f, (Fluent(f), not Initially(Pos(f)), not Initially(Neg(f))), p),
P ermutation(p, c), Append(c, i,m),

in clause (EC2) bind the variable m to an appropriate list representation of each
such initial assignment in turn. Given such a ground list term M ′, by Lemma B.1,
clause (EC6) and the definition of Forall, the goal

ConsistentWithObservations(M ′)

will succeed if and only if the model of D its corresponding initial assignment
generates is consistent with each o-proposition in τob. Hence successive solutions
to the goal IExplanation(m) bind the variable m to a list representation of each
initial assignment which generates an i-model of D with τob. Hence the proposition
is true by clause (EC1), Lemma B.1 and the definition of Forall.

C. AN ORDERING PROGRAM FOR 〈Π∆,≤∆〉

This appendix concerns the practical details of implementing Language A domains
as Event Calculus style Prolog programs in the manner of Section 8, given the
intermediate translations to E domain descriptions as defined in Section 3.
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The following ordering program P (Π∆,≤∆) uses the Situation Calculus style
terms

Result(An, Result(. . . , Result(A1, S0) . . .))

and

Branch(A′, Result(An, Result(. . . , Result(A1, S0) . . .)))

to represent the ∆-sequences “A1, . . . , An” and “A1, . . . , An, |A′|” respectively:

t1 ≺∆ t2 ← ListForm(t2, l2), Append([h|r], l1, l2), ListForm(t1, l1).

t �∆ t.

t1 �∆ t2 ← t1 ≺∆ t2.

ListForm(S0, []).

ListForm(Branch(a, t), [B(a)|l]) ← ListForm(t, l).

ListForm(Result(a, t), [R(a), B(a)|l]) ← ListForm(t, l).

In addition, the complete occurrence set of ∆ is represented by a single clause which
replaces all the domain-dependent ground HappensAt clauses of Definition 8.2:

HappensAt(a,Branch(a, t)).

The important feature of the above ordering program is that not only does it
correctly deal with ground queries of the form “T � T ′” (where T and T ′ are Situ-
ation Calculus style representations of ∆-sequences as described above), but it also
gives all correct solutions to queries of the form “t � T ′” (where t is a variable).
This enables the sub-goals in clauses (EC8)–(EC11) to be re-ordered as follows:

HoldsAt(m,Pos(f), t3)← (EC8′)
t1 ≺ t3, HappensAt(a, t1), Initiates(m,a, f, t1),
not ClippedBetween(m, t1, Pos(f), t3).

HoldsAt(m,Neg(f), t3)← (EC9′)
t1 ≺ t3, HappensAt(a, t1), Terminates(m,a, f, t1),
not ClippedBetween(m, t1, Neg(f), t3).

ClippedBetween(m, t1, Pos(f), t3)← (EC10′)
t2 ≺ t3, t1 � t2, HappensAt(a, t2), Terminates(m,a, f, t2).

ClippedBetween(m, t1, Neg(f), t3)← (EC11′)
t2 ≺ t3, t1 � t2, Happens(a, t2), Initiates(m,a, f, t2).

This re-ordering avoids problems that would otherwise arise from calls to HappensAt
with an unground second argument.


