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Abstract. We propose a framework that brings together two major
forms of default reasoning in Artificial Intelligence: applying default
property classification rules in static domains, and default persistence
of properties in temporal domains. Particular attention is paid to the
problem of qualification, central in default reasoning and in any at-
tempt to integrate different forms of this type of reasoning. We exam-
ine previous semantics developed independently for the two separate
forms of default reasoning, and illustrate how these naturally lead to
the solution that we propose in integrating the two. The resulting inte-
gration gives rise to domains where four different types of knowledge
interact and qualify each other in an intricate manner. Through a se-
ries of examples we show how this knowledge qualification leads to
intuitive conclusions. We prove that our framework of integration is
elaboration tolerant: extending a consistent domain with additional
action occurrences, causal laws, or static knowledge does not render
the domain inconsistent. The conclusions that are drawn are always
adjusted so as to gracefully accommodate the extra knowledge.

1 Introduction
Tweety is watching as we prepare to shoot Fred. We load the gun, we
wait, and then shoot the gun. Will we conclude that Tweety will fly
away as birds normally do when they hear a loud noise that shooting
a loaded gun normally produces? It depends on whether Tweety can
fly or not! If all we know about Tweety is that it is a bird, we then
expect to see it flying, but if we also know that it is a penguin we will
not expect to see it flying, even if we hear a loud noise produced by
the act of firing. What can we conclude if after the act of shooting we
observe that Tweety is still on the ground? That Tweety is not a typi-
cal bird, or that the gun did not make a loud noise when fired, or even
that the gun was not loaded at the time of shooting? Can we indeed
conclude anything at all after such an unexpected observation?

In this problem of “Fred meets Tweety” we need to bring together
two major forms of default reasoning that have been extensively stud-
ied on their own in A.I., but have rarely been addressed in the same
formalism. These are default property classification as applied to in-
heritance systems [5, 10], and default persistence central to temporal
reasoning in theories of Reasoning about Action and Change (RAC)
[4, 9, 11]. How can a formalism synthesize the reasoning encom-
passed within each of these two forms of default reasoning?

Central to these two (and indeed all) forms of default reasoning is
the qualification problem: default conclusions are qualified by infor-
mation that can block the application of the default inference. One
aspect of the qualification problem is to express within the theory the
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knowledge required to properly qualify and block the default infer-
ence under exceptional situations. This endogenous form of qualifi-
cation is implicit in the theory, driven by auxiliary observations that
enable the known qualifying information to be applied. For example,
known exceptional classes in the case of default property inheritance,
or known action laws (and their ramifications) in the case of default
persistence, qualify respectively these two forms of default reasoning.

But this task of completely representing within a given theory the
qualification knowledge is impractical and indeed undesirable, as we
want to jump to default conclusions based on a minimal set of infor-
mation available. We, therefore, also need to allow for default con-
clusions to be qualified unexpectedly from observed information that
is directly (or explicitly) contrary to them. In this exogenous form of
qualification the theory itself cannot account for the qualification of
the default conclusion, but our observations tell us explicitly that this
is so and we attribute the qualification to some unknown reason.

Recent work [6, 12] has shown the importance for RAC theories
to properly account for these two forms of qualification, so that an
exogenous qualification is employed only when observations can-
not be accounted for by an endogenous qualification of the causal
laws and default persistence. In our problem of integrating the de-
fault reasoning of property classification into RAC, this means that
we need to ensure that the two theories properly qualify each other
endogenously, so that the genuine cases of exogenous qualification
can be correctly recognized. In particular, we study how a static de-
fault theory expressing known default relationships between fluents
can endogenously qualify the reasoning about actions and change, so
that the application of causal laws and default persistence is properly
adjusted by this static theory. In the Fred meets Tweety scenario de-
scribed above, for example, the normal default that “penguins cannot
fly” would act as an implicit qualification for the causal law that “a
loud noise causes birds to fly”, but not so when either Tweety is not
known to be a penguin, or it is known to be a super-penguin (super-
penguins being an exception to the default that penguins cannot fly).

More generally, we study how four different types of information
present in such an integrated framework of RAC interact and qualify
each other: (i) information generated by default persistence, (ii) ac-
tion laws that qualify default persistence, (iii) static default laws of
fluent relationships that can qualify these action laws, and (iv) obser-
vations that can qualify any of these. This hierarchy of information
comes full circle, as the bottom layer of default persistence of obser-
vations (which carry the primary role of qualification) can also qual-
ify the static theory. Hence, in our proposed integrated framework,
temporal projection with the observations help to determine the ad-
missible states of the static default theory. In turn, admissible states
qualify the actions laws and the temporal projection they generate.

Section 2 examines the qualification problem as studied in the two
separate domains and its form for the proposed integration. Section 3
gives the formal semantics of the integration framework and the cen-
tral result that ensures its elaboration tolerance. Section 4 briefly dis-
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cusses related and future work.

2 Knowledge Qualification
Through a series of examples, we present in this section the issues
that arise when examining the qualification of knowledge, and place
in context the various problems and solutions considered so far. We
remark that we generally use the term qualification in a broader sense
than that used in the context of Reasoning about Action and Change.

Here and throughout the paper we employ the syntax of the ac-
tion description language ME [6] for temporal domain descriptions,
and a pseudo-syntax based on that of propositional logic for repre-
senting static theories describing default or strict domain constraints.
Strict static knowledge is represented in propositional logic. Default
static knowledge is represented in terms of default rules of the form
“φ ! ψ”, where φ, ψ are propositional formulas. In this pseudo-
syntax we specify the relative strength between two default rules by
statements of the form “rule (i) overrides rule (j)”. Formulas which
contain variables are a shorthand representation of all formulas ob-
tained by substituting the variables over a finite domain of constants.

We do not reproduce here the formal syntax for these theories.
In particular, the formal semantics of our approach, given in the next
section, will not depend on the specific form of the static theories, and
different frameworks such as Default Logic [10] or argumentation
[1] can be used. In this section it is sufficient for the reader to use the
informal reading of the theories for their semantics.

One of the first knowledge qualification problems formally studied
in A.I. relates to the Frame Problem (see, e.g., [11]) of how the causal
change properly qualifies the default persistence; see Figure 1(a). In
the archetypical Yale Shooting Problem domain [4], a turkey named
Fred is initially alive, and one asks whether it is still alive after load-
ing a gun, waiting, and then shooting Fred. The lapse of time cannot
cause the gun to become unloaded. Default persistence is qualified
only by known events and known causal laws linked to these events.

The consideration of richer domains gave rise to the Ramification
Problem (see, e.g., [7]) of how indirect action effects are generated
and qualify persistence; see Figure 1(b). Static knowledge express-
ing relationships (or domain constraints) between different properties
was introduced to encode these indirect effects. Then, in early solu-
tions to the Ramification Problem a direct action effect would cause
this static knowledge to be violated, unless a minimal set of indirect
effects were also assumed in order to maintain consistency [7, 8].
Thus, given the static knowledge that “dead birds do not walk”, the
shooting action causing Fred to be dead would also indirectly cause
Fred to stop walking, thus qualifying the persistence of Fred walking.

Subsequent work examined default causal knowledge, bringing to
focus the Qualification Problem (see, e.g., [12]) of how such default
causal knowledge is qualified by domain constraints; see Figure 1(c).
In some solutions to the Qualification Problem, static knowledge
within the domain description was identified as the knowledge that
endogenously qualified causal knowledge, as opposed to as an aid
to causal knowledge in qualifying persistence [6]. The Ramification
Problem was now addressed by the explicit addition of causal laws,
and the development of a richer semantics to account for their inter-
action. The following example domain illustrates a typical case.

Shoot(x) causesFiredAt(x)
FiredAt(x) causes¬Alive(x)
¬Alive(x) causes¬Walks(x)
Alive(Fred) holds-at1
Walks(Fred) holds-at1
Shoot(Fred) occurs-at2

static theory:

¬(¬Alive(x) and Walks(x))
¬(GunBroken and FiredAt(x))

Fix a model implying “GunBroken holds-at1”. Then we reason
that the static theory (of domain constraints) qualifies the direct effect
of the action “Shoot(Fred)” on “FiredAt(Fred)”, and hence it also
prevents the indirect effect “¬Walks(Fred)” from being triggered.
Thus, the default persistence of Fred walking is not qualified, and we
conclude that Fred keeps walking. If, on the other hand, a model im-
plies “¬GunBroken holds-at1”, then neither causal law is qual-
ified by the static theory. Note that the effect “¬Alive(Fred)” is not
qualified despite the observation “Walks(Fred) holds-at1”; the
causal knowledge “¬Alive(Fred) causes¬Walks(Fred)” provides
an escape route to this qualification. Hence, the default persistence of
“Walks(Fred)” is qualified, and Fred is not walking after time-point
2. Models derived according to either of the two cases are valid.

Perhaps the next natural step was realizing that observations after
action occurrences also qualify causal change when the two conflict,
a problem known as the Exogenous Qualification Problem (see, e.g.,
[6]); see Figure 1(d). Consider, for example, the previous domain
extended by the observation “¬FiredAt(Fred) holds-at4”. Even
though the effect of the “Shoot(Fred)” is not, as we have seen, neces-
sarily qualified by the static theory alone, the explicit observation that
the action’s direct effect is not produced leads us to conclude that it
was necessarily qualified. The interaction with the endogenous qual-
ification of the causal laws by the static theory comes from the fact
that “GunBroken” together with the static theory qualifies the action
law, and provides, thus, an explanation of the observed action failure.
So, if we wish to minimize the unknown exogenous cases of quali-
fication, we would conclude that “GunBroken” holds, as this is the
only known way to endogenously account for the observed failure.

Independently of the study of qualification in a temporal setting,
another qualification problem was examined in the context of Default
Static Theories [10] that consider how observed facts qualify default
static knowledge; see Figure 1(f). In the typical domain, represented
below, one asks whether a bird named Tweety has the ability to fly,
when the only extra given knowledge is that Tweety is a bird.

Bird(Tweety)

static theory:

(1) Penguin(x) ! ¬CanFly(x)
(2) Penguin(x) → Bird(x)
(3) Bird(x) ! CanFly(x)
rule (1) overrides rule (3)

In the absence of any explicit information on whether Tweety has the
ability to fly, the theory predicts “CanFly(Tweety)”. Once extended
with the fact “Penguin(Tweety)”, however, “CanFly(Tweety)” is re-
tracted. The same happens if instead of “Penguin(Tweety)”, the fact
“¬CanFly(Tweety)” is added. In either case the static theory is qual-
ified, and yields to explicit facts or stronger evidence.

2.1 Putting Fred and Tweety in the Same Scene

In this paper we investigate temporal domains that incorporate (pos-
sibly) default static theories. The technical challenge lies in under-
standing how the four types of knowledge in a domain, three of which
may now be default, interact and qualify each other; see Figure 1(e).

We view observations as part of the non-defeasible part in static
default theories, thus primarily taking the role of qualifying the static
knowledge, which then in turn will qualify the causal knowledge as
described above. Due to the temporal aspect of a domain, however, a
point-wise interpretation of observations as facts in the static default
theory is insufficient, even in domains with no causal laws and, thus,
strict persistence. Consider a temporal domain with the observations
“Penguin(Tweety) holds-at1” and “Bird(Tweety) holds-at4”,



persistence

causal change

static knowledge

observations

persistence persistence persistence

causal change causal change causal change

static knowledge static knowledge static knowledge

observations observations

static knowledge

persistence

causal change

Frame
Problem(a) Ramification

Problem(b) Qualification
Problem(c) Exogenous 

Qual. Problem(d) [this work](e)
Default

Static Theories(f)

Figure 1. Various solutions to the problem of knowledge qualification. Arrows point from the type of knowledge that qualifies to the type of knowledge that is
being qualified. Leaf nodes in the graphs correspond to strict knowledge, and internal nodes correspond to default knowledge (qualified by its children nodes).

and a static theory as in the Tweety example above. By viewing each
time-point in isolation, we can only conclude that “CanFly(Tweety)”
holds at time-point 4, but not at time-point 1. This cannot be extended
into a temporal model without violating the (strict) persistence. In-
stead, “Penguin(Tweety) holds-at1” should persist everywhere,
as if “Penguin(Tweety)” was observed at every time-point. These
virtual (or assumed) observations then qualify the static theory at
every time-point, implying “¬CanFly(Tweety)”. Analogously, if
the observation “CanFly(Tweety) holds-at7” is included in the
domain, the observation persists everywhere and qualifies the default
conclusion of the static theory that the penguin Tweety cannot fly.

Assume, now, that observations and persistence have appropriately
qualified the static theory at each time-point T , so that the theory’s
default extensions (models) determine the set of admissible states at
T . Through these sets of admissible states, the qualified static knowl-
edge then qualifies the change that the theory attempts to generate
through its causal knowledge. Given a time point T , it is natural
that causal knowledge will be qualified by admissible states as de-
termined immediately after T . This is illustrated in the next domain.

ClapHands causesNoise
Noise causesFly(x)
Noise causes¬Noise
Spell(x) causesCanFly(x)
Penguin(Tweety) holds-at1
ClapHands occurs-at3
Spell(Tweety) occurs-at5
ClapHands occurs-at7

static theory:

(1) Penguin(x) ! ¬CanFly(x)
(2) Penguin(x) → Bird(x)
(3) Bird(x) ! CanFly(x)
rule (1) overrides rule (3)
(4) Spell(x) ! CanFly(x)
rule (4) overrides rule (1)
(5) ¬CanFly(x) →¬Fly(x)

The default persistence of “Penguin(Tweety) holds-at1” implies
that “¬CanFly(Tweety)” holds in each set of admissible states up to
time-point 5. In particular, this conclusion holds immediately after
“ClapHands occurs-at3”, and qualifies through the static theory
the causal generation of “Fly(Tweety)” by the action “ClapHands”.

Intuitively, we expect “Spell(Tweety) occurs-at5” to override
the static theory’s default conclusion “¬CanFly(Tweety)” from hold-
ing at time-points following time-point 5. Note, however, that up to
now we have assumed that the static default theory is stronger than
the causal knowledge, and that it qualifies any change implied by the
latter. But this is not the case now, since we wish to specify that some
causal information is stronger than the static default theory. How,
then, can we ensure that the causal generation of “CanFly(Tweety)”
by “Spell(Tweety)” will not be qualified in this particular case?

This requirement is accommodated by including the particular
causal law of interest “Spell(x) causesCanFly(x)” as a default rule
“Spell(x) ! CanFly(x)” in the static theory, and giving this rule pri-

ority over other default rules of the static theory with the contrary
conclusion.4 The action occurrence “Spell(Tweety)” is also auto-
matically included as a fact in the default theory, so that together
with the default rule they imply “CanFly(Tweety)”. This conclusion
holds in the set of admissible states associated with the time-point
at which the action “Spell(Tweety)” occurred, namely time-point 5,
which then allows the action’s effect “CanFly(Tweety)” to override
the static theory’s usual default conclusion “¬CanFly(Tweety)”.

Such “strong” actions5 (like “Spell(x)”) take the world out of the
normal default state (where penguins cannot fly) into an exceptional,
from the point of view of the static theory, state (where Tweety can
fly). The rest of the default conclusions of the static theory still apply
in this exceptional state (following time-point 5), conditioned on the
exception (that Tweety can fly) that the “strong” action has brought
about. This exception holds until some later action occurrence (of
“UndoSpell(Tweety)”) brings the world back into its normal state.
In our domain, then, the action “ClapHands occurs-at7” is not
qualified, and Tweety (a penguin able to fly) flies after time-point 7.

Consider now replacing “Spell(Tweety) occurs-at5” in the
domain above with the observation “Fly(Tweety) holds-at5”.
By persistence, this observation qualifies the static theory so that
“Fly(Tweety)” holds in each set of admissible states at time-points
strictly after 3. Note that it is not known how the static theory is qual-
ified, but only that it is somehow exogenously qualified. This does not
hold for time-points up to and including time-point 3, since the oc-
currence of the action “ClapHands” at time-point 3 can now account
for the change from “¬Fly(Tweety)” by qualifying its persistence, as
the static theory does not now qualify “ClapHands occurs-at3”.
Note that the interpretation of “Fly(Tweety) holds-at5” is that
Tweety flies for some exogenous reason (e.g., it is on a plane). If an
action at time-point 6 were to cause Tweety to stop flying, then this
would release the static theory’s default conclusion that penguins do
not fly, so that the subsequent action “ClapHands occurs-at7”
would be qualified and would not cause Tweety to fly again.

A somewhat orthogonal question to the one of when causal knowl-
edge is qualified by the static theory, is that of how this qualification
happens. Assume we wish to know if Fred is alive after firing at it.
In the following domain one concludes that Fred is dead from time-
point 2 onwards, and also that Tweety is flying. What happens, how-
ever, if one observes “¬Fly(Tweety) holds-at4”? Can one still
conclude that Fred is dead? Interestingly enough, the answer depends
on why Tweety did not fly after Fred was shot! The observation by it-

4 We remind the reader that our goal here is not to provide semantics for static
theories, and that using an informal reading suffices for their semantics.

5 “Strong” actions are domain-dependent, and it is the domain designer’s task
to identify them and to extend the static theory with appropriate extra rules.



self does not explain why the causal laws that would normally cause
Tweety to fly were qualified.

Shoot(x) causesFiredAt(x)
FiredAt(x) causes¬Alive(x)
Shoot(x) causesNoise
Noise causesFly(x)
Noise causes¬Noise
Alive(Fred) holds-at1
Turkey(Fred) holds-at1
Bird(Tweety) holds-at1
Shoot(Fred) occurs-at2

static theory:

(1) Penguin(x) or Turkey(x)
! ¬CanFly(x)

(2) Penguin(x) or Turkey(x)
→ Bird(x)

(3) Bird(x) ! CanFly(x)
rule (1) overrides rule (3)
(4) ¬CanFly(x) →¬Fly(x)

An endogenous explanation would be that Tweety is a penguin, and
“Fly(Tweety)” is qualified from being caused. An exogenous expla-
nation would be that Tweety could not fly due to exceptional cir-
cumstances (e.g., an injury). In either case we would presumably
conclude that Fred is dead. However, Tweety might not have flown
because the shooting action failed to cause a noise, or even because
the shooting action failed altogether. Different conclusions on Fred’s
status might be reached depending on the explanation.

3 Formal Semantics of Integration
Due to the cyclical nature of the qualifications amongst different
types of knowledge, we develop the formal semantics in two steps,
starting from the temporal semantics. Thus, we start by assuming that
the static theory is somehow qualified, and do not, for now, examine
how this is achieved. This effectively breaks the cycle of qualifica-
tions, and reduces Figure 1(e) to Figure 1(c).We will then base our
semantics on that of ME [6], from which we borrow the syntax.

A state is a complete and consistent set of positive or negative
fluent literals in our problem domain language. A state change is a
pair of states, comprised of an initial state, and a resulting state.

Definition 1 (Causal Node) A causal node (or simply node) is a tu-
ple N = 〈S, B, P 〉, where S is a state, B is a set of action constants,
and P is an active process log. Let A be a set of state changes. A
pair 〈〈S1, B1, P1〉, 〈S2, B2, P2〉〉 of causal nodes is an admissible
change under A iff 〈S1, S2〉 is a state change in A.

Consider the domain description D∗ of the last example in the
previous section, which will serve as a running example in this sec-
tion. Intuitively, then, one possible causal node associated with time-
point 2 in D∗ is N∗

0 = 〈S∗
0 , B∗

0 , ∅〉, where B∗
0 = {Shoot(Fred)},

and the literals ¬FiredAt(Fred), Alive(Fred), Turkey(Fred), ¬Noise,
Bird(Tweety) are amongst those satisfied by (or belonging to) S∗

0 .
A process proc(L) is triggered at a causal node 〈S, B, P 〉 w.r.t. D

iff the body C of a causal law “C causesL” holds in S ∪B. When
the literal L is positive F (resp., negative ¬F), the triggered process
proc(F) = ↑F (resp., proc(¬F) = ↓F) is initiating (resp., terminat-
ing). All processes Pt triggered at a causal node 〈S, B, P 〉 become
part of the active process log, and the process successor of 〈S, B, P 〉
is the (unique) causal node 〈S, ∅, P ∪Pt〉. In the example D∗ above,
the processes ↑FiredAt(Fred) and ↑Noise are (the only ones) triggered
at N∗

0 w.r.t. D∗, since the action constant in the bodies of the causal
laws “Shoot(x) causesFiredAt(x)” and “Shoot(x) causesNoise”
belongs in B∗

0 when x = Fred. Thus, the process successor of N ∗
0

w.r.t. D∗ is N∗
1 = 〈S∗

0 , ∅, {↑FiredAt(Fred), ↑Noise}〉.
Processes in the active process log get resolved. A causal node

〈S′, ∅, P ′〉 is a resolvant of a causal node N = 〈S, ∅, P 〉 iff either
(i) S′ = S and P ′ = P = ∅, or (ii) P ′ ⊂ P , and S′ differs from
S on exactly those fluents in P \ P ′, and is such that it satisfies F

(resp., ¬F) when an initiating (resp., terminating) process for F is
in P \ P ′. Any non-empty subset of the processes can be resolved
in a single step, so that multiple resolvants might be obtained. This
captures the possibly asynchronous resolution of processes — unre-
solved processes remain in the process log and get resolved later. In
our example, N∗

2 = 〈S∗
2 , ∅, {↑Noise}〉 is one of the resolvants of

N∗
1 , where S∗

2 differs from S∗
0 only in that it satisfies FiredAt(Fred).

Definition 2 (Causal Chain) Let D be a domain description, A a
set of state changes, and N0 a causal node. A causal chain rooted at
N0 w.r.t. D is a (finite) sequence N0, N1, . . . , N2n of causal nodes
such that for each k : 0 ≤ k ≤ n − 1, N2k+1 is a process successor
of N2k w.r.t. D and N2k+2 is a resolvant of N2k+1, and such that
every resolvant of the process successor of N2n has the same state
as N2n. A causal chain N0, N1, . . . , N2n is admissible under A up
to N2k iff the pair

〈
N2(j−1), N2j

〉
of causal nodes is an admissible

change under A for every j : 1 ≤ j ≤ k ≤ n, and either (i) k = n;
or (ii)

〈
N2k, N2(k+1)

〉
is not an admissible change under A. In the

former case the causal chain is fully admissible under A.

Causal chains capture, thus, the triggering and resolution of (in-
direct) effects, until the state stabilizes. One causal chain rooted at
N∗

0 w.r.t. D∗ is N∗
0 , . . . , N∗

6 , where: P ∗
3 = {↑Noise, ↓Alive(Fred)};

S∗
4 differs from S∗

2 only in that it satisfies Noise, ¬Alive(Fred);
P ∗

5 = {↓Noise, ↑Fly(Fred), ↓Alive(Fred), ↑Fly(Tweety)}; and S∗
6 dif-

fers from S∗
4 only in that it satisfies ¬Noise, Fly(Fred), Fly(Tweety).

The causal chain does not continue further; the process successor N ∗
7

of N∗
6 contains in its process log P ∗

7 only the process ↓Alive(Fred),
and all resolvants of N∗

7 have the same state as N∗
6 .

Each causal chain corresponds to a possible evolution path of the
state of affairs at a fixed time point, as implied by a domain’s causal
knowledge. The static knowledge determines, through the notion of
admissible change that it defines, whether a change between consec-
utive states in an evolution path is indeed allowed. If all possible evo-
lution paths contain a non-admissible change, then the static theory
suggests that the causal knowledge of the domain is flawed, and that
the evolution of the state of affairs has stopped at an unknown point
before reaching a non-admissible change (Condition (ii) below).

Definition 3 (Proper Causal Descendant) Let D be a domain de-
scription, A a set of state changes, and N0, N two causal nodes. N
is a proper causal descendant of N0 w.r.t. D under A iff either:

(i) there exists a causal chain N0, N1, . . . , N2n rooted at N0 w.r.t. D
that is fully admissible under A such that N = N2n; or

(ii) there exists no causal chain rooted at N0 w.r.t. D that is fully ad-
missible under A, and there exists k : 0 ≤ k ≤ n−1 and a causal
chain N0, N1, . . . , N2n rooted at N0 w.r.t. D that is admissible
under A up to N2k such that N = N2j for some j : 0 ≤ j ≤ k.

It can be verified that the causal node N∗
6 defined earlier is con-

tained in each causal chain rooted at N∗
0 w.r.t. D∗, with S∗

6 satis-
fying, amongst others, the literals Fly(Fred) and Turkey(Fred). Intu-
itively, the set A of state changes that corresponds to the static theory
of D∗ includes no state change with a resulting state that simultane-
ously satisfies Fly(x) and Turkey(x). Hence, no pair 〈N ∗, N∗

6 〉 is an
admissible change under A, and, thus, no causal chain rooted at N ∗

0

is fully admissible under A. So, Condition (ii) of Definition 3 is used.
We define now the temporal projection component of the seman-

tics. Let Π be the set of time-points, and Φ the set of positive or neg-
ative fluent literals in the language. We assume an initial time-point
Tin " min(Π), but do not assume discreteness or total ordering. Let
L denote the negation of L ∈ Φ; thus, if L = ¬F , then L = F .



An interpretation H is a mapping of each fluent at each time-point
to a truth-value. The state S(H, T ) at T w.r.t. H is the restriction of
H to the time-point T . The event base B(D, T ) at T w.r.t. D is the
set of action constants {A | “A occurs-atT” ∈ D}. An admissi-
bility requirement α maps each time-point to a set of state changes.

A state S is stable in H at T w.r.t. D under α iff there exists a
proper causal descendant 〈S, ∅, P 〉 of 〈S, ∅, ∅〉 w.r.t. D under α(T ).
So, stable states do not spontaneously change, and take into account
the causal knowledge and the admissibility requirements — the ef-
fects of any processes that could have been triggered have already be
taken into account, so that no other change is “pending”. We ask that
the initial state at Tin in a temporal model of D satisfies this require-
ment. The change that occurs at each time-point T is determined by a
proper causal descendant 〈S, ∅, P 〉 of 〈S(H, T ), B(D, T ), ∅〉 w.r.t.
D under α(T ). The change S \ S(H, T ) that is brought about in the
state of affairs is a change set of H at T w.r.t. D under α.

Definition 4 (Externally Qualified Model) Let D be a domain de-
scription, H an interpretation, c : Π → 2Φ a mapping, and αst, αch

two admissibility requirements. H is an externally qualified model
of D under 〈αst, αch〉 supported by c iff the following hold:

(1) S(H, Tin) is stable w.r.t. D under αst(Tin);
(2) for every T ∈ Π, c(T ) is a change set of H at T w.r.t. D under αch;
(3) for every L ∈ Φ, and every T1, T3 ∈ Π s.t. T1 ≺ T3:

(i) If H satisfies L at T1, and there does not exist T2 ∈ Π s.t.
T1 - T2 ≺ T3 and L ∈ c(T2), then H satisfies L at T3;

(ii) If L ∈ c(T1), and there does not exist T2 ∈ Π s.t. T1 ≺ T2 ≺
T3 and L ∈ c(T2), then H satisfies L at T3.

Hence, the world is initially in an admissible state of the static de-
fault theory (Condition (1)), and it changes in an admissible manner
(Condition (2)) so that: literals not caused to change persist (Condi-
tion (3.i)), and caused change is realized (Condition (3.ii)).

3.1 Defining Admissibility w.r.t. a Static Theory

The static theory determines the admissibility requirements αst, αch

after being qualified by the combined effect of observations and per-
sistence. We model this effect through virtual observations, assumed
to be part of a domain description D despite not being explicitly ob-
served. Adding a set (Q) of such observation in D results in a virtual
extension of D (by Q). If D1, D2 are virtual extensions of D by
Q1, Q2, respectively, and Q1 ⊂ Q2, then D1 is preferred over D2.

The domain description D∗
1 = D∗ is a virtual extension of D∗ by

Q∗
1 = ∅. The domain description D∗

2 obtained from D∗ by adding
the observations in Q∗

2 = {“¬Fly(Tweety) holds-atT” | T > 2},
is a virtual extension of D∗ by Q∗

2. Clearly, D∗
1 is preferred over D∗

2 .
Note that virtual observations are not meant to capture abnormal

situations. Instead, a virtual observation at Tvrt is simply interpreted
as the persistence to Tvrt of a known observation at Tobs, providing
a means for the known observation at Tobs to qualify the static the-
ory at Tvrt. The minimization of virtual observations guarantees that
known observations persist only as needed to achieve this effect.

Definition 5 (Internally Qualified Model) An internally qualified
model M of a domain description D′ is an externally qualified model
of D′ under 〈αst, αch〉 supported by c, iff for every T ∈ Π,

(1) 〈S1, S2〉 ∈ αst(T ) iff S1, S2 are models of the static theory in D′

given as non-defeasible facts the literals observed in D′ at T ;

(2) 〈S1, S2〉 ∈ αch(T ) iff S2 is a model of the static theory in D′

given as non-defeasible facts (i) the literals observed in D′ at each
T ′ ∈ (T, T + ε), for some ε > 0; (ii) the literals satisfied by both
S1 and S2; and (iii) the action constants in B(D′, T ).

A static theory’s models map the theory’s propositional symbols to
truth-assignments that are compatible with the theory’s default exten-
sions. The semantics of these models is treated as a black-box, about
which we only assume that a consistent set of input facts is satisfied
by all (if any) models of the static theory; this rather benign assump-
tion holds in typical default static theory semantics (e.g., [1, 10]).

Due to the existence of causal laws that may override the static
knowledge, we distinguish between two admissibility requirements:
(1) αst ensures static admissibility at the initial state of affairs, and
(2) αch ensures admissible change thereafter, taking into account
previously caused exceptions (Condition (2.ii)). The two can be re-
duced to one if causal laws never override the static knowledge.

An internally qualified model of D∗
2 , for instance, would imply

“¬Fly(Tweety) holds-atT” for every time-point T > 2. Indeed,
since “¬Fly(Tweety) holds-atT” appears in D∗

2 for T > 2, then
αch(T ) only contains state changes with a resulting state satisfying
¬Fly(Tweety). The overall effect, thus, is that the virtual observations
in D∗

2 qualify the causal knowledge so that Tweety does not fly.

Definition 6 (Model) A model M of a domain description D is an
internally qualified model of a virtual extension D′ of D such that
there exists no virtual extension D′′ of D that has an internally qual-
ified model, and such that D′′ is preferred over D′.

The virtual extension D∗
1 of D∗ has an internally qualified model,

where from time-point 2 onwards Fred is dead and not flying, while
Tweety is flying. The virtual extension D∗

2 of D∗ also has an inter-
nally qualified model, where Tweety is not flying. The preference of
D∗

1 over D∗
2 , and over any other virtual extension of D∗, implies that

the internally qualified models of D∗
1 are also the models of D∗.

Note, in particular, that since virtual extensions of a domain are
expected to have internally (and hence externally) qualified models,
virtual observations in these virtual extensions are forced to respect
the default persistence, as per Condition (3.i) of Definition 4.

The central role of observations in our semantics, as the knowl-
edge that bootstraps reasoning, is consistent with Figure 1(e). Indeed,
since every other type of knowledge is amenable to qualification, the
following strong elaboration tolerance result can be established.

Theorem 1 (Elaboration Tolerance Theorem) Let D be a consis-
tent domain, D′ a domain with no observations, and D ∪ D′ their
union, where the static theories of D and D′ are merged together to
form the single static theory of D ∪ D′. We assume that the static
theory of D∪D′ is consistent. Then, D∪D′ is a consistent domain.

Proof (sketch): Let Dext be the virtual extension of D by
{“L holds-atT” | S(M, T ) satisfies L}, for M a model of D.
M can be shown to be an internally qualified model of Dext ∪ D′,
which is a virtual extension of D ∪ D′. This implies the claim. #

4 Concluding Remarks
We have proposed an integrated formalism for reasoning with both
default static and default causal knowledge, two problems that have
been extensively studied in isolation from each other. Our proposed
solution applies to domains where the static knowledge is “stronger”
than the causal knowledge, and where it is appropriate for the former



to qualify excessive change caused by the latter. Of course, these as-
sumptions might not be appropriate for every domain. Our semantics
already allows for “strong” causal laws to override static knowledge.

Our agenda for future research includes further investigation of
such “strong” causal knowledge (constituting a different configura-
tion in Figure 1.(c)), and of how “strong” static knowledge can gener-
ate extra (rather than block) causal change. We would also like to de-
velop computational models corresponding to the theoretical frame-
work presented here, using, for example, ideas from argumentation.

Although we are not aware of any previous work explicitly in-
troducing Fred to Tweety, much work has been done on the use of
default reasoning in inferring causal change. Of particular note in
the context of the qualification problem are [3, 12]. An interesting
approach to distinguishing between default and non-default causal
rules in the context of the Language C+ is given in [2].
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