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The openings and shuttings of individual ion channel molecules can be described by
a Markov process with discrete states in continuous time. The predicted distributions
of the durations of open times, shut times, bursts of openings, etc., are all described,
in principle, by mixtures of exponential densities. In practice it is usually found that
some of the open times, and/or shut times, are too short to be detected reliably. If
a fixed dead-time 7 is assumed then it is possible to define, as an approximation to
what is actually observed, an ‘extended opening’ or e-opening which starts with an
opening of duration at least 7 followed by any number of openings and shuttings, all
the shut times being shorter than 7; the e-opening ends when a shut time longer than
7 occurs. A similar definition is used for e-shut times. Several authors have derived
approximations to the distribution of durations of e-openings and e-shuttings. In this
paper the exact distributions are derived. They are defined piecewise over the
intervals 7 to 27, 27 to 37,..., etc., the distribution in each interval being a sum of
products of polynomials in ¢ with exponential terms. The number of terms is finite,
but increases as intervals get further from ¢ = 7. An asymptotic form for large ¢ (for
which the exact solution becomes difficult to compute) is given for the two state case.
The exact solution is compared with several approximations, some of which are
shown to be good enough for use in most practical applications.

1. The nature of the problem
Currents through ion channels

Electric currents that flow through cell membranes are of great importance for a wide
range of biological functions, for example conduction of nerve impulses, transmission
of nerve impulses across synaptic junctions, the control of secretion and many others.
These currents are carried by a flow of ions (such as Na*, K* and Ca?"), but the cell
membrane itself is impermeable to such charged particles. The ions flow through
specialized protein pores embedded in the cell membrane; these are known as ton
chanmnels. The opening and shutting of ion channels is controlled, for example, by the
membrane potential or by the concentration of a neurotransmitter substance such as
acetylcholine. Until recently it was possible, as in most of chemistry and physics, to
measure only the responses of a large ensemble of molecules (channels). However, in
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Figure 1. (¢) A short section from a recording of nicotinic acetylcholine receptor-channels in frog
muscle endplate, activated by 100 nM suberyldicholine. Reproduced from Colquhoun & Sakmann
(1985) with permission. (b) An individual channel activation on an expanded timescale.

1976 Neher & Sakmann invented a method of measuring the current through one
individual channel molecule. This patch clamp method (Hamill et al. 1981) has
revolutionized the study of ion channel function.

Behaviour of single molecules

Individual molecules do not behave in the deterministic manner expected (as an
excellent approximation) of large ensembles of molecules. In conventional deter-
ministic chemical kinetics the law of mass action usually describes observed
phenomena well. Tt is implicit in the application of this law that the system being
studied can exist in a small number of discrete interconvertible states, the rate of
conversion from one state to another being proportional to the products of the
concentrations (or activities) of the reactants involved. On the scale of individual
molecules this is equivalent to saying that molecular species behave like a Markov
process with discrete states in continuous time. Figure 1a shows a short section from
a long experimental record ; openings of the channel, during which a current of about
4 pA flows, are shown as downward deflections. Notice that the openings all have
much the same amplitude (in this case), but randomly variable durations.

In macroscopic kinetics it is usual to apply a further constraint known as the
principal of microscopic reversibility or detailed balance. On the single-molecule
scale this is equivalent to the stochastic process being time-reversible (see, for
example, Colquhoun & Hawkes 1982, pp. 24-25).

The problem of resolution

Single channel recording has a much better time resolution than previous methods,
so it has revealed rapid events in channel function that were previously unsuspected
(Colquhoun .& Sakmann 1985). Movements within protein molecules take place on a
very wide range of timescales, from femtoseconds to seconds (McCammon & Harvey
1987). It is not, therefore, surprising that experimental records always seem to show
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Figure 2. (o) A digitized channel activation; (b) the same record with calculated response
superimposed on it (heavy dots); (c) the brief shutting from (b) shown expanded; (d) the input, a
complete shutting of length 104 ps, that gives rise to the fit shown in (¢). Reproduced from
Colquhoun & Sakmann (1981) with permission.

phenomena that are too rapid to be resolved easily, whatever efforts are made to
increase the resolution. Figure 16 shows one channel activation on an expanded
timescale; it consists of at least four openings, separated by three brief shut periods
that are clearly resolved, though there may well be briefer undetected shut periods
too.

The filtering effect of the recording apparatus is such that the rise-time (10-90 %)
of the observed signal, in response to a square input, is at best 30-35 ps. Thus an
opening of the ion channel shorter than 20-25 ps will not be detectable given the
noise which is present in the recording. The resolution is very often worse than this,
up to 500 pus or more, depending on the signal-to-noise ratio in the experimental
record, and on the method used for its analysis (see Colquhoun & Sigworth 1983).
Figure 2a shows a (digitized) channel opening that contains a single obvious brief
shutting. In figure 2b the heavier points show a fit of the event with a function
generated by convolution of measured step-response function of the apparatus; this
fit is shown on an expanded timescale in figure 2¢, together with the input that would
give rise to it (figure 2d). The effect of filtering is obvious.

Events (openings or shuttings) of the channel that have a mean duration much
shorter than the resolution will not be detected at all, and nothing can be done about
this. Events with mean durations roughly in the range 5 ps to 1 ms will be detected
sometimes and not others. For example if channel open times have a simple
exponential distribution with a mean of 50 ps and if the resolution is also 50 ps then
63 % of events will be too short to be detected, only the 37 % that have durations
greater than the mean being observed. This can seriously distort the results. For
example if channel openings, of mean duration 10 ms, were separated by 50 ps shut
periods of which 63 % are undetected, the mean open time would appear to be not
10 ms, but about 27 ms, a serious error. The problems get worse when more complex
distributions are considered ; for example, attempts to look at the distribution of the
length of the first shut period in a burst of openings would be doomed in a case like
this.

In cases like that above, when the mean open time is long and few openings are
undetected, one can correct for missed shut times retrospectively, by extrapolating
the observed distribution of shut times back to ¢ = 0 to estimate the number of
missing shut periods. This allows a correction to the observed mean open time (but
not to the distribution of open times), as was done, for example, by Colquhoun &
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Sakmann (1985). The usefulness of this approach is limited, however. It will not work
unambiguously if the distribution of open times has several components; are the
missed shut times lost from the ‘short’ or from the {long’ openings ? It obviously will
not work if substantial numbers of both open and shut periods are too short to be
resolved. Furthermore a retrospective correction of this sort prevents the fitting of
a specified model to the data because the model makes predictions, of open and shut
time distributions for example, that do not cater for the experimental limitations. In
some cases simulation may provide a limited solution (see, for example, Marshall
et al. 1990), but what is needed is a method of calculating the distributions of what
is actually observed, rather than those of what would be observed if there were no
resolution problem, as found by methods such as those of Colquhoun & Hawkes
(1982).

Several attempts have been made to approximate the distributions that allow for
missed events, and these will be referred to below. Sine et al. (1990) used such an
approximation very effectively to fit experimental results directly with a specified
model. In this paper we derive distributions which are exact (given the usual
theoretical definition of what is ‘observable’), and the exact results are compared
with several of the approximations that have been proposed.

Defining the resolution

In what follows it is supposed that all events shorter than some fixed resolution or
dead-time (denote 7) are not detected, while all events that are longer than 7 are
detected and measured accurately. This is itself an approximation. For example, if
event durations are measured from points where the signal crosses a 50 % threshold,
then 7 is the event duration needed to just reach the threshold. However, the
durations must be corrected for the pulse shape near the threshold and noise in the
record makes this imprecise because some events, though actually shorter than 7
may cross the threshold because of superimposed noise, and conversely (Colquhoun
& Sigworth 1983). When event durations are measured by time-course fitting (see
figure 2) the resolution is not well defined, so it must be imposed retrospectively on
the measurements by concatenating any shut time below 7 with the open times on
each side of it to make one long ‘apparent opening’. This assumes that all events
longer than 7 are located and fitted correctly. There is a problem in principle here,
because the theory supposes that the resolution is imposed on a perfect record,
whereas in fact it is imposed on a record that has, in effect, already had a finite
resolution imposed on it by the recording apparatus, and this will not produce
exactly the same result.

The problem of defining the resolution gets much harder when the record contains
openings to more than one conductance level, especially when there are direct
transitions from one open level to another without any (detectable) sojourn in a shut
state between them. A brief ‘closure’ may in fact not represent a complete shutting
of the channel but a brief sojourn in one of the lower conductance levels. The problem
of the optimum setting of the resolution in such cases is discussed by Howe et al.
(1990).

2. Distribution of open and shut times

The principles and notation are those used by Colquhoun & Hawkes (1982). The
rate constants for transitions between states ¢ and j (¢ # j) are the elements, ¢,;, of the
transition rate matrix ¢, having the dimensions of reciprocal time, and the diagonal
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elements, g,,, are defined so that the rows sum to zero, so —1/¢,, is the mean lifetime
of a sojourn in state 7. Note that @ is singular and has £ —1 non-zero eigenvalues, the
eigenvalues of —@ being the observed rate constants for the k—1 exponential
components that describe macroscopic relaxations or fluctuations (noise) (Colquhoun
& Hawkes 1977). The transition matrix 7'(f) has elements defined as

T,;(t) = Prob [state j at time ¢|state ¢ at time zero] (2.1)

1y
and is given by T(t) = e?. (2.2)

It is often useful to represent this in terms of the spectral resolution of the matrix ¢
(see, for example, Colquhoun & Hawkes 1982), so, if the eigenvalues are distinct,

k
T(t)= X 4,67, (2.3)

i=1
where A;,7 = 1 to k, are the eigenvalues of —@ and 4, are the spectral matrices of Q.
The Laplace transform of 7'(¢) is

T*(s) = (s[— Q). (2.4)

If the states are divided into subset &/ which contains the open states, k, in
number, and subset # which contains the shut states, ks in number so k£, +k; =
k, then (2.4) may be partitioned thus

SI—Q .y —Quz }#1
—Qzy SI—Qzz '

This may be written in a more convenient form by using well-known results on the
inverse of a partitioned matrix, giving

T%48) = [8]=Q 1y~ Qus (8] —Qzz) ' Q17" (2.6)

T%7(8) = T%.4(8) Qus (s8] —Qzg) ™" (2.7)

A semi-Markov process is embedded in the process at the instants at which the
system enters the set &/ or enters set . The intervals between these points have
probability densities given by the matrix

0 exp (@ t) QQM/—]
exp (Qzst) @z 0 ‘

Thus each event is, alternately, the start of an open period or the start of a closed
period. The element g,,(t) of G(t) is the probability density of the time to the next
entry into a new subset and the probability that the state entered is j, conditional
on starting in state 7. The Laplace transform of this matrix will be denoted by

0 Gi}g«'(s )]
G%4(3) 0 ’

T*(s) = [ (2.5)

G(t) = [ (2.8)

G*(s) = [ (2.9)

where G%5(8) = (I —Q ) " Quz: G5y(s)=(SI—Qzz) ' Qzy (2.10)
Phil. Trans. R. Soc. Lond. A (1990)



516 A. G. Hawkes, A. Jalali and D. Colquhoun
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Figure 3. Illustration of the definition of an e-opening for a channel with two levels of conductance
and dead-time 7. The e-open interval is equivalent to an observed open interval shifted by an
amount 7.

From these transition densities the open and closed time distributions are readily
found. For example, the equilibrium distribution of open times has probability
density

S(t) = ¢oexp (@ 1) Q5 g = P eXp (@ ) (— Q) Uy (2.11a)
where Bo = P#(0) Q1 /P#(0) Q1. (2.11b)

Here ps(c0) is the & partition of the vector of equilibrium probabilities and the
vector, ¢,, contains equilibrium probabilities of an opening starting in each of the
open states; u, and u, are vectors of units. Similar results hold for shut times. Using
the spectral expansion of the matrices exp (@, ?) and exp (@ z# ), these distributions
may be represented as mixtures of exponentials (Colquhoun & Hawkes 1982). The
numbers of components in the mixtures are, respectively, the numbers of open and
shut states k, and k. Fitting mixtures of exponentials to observed histograms has
therefore been used to obtain lower bounds for the numbers of open and shut states.

As described earlier, these distributions are much distorted by an inability to
detect small intervals. We shall assume a constant critical gap or dead-time, 7, such
that open or shut times less than 7 are missed. It is possible to take different dead-
times for open and closed times, but it is not necessary in practice and adds a little
confusion to the theory. We suppose, after Colquhoun & Sigworth (1983), that an
observable open time begins with a sojourn in the &7 states of duration at least 7 and
ends at the start of the next sojourn in & which is greater than 7. Thus, the observed
open time may consist of » shut times, each less than 7, and »+ 1 open times, of which
the first must exceed 7. Observed shut times may be defined similarly.

A theory describing these observed open and shut times may be developed. This
is slightly awkward theoretically because in ‘real time’ an open period is not detected
until it has lasted for a time 7, although this is no problem analysing recorded data.
Therefore, as in Ball & Sansom (1988«), we consider a semi-Markov process whose
events occur at time 7 after the start of observed open or closed periods; see figure
3. An event type is the state of the underlying Markov process occupied at that time.
The durations of the intervals between events, which we call e-open and e-closed
intervals (not the same terminology as Milne et al. (1988)), are identical to those of
the observed open and closed intervals, being simply shifted by an amount 7.
Intervals of this process will be alternately e-open and e-closed, so the transition
densities are given by a matrix whose Laplace transform has the form

0 er/y(S)]

eGE () 0 (2.12)

“a(s) =

Phil. Trans. R. Soc. Lond. A (1990)
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The Markov chain embedded at the event points has transition matrix

0 °G
e = AF .
I:eG?’M 0 ]

Here, as elsewhere, we simplify the notation when s = 0 in a Laplace transform : we
omit the “*’ and the argument. For example, in this case °G¥ ;(0) is written as °G, ;.

Looking only at alternate events, ignoring the interval durations, we have a
Markov chain on the o/ states with transition matrix ®G_; °G 4, and equilibrium
probability vector, ¢ ,, satisfying

P =04°Cys°Gry, Pyuy =1 (2.14)

See Colquhoun & Hawkes (1983) and Hawkes & Sykes (1990) for simple solutions
to such equations. A Markov chain at the closed events has transition matrix
¢G4 %G & Wwith equilibrium vector

b5 =¢4°Cusz- (2.15)

To find °G% z(s) we need to distinguish short (less than 7) and long (greater than
7) sojourns in & and so, in the manner of Hawkes (1970), we break up the Laplace
transform into parts.

(2.13)

f "ot oxp (Qup 1) At = I —exp (— (L~ Q) I} (SL — @y ) = 5% 1 (5) (T — @),
0
(2.16)

J e " exp (Qezt)dt = exp(— (/= Qzz)T) (I —Qzg)™" = LEz(s)(s]— Qzz)".

T

(2.17)
These expressions define 8%z and L%, such that
S;s(s)+LEz(s) = 1. (2.18)

Now Lg gz = L% 7(0) = exp (Qz47) gives the probabilities of a long closed time and
the state occupied after the dead-time 7, conditional on the initial state. Similar
results hold for the open states o/. Then it is easy to see that

Gz (8) = ZAGYF(8) 8% 5(8) G% 4 (8)Y Gz (s) L% 5(s),
r=0 (2.19)

G5 (8) = —G%5(8)8%5(8) G5 4 (8)} ' GY%z(s) L 5(3).

This allows for the possibility of » cycles, each consisting of a sojourn in &/ and a
short sojourn in & before returning to &7, followed by a final sojourn in &/ and then
a long sojourn in & : the first period 7 of this closed interval is counted as part of the
e-open interval (see figure 3). Similarly, we have

% (8) = U—G%(9) S%(8) Gy (8)}7 G314 (8) Ly o (9)- (2.20)
The distributions of e-open times and e-closed times have Laplace transforms
Fiuls) = b Ghz(s)ug, [3(8) = b5 G5 (5) uy. (2.21)

These results were given, using different notation, by Ball & Sansom (1988a),
generalized to allow different dead-times, 7, and 74, for open and closed intervals
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and, furthermore, they could be random. They point out that the results (2.19) and
(2.20) are implicit in the work of Roux & Sauvé (1985) who, however, use the wrong
equilibrium vectors in attempting to obtain the results in (2.21). They also give
expressions for moments, which are easily obtained from (2.19) to (2.21).

3. Probability densities of e-intervals
Laplace transforms of the distributions

Laplace transforms are useful for obtaining moments. However, one would like to
know probability densities, particularly in view of their role in identifying the
numbers of states. Several authors have noted that one may invert Laplace
transforms numerically. This is certainly useful but rather prohibitive if one wants
to use the results for maximum likelihood inference (Ball & Sansom 1989), and one
would really like to know something about the functional form of these densities.
They are clearly not mixtures of exponentials, but may perhaps be approximated as
such.

We will obtain the probability density of e-open times; the distribution of e-closed
times can be obtained simply by interchanging o/ and % in the notation. Let “R(t)
be a matrix whose #jth element (i,j€27) is

“R;(t) = Prob [X(¢) =j and no shut time is detected over (0,#)|X(0) = 7],
(3.1)

where a detectable shut time is a sojourn in & of duration greater than 7. This is a
kind of reliability or survivor function: it gives the probability that an e-open time,
starting in state ¢, has not yet finished and is currently in state j. Then the transition
density is given by

Guz(t) = “R(t—7) Q5 exp (Qz 7 T). (3.2)
This is because, for the e-open interval to end at time ¢, there must be a transition
from &/ to & at time t—7 (there being no detectable sojourn in & up to that time)
followed by a sojourn of at least 7 in . The corresponding Laplace transform is

Gz (s) = “R*(5)e™Q 45 eXP (@5 7). (3.3)
Equations (3.2) and (2.21) imply that “R(t) is the key to the required density.

Equations (3.3), (2.19), (2.17) and (2.10) lead to
TR*(8) = —G%5(5) S35(5) GF ()} I = Quye) ™

and further, using (2.16) to (2.18), this can be written as

YR¥(8) = {8~ Qo — Qusr (8 —Qs55) Qs .y +Qur e exp (QzsT) (I —Qp5) 'Qrat ™,
and finally, using (2.6) and (2.7),

YR¥(8) = {I+e7 T 5(5) exp (Qzz T) @z} T (5)- (3.4)
This may also be obtained by taking the Laplace transform of the integral equation :

t—1

Ty(t) = MR(t)‘FJ Tyz(u)exp(Qes7) Qp oy “R(t—u—1) du. (3.5)

0

This holds because, to be in &/ at ¢, either there has been no detectable sojourn in &
or there has been at least one such sojourn: then let the last such sojourn terminate
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at time u+ 7 with a transition into &/ and be followed by a period of duration t —u—17
with no detectable sojourn in % . A different equation can be obtained by considering
instead the beginning of the first detectable sojourn in & to occur at time . Then

t—1
Tyu(t) = MR“)"‘] “R(u) Q5 eXp Rz s 7) Ty oy (t—u—7) du, (3.6)

0

which, on taking the Laplace transform, leads to
TR¥(8) = T () +e77Q y5 exP (Qz s 7) T% ()} 7. 3.7)

Inversion of the Laplace transforms
If we make series expansions of the expressions in (3.4) and (3.7), we get

TR¥(s) = X (—1)"e™{T%5(s)exp (Qzs T) @zt T 4(5)
m=0
= X (=1)"e™™ T /(){Qusexp (Qzz T) T5 /()™ (3.8)
m=0
Now let
H,,(t)=T,st)exp (QssT)Qsy t>0; H,,~1t) =0, t<O. (3.9)

K y(t) = Quzexp (Qss7) T5y(t), t>0; K, (1) =0, t<0. (3.10)

Then the inverses of (3.8) can be expressed as

“R(t) = X (—1)"(HIG ® T,y) (t—m7) =

0

(= )™(Tyy @K?ﬁﬂ)(t—mﬂ,
(3.11)

I
s

where @ denotes convolution and @m denotes m-fold convolution. We will work
exclusively with the first of these expressions, but the other would do as well.

Note that, in view of (3.9), the series in (3.11) has only a finite number of terms for
any fixed ¢, namely n+ 1 terms for any ¢ in the interval I, , = (n7,(n+1)7). Thus
there is no simple functional form, but a different form over each of the intervals I,,.
Unfortunately, the number of terms, and their complexity, increases with n.
However, we may hope for a good approximation by a simple form for large ¢.

It is convenient to write

IR() = 3 (—1)"M, (t—mT). (3.12)
m=0
We shall prove the following theorem.
Theorem. If —@Q has eigenvalues Ay, A,, ..., A, with A, = 0, then

S
3
II
M =

By, (t)exp (—A;t), t>0,
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Before proving the theorem, let us note the following lemma.
Lemma 3.1. The convolution of t"exp (—A;t) and exp (—A;t) equals
(Hlexp (—A0)/(rH1) (A = Ay)
(—A—i-_%j—);ﬁ{exp(——/\jt)—-exp (=Ab) 2 ()(i—/\j)ltl/l!} (A # A,).
The proof is by integration by parts.
Proof of the theorem. From equations (3.11) and (2.3)

k

Mo(t) = Tyoy(t) = [exp (@)] s = X AsggeXp (—Ad). (3.13)

=1

Thus the theorem is true for m = 0, since

Bi(t) = Cigo = Aoy (3.14)
is a polynomial of degree zero, i.e. a constant matrix. Also, from (3.9) and (2.3)
. :
H,,t) = Z D;exp(—A;t), (3.15)
j=1
where D;=A4,,76xp (Qss7) Qs (3.16)

Now M, ()= HE® T, ()= (H,, ®M,_,)(t). Therefore, if we assume the
theorem is true for m—1, we have

M, (t) = ft{ ; Djexp(—/\j(t—u)}{gj (milOi(m_l)ru’)exp(—/\iu)} du

0 =1 =1 \r=0

k k m-1 12
=2 X 2D;Cipnsyr f u"exp [ — A, u—A;(t—u)] du,
Jj=11i=1 r=0

0

and thus, from the lemma,

m—1

M,(t)=3 X D,C 7 *lexp (— A, t)/(r+1)

i i(m=1)r
i=1 r=0

.

M =

m—1 |
+¥33 3 D]-Ci(m_l),——r—'—ﬁf{exp(—/\jt)—exp(—)\it)
i#j r=0 (Az_/\]) l

Therefore M,,(t) has the required form with

(/\i~/\j)lt’/l!}. (3.17)

I

0

Cimm = D Csim—1y m—-1y/ M

m—1
Cimi = Dy Oymryq-ny/l= 2 Z D;Cyiyy, /L= A) I =1,...,m—1,
j#i r=1

m-1
Oz'mo =2 X {Di Oj(m—l)rr!/(/\j_/\i)r+l—l)j Oi(m—l)rﬂ/(/\i_/\j)rﬂ}-
j#i =0 (3.18)
The theorem is true for m =0, and so it must be true, by induction, for all m > 0.
Moreover, (3.18) gives a recursive algorithm for computing the necessary coefficients.
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The density of e-open times
By definition, any e-open time, 7' say, must exceed 7 in duration and so it is
convenient to consider the excess time U = 7T'—7.
Then the density °f,(t) = f,;(¢—7) and so the results of the theorem, together with
equations (3.12), (3.2) and (2.14), imply that the probability density of U is

ful) = X (—1)"f,(t—mT), (3.19)
m=0
k
where Snt) =M, (8) Qyz exp Qs T) Uy = X Bin(t)exp (—A;t) (3.20)
i=1

and fg,,,(t) is a polynomial of degree m in ¢ with real constant coefficients. Then

m
ﬂlm(t) = Z Yimrtra (321)
r=0
where Yimr = Pot Cimr @7 €XP (Qz5T) Uz (3.22)

It follows that, for ¢ in the interval I, ,,

n k
fut) = Z (=1)"fu(t=m7) = X 0,,(t) exp (= A;1), (3.23)
m=0 i=1
where 0,,() = g] (=™ g} YVimr(t—mT)" (3.24)

m=0 r=0

is a polynomial of degree n in ¢t. Note that the A, that appear here are the k
eigenvalues of the whole matrix — @, rather than the k, eigenvalues of —@_,_, which
appear in the solution when no intervals are missed.

These results, containing exponentials and piecewise polynomials over intervals of
length 7, are similar to results of Garwood (1940) on the distribution of waiting time
at a vehicle actuated traffic light: an arriving vehicle waits for a gap of at least 7 in
a Poisson stream of traffic before crossing. Garwood’s results, obtained by
combinatorial arguments, are easily derived by methods similar to those used here
(see Jalali & Hawkes 1990). Equation (4.2) below is a generalization of Garwood’s
results and a special case of equation (10) of Hawkes (1965). Results for more general
semi-Markov processes, including multilevel processes, have also been obtained
(Jalali, personal communication 1989).

4. The two-state model

In this section we discuss the simplest special case of the model, comprising just
one open state and one closed state, and compare it with a number of approximations
which have appeared in the literature. The @-matrix can be written

P
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s0 —@ has eigenvalues A, = 0,1, = a+ /. In this case ¢, and u, are simply unit
scalars, so that (2.21), (3.3) and (3.4) imply

°f%(s) = °G%5(s) = {L+e afe?/[s(s+a+ )} s+ B) xe D7/ [s(s+a+ f)].
(4.1)

If, as before, we consider only the excess of an e-open time over 7 we have
fE(s) ={s(s+a+p)+e afe s+ f)ae (4.2)

It is possible to use the recursive solution given in §3. However, in this case we can
obtain a more explicit result by expanding equation (4.2) as

fos) =75 Z (=17 e pm T HL/[s™(s+ A)" A B/ s+ )™ (43)

m=0

S

where p=afe’ (4.4)

Using partial fractions, one can show that, for positive integers p, ¢

p—-1 -1
1/[sP(s+25)"] = X ag,/s"7+ X by, /(s +2)"7, (4.5)
r=0 r=0
where for r =0,1, ...
= (=07 (T ) fager 0y, = 0 (PFTT age (4.6)
Equation (4.5) is the Laplace transform of
p—1 g-1
X a tPT (p—r—1)14+ X b, t* " exp (— Ay t)/(g—r—1)L 4.7)
r=0 r=0
It follows that fot)y= X (—1)"f,,(t—mT), (4.8)
m=0
where Ju(8) = B () + o (l) exp (= A5 0). (4.9)

Here $,,,(t) and f,,,(¢) are polynomials of degree m in ¢, as indicated in equation (3.21)
with, for m > 0,

- {Pmﬂ{a(mﬂ)(mm;rl—l) +Bominym-nt/rB (r=0,1,....,m—1), (4.10)
P g1y 0/ ! (r =m),
Yomr = pm+1{bm(m—r) +ﬂb(m+1)(m—r)}/7'!/)) (7‘ = 0’ 1> T m) (411)

We treat m = 0 as a special case, because (4.6) does not hold when p = 0. It is easy
to see, by letting m = 0 in (4.3), that

Jo(t) = p(B+oexp (=2A;1))/(Ay f), (4.12)

so that over (0,7) fy(t) = f,(¢) is a constant plus an exponential.
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Approximate densities

It can be seen that even the simple two-state case is not all that simple. Previously
only approximations, or a numerically inverted transform, have been available. It
would be useful to see how good these approximations are. Yeo et al. (1989)
considered a number of simple exponential approximations

fu®)=e /v (t>0) (4.13)
of which the most satisfactory uses the correct mean
v=¢e"ja—(1—eM)/f—1. (4.14)
Yeo et al. (1989) also obtain a bi-exponential density by using the second-order
approximation e " & 1 —s7+13s%7% in equation (4.2). Then
fo(s) = (s+8) p/Blp+s(A—p7) + (L +37°p) ).
The inverse of this is

Su(t) = (0/vs) exp (—t/vy) +((1—0)/v,)exp (—t/v,), (4.15)
where

0= y—1/B)/(vs—ry), Vv, = %(a1$(“%_4“2)%): Vg > Vys
o, = A /p—T, a,=1/p+ir’ (4.16)

Crouzy & Sigworth (1990) also obtain a bi-exponential approximation using a
method of ‘virtual states’. This means introducing an extra state corresponding to
missed closed times, which are therefore assumed to be exponentially distributed
(although in fact the distribution is truncated) with rate constant f’, chosen to make
the mean missed closed time correct, so 1/4 = 1/f—7e#7/(1—e 7). Also a fraction
(1—e#) or shut times are missed, so consider a modified @-matrix

—a a(l—e#) i getr

=5 _.oF

. ...-nn: (4. 17)
A 0 i -p

The modified set of open states .« ’, comprising the open state and the ‘missed’ closed
state, is indicated in the above matrix. A different, but similar, virtual state and
modified matrix can be introduced when finding an approximate distribution for e-
closed times. An observed open time comprises a sojourn in the open state, state 1,
of duration 7, followed by a time U which is a sojourn in &/’ starting in state 1 and
ending with a transition into the single closed state. With these assumptions, the
excess observed open time, U, has probability density given from equation (2.11)

fut) = (1,0)exp (@ 1) 'y (4.18)
After some algebra, this can be written as
Su(t) = A{[l; +1,(1 —C)%] exp (—n, 0)+[—l+1,(1— C)%] exp (—7,t)}, (4.19)
where A = ae#/(2L,(1—c)}, 1, =%8 —a), =48 +a), c=af e’/ (4.20)
and #,, 7, are the eigenvalues of —@Q,
n = L{l—(1—c), 75, =L{1+(1—c). (4.21)
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A third bi-exponential approximation can be obtained by assuming that the
critical gaps are, for each interval, independent identically distributed observations
from an exponential distribution with mean 4. Then the generalization of equation
(2.19) given by Ball & Sansom (1988a) gives

FE(8) = a/[As* +5(1+ A(o+ B)) +a]. (4.22)
If we choose A= (e —1)/p, (4.23)

then both the probability of detecting a closed time and the mean e-open time are
the same as for the case of a constant critical gap of duration 7. Note, however, that
the bi-exponential obtained by inverting (4.22) is the distribution of the full e-open
time 7', not the excess time U = 7'—7; note also that one of the weights is negative,
leading to a density which rises from close to zero to a maximum before decaying.
Considered as an approximation to the constant case it is poor, see figure 4.

The approximation of Yeo et al. (1988) is not good at the origin because as s—
oo lim sf §(s) for the approximation (4.15) is not the same as for the exact distribution,
given by equation (4.2). This is because the approximation e ™" & 1 —s7 —1s%r%is poor
for large s. If, instead, we substitute the approximation e™" & (1 —1s7)/(1+Ls7) into
equation (4.2), we get a rational approximation for f#(s) which corresponds to a
mixture of three exponentials for f;;(f). This has the correct mean and variance, as
does the Yeo approximation ; however, f,,(¢) and its derivative at the origin, ¢ = 0, are
also correct. In examples we have tried, we have found that one of the areas is
negative, so it is not a proper mixture, while overall it is only marginally better than
the Crouzy-Sigworth approximation for most t. We do not, therefore, pursue this line
here. This is one of a series of approximations, related to Bessel polynomials (see
Burchnall & Chaundy 1931; Grosswald 1978), leading to further exponential
components. These have interesting properties outside the scope of this paper.

Asymptotic behaviour of exact density
The behaviour of f; () for large ¢ is governed by the roots of the denominator of
f(s). It can be shown that this denominator, given from equation (4.2) by
D(s) = s(s+a+p)+afe P, (4.24)

has two real negative roots. One of these is clearly s = — f, which cancels with the
factor (s+ /) in the numerator, so the behaviour is governed by the other root
s = —1, say. The value of %, which lies in the interval (0,ae™"), must be found
numerically, e.g. by a bisection method. The derivative of D(s) is given by

D'(s) = 2s+a+f—Tafe DT (4.25)

We approximate D(s) by c(s+ f)(s+7), where we choose ¢ to equate the derivative
of this approximation to that of D(s) at s = —#. Then

c=D(=n)/(B—n) (4.26)
and so fF(s) & «e™ /{c(s+7)}, which implies that
fult) = [ae™ [ey]ye™, (4.27)

a single exponential density with an area which is not unity. This is not a problem
because this is the asymptotic behaviour of the exact density: it is not an
approximation for the whole distribution. In practice we have found that it gives an
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0 1 2

Figure 4. Exact ( ) and approximate (....) densities for e-open times for the ‘slow’ model with
7= 0.2 ms, g, = 0.2990 ms, . = 0.8787 ms. The approximation assumes exponentially distributed
deadtimes, see equations (4.22) and (4.23).

Table 1. Comparison of mixed exponential approximations for densities of e-open and e-closed times
in excess of 7. for ‘fast’ two-state model with T=0.2ms, u, = 0.1063 ms, p, = 0.2148 ms; the
asymptotic exponential expressions for the exact densities are also given

mean/ms area mean/ms area mean/ms area

open (O 0.4317 0.9161 0.0529 0.0839 — —
density  Yeo 0.4360 0.8599 0.1788 0.1401 — —
exp 0.4 1 — — — —

tri-exp 0.4075 1.0756 0.0568 0.1006 0.2504 —0.1761
asymp. 0.4212 0.9464 — — — —
closed C-S 1.8169 0.9911 0.0546 0.0089 — —
density  Yeo 1.8138 0.9926 0.0936 0.0074 — —
exp 1.8 1 — — — —

tri-exp 1.8131 0.9934 0.0629 0.0134 0.1314 —0.0069
asymp. 1.8133 0.9931 — — — —

extremely accurate approximation to the exact density for ¢ larger than a few
multiples of 7.

Numerical examples

We consider two examples from Colquhoun & Sigworth (1983); a ‘slow’ model
with dead-time 7 =0.2.ms and mean open and closed occupancies u,=1/a =
0.2990 ms, p, =1/ =0.8787 ms; a ‘fast’ model with the same 7 but with p, =
0.1063 ms, u, = 0.2148 ms. In the latter case the mean open time is less than the
dead-time, while the mean closed time only just exceeds it. These two models both
have mean observed open and closed times which are 0.6 ms and 2.0 ms respectively ;
see (4.28) below.

The density of e-open times for the slow model is shown in figure 4, with the bi-
exponential approximation given by (4.22) and (4.23). The latter has two components
with means 0.451 ms and 0.149 ms with corresponding areas 1.492 and —0.492.
These sum to unity but it is not a proper mixture because one of them is negative.
It is clearly a poor approximation to the exact density and will not be considered
further.
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Figure 5. Exact and approximate densities of e-open times in excess of 7 for the ‘fast’ model 7 =
0.2 ms, u, = 0.1063 ms, u, = 0.2148 ms. In (@) the densities are shown for an interval near the
origin where they are discernably different. The exact density is shown as a solid curve ( ). The
Crouzy—Sigworth, Yeo et al. and exponential approximations are shown dotted (....), and identified
by CS, Y and E, respectively. In (b) we show percentage errors of the three approximations relative
to the exact density. Crouzy-Sigworth is shown as solid (——); Yeo and the exponential
approximations are shown as dotted (....).

Turning now to the fast model, we consider the density of excess e-open and e-
closed times, U = T'—7, obtained by subtracting the dead-time 7. The parameters of
the two Dbi-exponential approximations (equations (4.15) and (4.16) and
(4.19)—(4.21)), the single exponential approximation, and the asymptotic exponential
(equations (4.24)—(4.27)) are given in table 1. We also give the tri-exponential
approximation (note the negative weight), but do not consider it further.

The densities for e-open times are shown in figure 5 and for e-closed times in figure
6. In each case they only differ visibly for a range of values near the origin. Therefore,
in part (a) of each figure, we have shown only a small range of time values and a
portion of the vertical scale, so as to magnify the differences; also we have shown
percentage errors of each approximation relative to the exact curve over a larger
interval in part (b) of each figure.
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Figure 6. Exact and approximate densities of e-closed times in excess of 7 for the ‘fast’ model
7=10.2 ms, u, = 0.1063 ms, p, = 0.2148 ms. In (a) the densities are shown for an interval near the
origin where they are discernably different. The exact density is shown as a solid curve ( ). The
Crouzy-Sigworth, Yeo et al. and exponential approximations are shown dotted (....), and identified
by CS, Y and E, respectively. In () we show percentage errors of the three approximations relative
to the exact density. Crouzy-Sigworth is shown as solid (——); Yeo and the exponential
approximations are shown as dotted (....).

It can be seen that the Crouzy—Sigworth approximation is very much better than
the others near the origin, while for larger values of ¢ there is little to choose between
them. For both open and closed distributions the asymptotic exponential agreed
with the exact density to within a 107® percentage error for all ¢ in the interval
57 <t < 207: a very close agreement indeed !

The conclusions drawn from these, and other examples we have considered, are the
following.

(i) If a mean open or closed occupancy is moderately larger than the dead-time 7,
then the corresponding e-open or e-closed time distribution is adequately represented
by a single exponential distribution with effective mean given by equation (4.14).

(ii) If a mean open or closed occupancy is of comparable duration to 7, then all
three approximations are reasonable for large ¢ but differ near the origin. In all cases
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studied the Crouzy-Sigworth approximation has been quite good. The single
exponential is too low near the origin and a little too high for medium values of ¢; the
Yeo et al. approximation behaves similarly and is not all that much better.

(iii) The exact distribution can be easily calculated for ¢ up to about 20 multiples
of 7. Long before that it may be approximated very accurately by the single
exponential asymptotic expression.

The examples we have illustrated here are relatively bad. For larger means the
approximations differ much less, but show the same general features. If a mixed
exponential approximation is needed, we recommend the single exponential, if that
is adequate, or the Crouzy-Sigworth approximation. These have the added
advantage that they can be generalized to more complex models, as illustrated in §5.

Inference

From these results we conclude that densities of observed open or closed times will
often be adequately represented by a single exponential; then we would infer that
there was probably no more than one open or closed state. If, however, a mean is not
much bigger than 7, one should be cautious about inferring the existence of a second
state from the presence of a second component in the observed distribution.

This is a useful qualitative conclusion: we now consider parameter estimation.
Colquhoun & Sigworth (1983) used a method-of-moments approach, equating the
theoretical mean e-open and e-closed times to their observed values z, and z,. Setting
Mo = 1/a,u, = 1/, equation (4.14) leads to

to = (fot fhe) €XP (T/ o) — oo =
e/uc = (/’LO+/'LC> exp (T//’Lo) Mo =

&

} (4.28)

They point out that there are often two solutions for (u,,u.), called fast and slow
solutions. The examples considered in the previous subsection were of this form,
being the two solutions when Z, = 0.6 ms and £, = 2.0 ms with 7 = 0.2 ms. They arise
from a kind of aliasing effect caused by the finite resolution of the recording
equipment.

Yeo et al. (1988) discuss the estimation problem in detail. They point out that the
moment estimators are maximum likelihood estimators if the single exponential
approximation is used, the likelihood having two peaks of equal height. Using their
bi-exponential approximation, they find that there is usually a unique maximum
likelihood estimate but that there may be another local maximum of very nearly the
same height as the main peak. They also discuss the possibility of discriminating
between the two solutions by repeating the analysis with different dead-times.

Figure 7 shows the exact densities of e-open times for both fast and slow solutions.
They do not differ much so, while in theory they are capable of being discriminated,
one would need quite a lot of data to do so. Notice that the fast distribution, has a
distinct change in form at 7 = 0.2 and, to a lesser extent, at 27 = 0.4. It is now
feasible to compute likelihood surfaces from the exact model. We expect them to
show similar features to those based on the bi-exponential approximation, possibly
with a slightly bigger difference between the heights of the two peaks.

As a simple illustration of the aliasing effect we simplify to a single parameter by
considering a symmetric model with u, = u, = u, say, taking the timescale so that.
7 = 1. Figure 8 shows the likelihood /(x), calculated from the exact density, based on
a single observation. This is done for each of four different values of an observed e-
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Figure 7. Exact densities of e-open times in excess of 7 for both fast (——) and slow (....)
models discussed in the text.

0.8

0.4
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Figure 8. Relative likelihood curves for symmetric two-state model with mean occupancies both
equal to # and dead-time 1. Each likelihood is a function of x4 arising from a single observation ¢
on an observed e-interval; each is scaled to have maximum of 1. Likelihoods corresponding to
t = 2,6 are shown as ( ) and those for 4,8 as (....).

open interval ¢ = 2,4,6,8. As ¢ increases, the likelihood moves from a unimodal to a
flat-topped function to a two-peaked function. The peaks are of about the same
height, a sharp one for the fast solution and a flat one for the slow solution.

5. More complex models

There are two approximations to the density of e-open times in the general case,
both leading to a mixture of exponentials. The B-M approximation, of Blatz &
Magleby (1986), alters the elements of the @-matrix to a set of ‘effective rates’. The
numbers of open and closed states are not altered, so the number of components in
the mixture is the same as for the original model, without time interval omission, but
with different parameters. The C—S approximation of Crouzy & Sigworth (1990) leads
to a mixture with k,+k; components instead of k,: however, some components
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usually have areas too small to be identified in practice. In this section we describe
these approximations and suggest improvements. We try them out on a numerical
example.
The B-M approximation

The B-M method of approximating the density of e-open times assumes that any
sojourn in % which is too short to be observed consists only of a sojourn in a single
state. The relatively unlikely possibility of several moves among the # states in a
short time is ignored. It takes into account the probability of such a sojourn being
short, and its average duration, to obtain modified effective rates. The detailed
argument is given by Blatz & Magleby (1986); we summarize the algorithm below.

For each 1€/ and je # for which the transition rate q;; > 0, calculate

F = 1—exp (g;7),

1 __chap = F;niss = F}"{qﬂ/( —qﬁ)}’

TP = —[1/q,+7(1—F)/F7],
Yy = B0 {1 — FPssTissq, )

(5.1)

The effective rates are then given by

Gy = Fii i 00 = Fij 40 (5.2)
All rates within the open states or within the closed states are unchanged. After these
modifications to all the relevant q;;, the diagonal elements g,; are adjusted so that the
rows of the new matrix of effective rates, ¢Q) say, sum to zero. The density of open
times is then found using the standard theory, applying equation (2.11) to the matrix
€@ instead of to Q. The distribution thus obtained allows e-open times to be less than

7. To adjust for this, Blatz & Magleby suggest truncating the distribution, dividing
by Prob (7' > 7) for ¢t > 7. As this is a mixture of exponentials,

Sr(t) = Za,exp (—t/v;)/v;, (5.3)

the modified distribution of excess e-open times, U = T'—r, is given from Colquhoun
& Sigworth (1983), equation (60), as

folt) = Sajexp (—t/v) /v, a; = a;exp(—1/v)/{Sazexp (—7/v)}.  (5.4)

The single exponential approximation for the two-state case discussed in §4 is a
special case of the B-M approximation.

The approximate distribution of e-closed times can be found in a similar way,
using a separate effective @-matrix obtained by interchanging the roles of @/ and #
in the above algorithm.

The C-S approximation
For their approximation to the density of e-open times, Crouzy & Sigworth (1990)

first, if necessary, transform the §-matrix to a dynamically similar one by the
method of Kienker (1989). Thus @ is replaced by the similar matrix

Q" =871Q8, (5.5)
where S is a block diagonal matrix, whose rows sum to unity, of the form
1 0
S=|" . .
K 68
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Optionally, one may replace the identity matrix /,, by a more general matrix. If
Sz is chosen to diagonalize @z, the closed states are said to be uncoupled and
transitions between these modified closed states are not possible. This may be done
by taking the columns of Sz to be eigenvectors of @4 scaled so that the rows sum
to unity. If the closed states are already uncoupled, this step may be omitted.

Next introduce some ‘virtual’ states; these are shut states which are missed
because sojourns in them are too short, and so they count as virtual open states when
finding the density of e-open times. For each je # create a virtual open state j’, so
there will be kg virtual states ¥". Calculate Fi* and 77 from (5.1) then, denoting
the transition rates of the virtual scheme by “q;;, for each 1€.9/ we calculate

Yy = Qij(l—Fjr'n)> Qi = qu; FT, }

By = 1/{T;niss z qji}’ Yy = /7);" ;-
iesd

(5.7)

This deals with all the transition rates in the partitions *Q ,z, @, and *@,-,. The
partitions @, @z+ and Q4 are left unaltered. *@,, and *Q, 5 are set to zero as
there is no direct transition between the shut states and the virtual states. Finally,
*Q, 4 is a diagonal matrix whose diagonal elements are chosen so that the rows of the
virtual matrix *Q) sum to zero as usual.

The approximate density of e-open times is obtained from equation (2.11), using
the matrix “Q) instead of @ and the set of virtual open states &' = &/ U ¥ instead of
/. As there are k_,+k of these, that will be the number of exponential components
in the mixture. The distribution of e-closed times can be obtained similarly, creating
a separate virtual process by the above method with the roles of &/ and &
interchanged.

Crouzy & Sigworth do not discuss the problem of what to do about the fact that
an e-open time must exceed 7. There seem to be two possibilities.

C-S1. As the density is a mixture of exponentials, one could apply the adjustment
of equation (5.4).

C-S2. Use equation (2.11b), applied to the original @-matrix, to obtain the initial
vector, ¢, for entry to all open times, visible or not. Our observed open times must
begin with a period of duration 7 in the set of open states, o, so that the initial
probability vector of the state in which the excess e-open time begins is given by

“Po = Do €XP (@ T)/ Do €XP (@ T) Uy (5.8)

Add to this a set of zeros corresponding to the virtual states ¥~, which together with
of makes up the virtual open set &', to obtain an initial vector ¢,. Now apply
equation (2.11a) using this initial vector, the set &/’ and the matrix Q). The result
is an approximation to the density of the excess of e-open times over 7. The
adjustment (5.8) applied to “@Q instead of @, and o/’ instead of &, is equivalent to
method C-S1.

If there is only one open (closed) state the adjustment C—S2 gives exactly the same
e-open (e-closed) density as the unadjusted Crouzy—Sigworth method. In particular,
this is true for the two-state case, for which it proved successful in §4. C-S1, in
contrast, performs poorly. We therefore recommend the modified method C-S2.

Modified B-M method

The B-M method ignores short sojourns in & which involve occupying more than
one state. We suggest that the closed states be uncoupled, if necessary, as described
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Table 2. Comparison of Crouzy—Sigworth and Blatz—Magleby mixed exponential approximations for
densities of e-open and e-closed times in excess of T for the scheme whose transition rates are given by
the matrix in equation (5.11), and with critical deadtime 7 = 0.2 ms

mean/ms area mean,/ms area mean/ms area

distribution of e-open times

(unadjusted 0.9687 0.9183 0.0283 0.0011 0.0647 0.0175
C-S4 C-S1 0.9687 0.9990 0.0283 1.20E-6 0.0647 9.99E-4
Cc-S82 0.9687 0.9813 0.0283 0.0011 0.0647 0.0175

B-M uncoupled 0.9666 1 — = = —

distribution of e-closed times

‘ standard 0.4374 1 — — _ _
( unadjusted 0.5879 0.9339 0.0279 0.0532 0.0692 0.0129

Cc-S4 C-S1 0.5879 0.9989 0.0279 6.19E-5 0.0692 0.0011
c-s82 0.5879 0.9698 0.0279 0.0035 0.0692 0.0267

B-M {unadjusted 0.8561 0.9789 0.0327 0.0211 — —
adjusted 0.8561 0.9999 0.0327 0.0001 — —

above, to obtain an equivalent system in which any sojourn in the modified & can
only involve one state. The B-M method may then be applied to the modified system.

A numerical example

Consider the simple model with three states discussed in Colquhoun & Hawkes
(1977, equations 83-86). We call this the kM model, after Katz & Miledi (1972).

ky B
A+T=AT=AR
k  a (5.9)

state:# (3) F(2) (1)

The transition-rate matrix, ¢, is shown partitioned according to the open state,
& = (1), and the closed states, # = (2.3).

& % 0.
Q=| B :i—B+k) ky | (5.10)
0§ kye —kye

We have taken ¢ in this matrix to be a standardized drug concentration ¢ = xk, /k,,
where x is the concentration of agonist 4. As a particular case we take a =5, f =
ky, = 10, ¢ = 2, making the transition-rate matrix

(5.11)

If these are rates per millisecond, the mean occupancies are 0.2 ms for the open state
and 0.05 ms for each shut state. If 7 = 0.2 ms, we are testing the approximations
severely as the means are short compared with the dead-time, particularly for the
shut states.

Phil. Trans. R. Soc. Lond. A (1990)



Open times with missed events 533

The distribution of e-open times

For the C-S method we first uncouple the shut states to get a dynamically
equivalent scheme with @-matrix

514268 0732

Q=|5858 i —5.858 0 ) (5.12)
34.142 i 0 —34.142

We then form the virtual scheme with two extra states shown in (5.13) and with
virtual matrix @ shown in (5.14).

7 (3)
A
4
F(2) == A (1) === v¥(5) {5.13)
A
4
7(4)
Lo 11322 79107702945 .OT3L A
5.858 i —5.858 0 0 0 7
'Q=|34142: 0 ..734142 9D (6.19)
12.360 i 0 0 —12.360 0
34397 1 0 0 0 —34.397
o 7z v

The set &/’ = ./ U7 has three states, so there are three components in the
approximate distribution derived from °@ in the manner described earlier.
The matrix of effective rates for the B-M method is

—2.286 i 2.286 0

Q=] 4572 | —14572 10 (5.15)
0 i 20 —20

and the effective matrix obtained from the matrix (5.12), if the shut states are first
uncoupled, is

~1.035 | 1.034  6.9x1071
cQ=|1419 ; —1419 0 : (5.16)
0032 | 0  —0032

As there is only one open state, this approximation is a single exponential
distribution. The distribution for excess e-open times, obtained from equation (5.4)
will therefore be the same as the unadjusted distribution.

Table 2 shows the components of the mixtures obtained from the various B-M and
C-S approximations. In this case we chose transitions between the shut states to be
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1.4

1.0{"

0.6

0 0.2 0.4

Figure 9. Behaviour near the origin of exact ( ) and approximate (....) densities of excess of e-
open times above 7 = 0.2 ms for the kM model with transition rates given in equation (5.11). The
Crouzy-Sigworth approximation, C-S2, is marked as CS; the Blatz—Magleby approximation, using
the uncoupled scheme (5.12) is marked as BM.

fast. Consequently, we see that uncoupling the closed state has made a big difference
to the results of the B-M method, bringing it much closer to those for the C-S
method. We find that C-S2 is better than C—S1. This can be illustrated, for example,
by comparing the densities of e-open time in excess of 7 at the origin, ¢t = 0. These are
respectively 1.047, 1.323 and 1.323 for C—S1, C—S2 and the exact distribution. The
initial parts of the exact, uncoupled B-M and C-S2 densities are shown in figure 9.
Both approximations do quite well, especially C-S2. They remain good up to ¢ = 4.

The distribution of e-closed times
The virtual scheme for the C—S approximation to the density of e-closed times is

F(B) == F(2) == J(1) .

| o

7(4)

This time we are interested in the set of virtual shut states &’ = % U ¥", which
consists of three states. The matrix of virtual rates is

ot S T 0. .10 . 4

. _ 3679 —20 10 | 6.321 pe

Q=) 0.5 .20 -2 0 (5.18)
0 11961 0 i —11.961]|v
A F v

and the matrix of effective rates for the B-M method is

—0.804 0894 0

Q=1 1.788 P —11.788 10 |. (5.19)
0 i 20 —20
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0 0.4 0.8

Figure 10. Behaviour near the origin of exact ( ) and approximate (....) densities of excess of
e-closed times above 7 = 0.2 ms for the KM model with transition rates given in equation (5.11). The
Crouzy—-Sigworth approximation, C—S2, is marked as CS; the Blatz—Magleby approximation is
marked as BM.

The exponential components derived from these are again shown in table 2. The C—S2
approximation is good and better than C—S1: for example the values at the origin are
respectively 1.717, 2.161 and 2.161 for the C—S1, C-82 and exact densities. The initial
parts of the densities for the exact, C—S2 and B-M, adjusted by equation (5.4),
methods are shown in figure 10. As there is only one open state, there is no need for
uncoupling. Usually the B-M approximation is good away from the origin. In this
case it is fairly rough, as can be inferred from the fact that the dominant time
constants differ somewhat between the C—S and B-M solutions, also the curve in
figure 10 is beginning to pull away from the exact curve from about ¢t = 0.7 onwards.

6. Discussion

For examples presented here, and others, we found the modified Crouzy—Sigworth
approximation generally to be quite good. The Blatz—Magleby approximation is
usually good if the processes are slow relative to the dead-time, but may not be if
they are fast. In that case one should first uncouple the complementary set of states
(# for the open time distribution, ./ for the closed time distribution) before using
the method. In very fast situations this may not be enough.

For moderate speed processes, the B-M approximation may not be adequate near
the origin. The C—S approximation, with more components, fits well. Thus inspection
of an observed histogram may indicate the presence of extra components and so give
the impression of the existence of more states than there really are. The effect of time
interval omission on inference about the number of pathways between .o/ and &
based on autocorrelation is discussed by Ball & Sansom (19885), and based on cross-
correlation by Ball et al. (1988).

We have found that computation of the exact density is generally quite feasible,
both in time and accuracy, for up to 20 times the dead-time. For larger values of ¢
the series becomes complicated and numerically unstable. For many purposes the
C—S2 approximation will be adequate for all ¢. If greater accuracy is required near the
origin, our current recommendation is to calculate the exact distribution for the first
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few multiples of 7 then switch to the C—S2 approximation for larger ¢; for the two-
state case the asymptotic approximation should be used for large ¢. In the future, we
hope to get better results for large ¢ by finding an asymptotic expression in the
general case; we know that asymptotically it has the form of a mixture of
exponentials and damped oscillations, in which one exponential always dominates,
but full computational details have still to be worked out.

In particular, it should be perfectly feasible to study the likelihood surface of the
overall distribution of e-open times, or e-closed times, using this method. For that
purpose the Crouzy-Sigworth approximation is almost certainly good enough for
most data-sets available in practice. However, a more exciting possibility is that it
may be computationally feasible to compute the likelihood for the complete observed
process, consisting of an alternating sequence of e-open and e-closed times {t,,?.} =
(torsters -+ s tom» tem)> Where ., is the jth e-open time and ¢, is the jth e-closed time.
From the underlying semi-Markov process, following the approach of Fredkin et al.
(1985), we can write the likelihood as

I({to:tc}10) = ¢ jH G 5 (o) Gy (teg) sy, (6.1)

=1
where G, ,(t) is given by equation (3.2), and with a similar expression for °G; ,(t).
This involves “R(t—7), and a similar #R(t—7), which can be computed from
equations (3.12) to (3.18). The matrices C,,,; involved in this need only be computed
once for a given set of parameters, 0.

Equation (6.1) is a generalization of eq. (18) of Ball & Sansom (1989), who
successfully applied this approach to the case of no time interval omission, 7 = 0.
Although the computational problems in this case are more severe, we believe that,
with adequate computing resources and careful attention to numerical analysis, it is
quite feasible to attempt such a study.
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