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ABSTRACT

Full latticedynamical calculationson a monatomiccubic lattice have confirmedthe linear relationship betweenthe
Grüneisenparameterand the first derivativeof incompressibilitywith respectto pressure.The exact expressionsare
dependentupon the detailsof thesimulation,but generallytakethe form

dK
(1)

wherey is the Grüneisenparameter,K is thebulk modulus,P is pressureand a and b are constants.In our atomistic
simulation we consideredpairwise additive Lennard—Jonesand Morse potential models. We found that if we only
consideredshort-rangenearestneighbourforces,a andb takethevalues0.50and0.90, respectively.Thisresultdiffersfrom
theformsof thewell-known definitionsof theSlater,Dugdale—MacdonaldandVaschenko-Zubarev(or free-volume)y, but
providesanexactconfirmationof theapproximationsusedto obtain the Barron y. In orderto determinethewider validity
of sucha simplemodel, furthercalculationsconsideredlong-rangeforcesandthe NaCI lattice. This resultedin a reduction
in thevaluesof both a and b in the caseof the long-rangeinteractionstherebyapproachingthe free-volumefomulation.
However, no simplerelation could be found in the caseof the more complexNaCI structure,with no linearity existing
betweeny andthe pressuredependenceof the shearmodulus.

1. Introduction macroscopicdefinition is in terms of familiar
thermodynamicproperties,whichin principlemay

The Gruneisen parameter,y, is a valuable be evaluated experimentally. The microscopic
quantityin solid-stategeophysicsbecauseit can definition arisesfrom a considerationof the mo-
be used to set limitations on the pressureand tion of atoms in a solid and their vibrational
temperaturedependenceof the thermal proper- frequencies.If both descriptionsare calculated
tiesof the mantleandcore, andto constrainthe accuratelyfor a particularstructure,they should
adiabatictemperaturegradient. It is dimension- takethe samevalue underthe limitationsof the
less and, for a wide rangeof solids, has an ap- quasi-harmonic approximation (Gillet et a!.,
proximately constantvalue, varying only slowly 1991).
with the pressureand temperature(Anderson, Unfortunatelythe experimentaldetermination
1989). of themacroscopicGrüneisenparameterfor many

The GrUneisenparameterhas both a micro- geophysicallyrelevantmaterialsis very difficult,
scopic and macroscopicdefinition (Grüneisen, requiring prohibitively high temperaturesand
1912),yet the physical connectionbetweenthem pressureswhich are inaccessiblein most laborato-
has been the source of much confusion. The ries. Furthermore,the microscopicdefinitionmay

notbe usedto evaluatey preciselyfor real lower
* Correspondingauthor, mantle systemssince it requiresa knowledgeof
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the dispersionof the phonon frequenciesin the wherea is the thermalexpansion,V is the molar
first Brillouin zone.To allow estimatesof y to be volume, KT is the isothermalbulk modulusand
obtainedwherelittle experimentaldataexist, al- C~,is the heatcapacityat constantvolume. The
ternative,approximateformulations,relatingy to microscopicdefinition of y was in fact the origi-
the first derivative of bulk modulus (K) with nal definitionproposedby GrUneisen(1912),who
respectto pressure,dK/dP, and otherthermo- postulatedthat the vibrational frequenciesof the
dynamic quantities,have been constructedand individual atomsin a solid, varied with the vol-
used to evaluate y in the Earth’s interior (see ume, V, via the relation
Poirier, 1991, for a review). However, such ex-
pressionsmay only be valid if the alternative 8 In 0(q),
formulationsused(e.g.Slater1939; Dugdaleand “~ = — a In V (3)
MacDonald 1953; Barron, 1955; Vaschenkoand
Zubarev,1963)aresupportedby a strongtheoret- whereo(q), is the frequencyof the ith mode of
ical underpinning.This can be achievedby corn- vibration, which itself is a function of wavevector
paring the results of the approximatesolutions (q) in the first Brillouin zone, and V is the
with thoseof computermodelling of the lattice volume. Unfortunately,exceptfor y~(O),it is im-
dynamicsof a model system.In order to enable possiblein generalto evaluatey.(q) without ei-
us to compareour conclusionsdirectly with those ther usingsome latticedynamicalmodelor using
of previousworkers,we haveusedthe computer high-pressureinelastic neutron scatteringdata.
code PARAPOCS(Parker and Price, 1989) to Under certain circumstances,the microscopic
calculatey from the predictedphonon frequen- definition of y can be related to the thermal
cies for a monatomiccubiclattice as a functionof definition. It can be shown (e.g. Barron, 1957)
volume. Theprogramusesinteratomicpotentials that at high temperaturesbut within the quasi-
(e.g.Lennard—Jones,Morse,etc.) to describethe harmonic approximation, 7th = (1/n)~y,(q),
interactionsbetween atoms in the lattice. For where n is the number of vibrational modes
sufficiently simple potentials,the necessaryther- (equivalentto 3 Nm, whereN is the numberof
modynamicproperties(suchas dK/dP) can also atoms in the crystal and m is the number of
be evaluatedanalytically and hence a link be- Brillouin zonepoints sampled).At lower temper-
tween the microscopic definition and approxi- atures the low-frequency modes dominateand
mateformulations. the thermodynamic y is given by Yth =

In the following sections, the backgroundis (1/C~)~C~,y~,whereC.,~,1is the heatcapacityat
given to the Grüneisenparameterand a brief constantvolume contributed by each mode 1.
descriptionof the potentialmodelsand method- However, the high-temperatureapproximationis
ology used in the computersimulationsis pre- found to give valueswhich are too smallwhen
sented.Results are given for simple nearest- appliedto real materials(e.g.Chopelas,1990). It
neighbourpairwiseadditive interactionswithin a hasbeen suggested(Price et al., 1987) that this
monatomiccubic lattice, and for less idealized mayresultfrom the intrinsic anharmonicityof the
systemsinvolving firstly longer rangeinteractions atomicvibrations at high temperatures.Gillet et
and then for materialswith the more complex al. (1991) have derived an expressionfor the
NaC1structure, high-temperatureGrUneisenparameter(T s’

which includes intrinsic anharmonic contribu-
tions that reducesto the low-temperaturerela-

2. Definitions of the Grüneisenparameter tion whenthe systemis within the limitations of

Thethermalor macroscopicformulationof the the quasi-harmonicapproximation.
Grüneisenparameteris givenby To circumventthe intractablenatureof ‘y,(q),

a therehavebeenmanyapproximateformulations
Yth = T (2) of the GrUneisenparameter,all of which maybeC~ written (in their zeropressureform) in the style
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of Eq. (1). Oneof the oldestis from Slater(1939) By defining the averageacousticvelocity dif-
andis givenby ferently, thus

1 dK 1 Vm=(VpU~)
113 (7)

(4)
the acoustic Grilneisen parameteris obtained

This relation is valid only if Poissonsratio, v, is (Stacey,1992)
independentof volume, and thereforepressure, 1 dK 4— 5v K dv
andif all ‘y,(q) areequal,which is a direct conse- 7ac 2 d.P — (1 + v)(1 — v)(1 — 2v) 3 d.P
quence of the Debye model from which it is
derived. 1

However, it hasbeen suggested(Knopoff and — — (8)6Shapiro, 1969) that the Grüneisen parameter
does, in fact, have a significant shearmodulus This also reducesto Is if Poisson’sratio is inde-
dependence,especiallywhen consideringmore pendentof pressure.The differencebetweenthe
complex structuressuch as the NaCl structure. above two expressionsfor ‘y lies only in the
They suggestthe following relationfor the ther- definition of the averageacousticvelocity.
mal DebyeGrüneisenparameter,which is simi- Dugdaleand MacDonald (1953) also consid-
larly derivedfrom Debye theory,but in this case ereda simple cubic lattice of independentpairs
the averageacousticwave velocity is replacedby of nearest-neighbouratomsundergoingharmonic
aweightedaverageof the longitudinal and shear oscillations.Implicit in their analysisis the rela-
velocities tion: 8v/8V= — 1/3 V~‘~3V2~3(Pastine,1965).

The modelassumesone-dimensionaloscillations,
1/3( 3 and so by implication only a one-dimensional

Vm = I 1 2 I (5) lattice, which can therefore only take into ac-
count longitudinal vibrationalmodesandat zero

+ ~ ) pressurethe modelgives

ldK 1
giving YDM~~ (9)

1 ldK dK
ID = — + — — g(1 — 2v) — In contrast,Barron (1955)derivedan expression2 dp dP for y basedupon an approximatelatticedynami-

2g d~ cal solutionto the frequencyspectrumwherethe
+ —~--(1+ w)~-~ (6) nth moment between nearestneighboursin a

simple cubic lattice is given by p.,,= / rnsswng

whereK and p. arethe bulk andshearmodulus, (w) do. The theory behind this approachis sig-
respectively,and g(v) is an arithmeticfunctionof nificantly different from those using the Debye
Poisson’sratio. approximationandresultedin

If y is independentof Poisson’sratio,implying 1 dK
that all elasticconstantshave the samepressure YBarron = ~ — 0.94 (10)
or volume dependence,Eq. (6) reducesto the
original Is derivedfrom Debye theory (Eq. (4)). When extendedto include all neighbours,the
However, FalzoneandStacey(1980)suggestthat linear approximationbecomes
this independenceis fundamentally impossible 1 dK
for purelygeometricreasons,thereforeinvalidat-
ing Slater’sformulation of y. If, however,dv/dP YBarron = ~ — 1i2 (11)
is non-zero,thenthishasa significanteffect on y, VaschenkoandZubarev(1963)derivedtheir for-
dependingupon the relative values of dp./dP mulation of the Grüneisenparameter,Yvz’ from
anddK/dP (Knopoff and Shapiro,1969). free-volumetheory basedon anharmoniccentral
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pairwise potentials between nearest-neighbour v of Leibfried andLudwig (1961),which reduced
atomsin a three-dimensionalcubic lattice, and to thefree-volumey whenonlynearest-neighbour
obtained(at zeropressure) interactionswereconsidered.

1 dK 5 Barton andStacey(1985)also usedmolecular
‘Yvz = — — — — (12) dynamicsto obtainvalues for y using potential

2 dP 6 modelssuchas the Born—Mie potentialfunction.
This model automaticallyincorporatesthe vol- They found no agreementwith existingtheoreti-
urne dependenceof Poisson’sratio and reduces cal relationsfor the Grüneisenparameterand
to YDM for one-dimensionalvibrations, proposeda modified free-volumetheory as the

Many variations on the above formulations closest approximationwhich, at zero pressure,
havebeenput forward,eachtrying to reducethe hasavalue approachingthat of Barron.
assumptionsandapproximationsinherentin their In this paper, attempts have been made to
derivation(e.g.Pastine,1965; Leibfried andLud- provide a microscopicunderpinningof the rela-
wig, 1961; Knoppoff and Shapiro, 1969; Irvine tion betweeny anddK/dP, usinglattice dynam-
and Stacey, 1975; Quareniand Mulargia, 1989). ical computermodelling employed in the code
However, such approximatederivations of the PARAPOCS.As with previoustheoreticalmod-
Grüneisenparameterusually consideronly first- els, our simulationsdeal firstly with a simple
order elastic interactionswhich are greatly sim- monatomiccubic latticeandthenthe morecorn-
plified by radial symmetry and elastic isotropy plex NaC1 structure. In both cases,simulations
and neglect any adiabaticcorrections,however were performedat zero pressureand tempera-
small; someneglectoptical modesand consider ture and were constrainedwithin the quasi-
acoustic modes as being independentof each harmonicapproximation.
other and non-dispersive-—anassumptionvalid
only at low temperatures.Of the modelsconsid-
ered, all but Barron’s approachare basedupon 4. Potential models
Debye theory; the differencesbetweenthe ap-
proximateformulationsaregenerallyjust the dif- The four potential forms used in our calcula-
ferencesin the treatmentof averagingout the tions, basedon the PARAPOCScode (Parker
acousticvelocities, and thereforehow Poisson’s andPrice, 1989),were
ratio varieswith volume. (1) the simple harmonicpotentialwhich takes

To assessthe shortcomingsin theseprevious the form
analysesit is essentialto comparetheir results 1
with the completeandstrictly definedy that can qr( r) = — k( r — r0~2 (13)
be obtainedfrom the exactanalysisof the lattice 2
dynamicsof a modelsystem. wherek ~sthe harmonicspringconstant,r is the

interatom~cseparationand r0 is the equilibrium
separation\atzeropressure—afull discussionof

3. Computermodelling the properlies of this special caseis given by
Stacey(1993);

One of the first attempts at the computer (2) the Lennard—Jonespotentialwith theform
simulation of y was by Welch et al. (1978)who A B
simulatedthe motion of atomsvia moleculardy- ‘P(r) = —~- — —~ (14)
namicsin which the potentialrangewas effective T

within second neighboursat constantvolume, where A and B are constants,n and m are
Eachcomputerexperimentdeterminedpressure integersand r is the interatomic separation:to
as a function of temperatureand energyfor an within a constantterm,the harmonicpotentialis
individual atom at constantvolume and a y was equivalentto a Lennard—Jonespotentialwith n
derivedwhichwas found to be equivalentto the = —1 and m = —2;
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(3) the Morse potentialwith the form harmonic potential was used to sample the
2 dK/dP = 1 region the Morsepotentialwith suit-

~P(r) =A{1 — exp[ —B(r — r0)]} —A (15) ably chosenvaluesof B was usedto samplethe

where A and B are constantsand r0 is the dK/dP = 2—4 region. For the Lennard—Jones
equilibrium interatomicseparation; potential we set A = m and B = n, and chose

(4) the Buckinghampotentialwith the form suitablevaluesof m andn to samplethe dK/d P

r c ~ 4 region.
(16)

where A, B and C are constantsand r is the 5. Results
interatomic separation.It can be shown analyti-
cally that for an harmonicpotentialat zeropres- 5.1. Pairwiseinteractions
sure dK/dP= 1. By setting the equilibrium in-
teratomicseparationto unity, it can be shown The Gruneisenparameterwas calculatedat
that for a Morse potential,dK/dP = (1 + B) and zero pressureby perturbing the volume of a
is independentof the energyscaling factor A; monatomiccubic latticeand calculatingthe sub-
and for the Lennard—Jonespotential,dK/dP = sequentfrequencyshiftsvia Eq.(3). Specialpoints
(m+ n + 6)/3, and nA = mB. In order to model (q~> > q) in the first asymmetricBrillouin
dynamically stable equilibrated structures, the zone(ChadiandCohen,1973)weresampled,and
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Fig. 1. Comparisonof various approximationsto y with latticedynamicaly (cut-off 1.3 lattice units).



266 N.L. Voöadlo, G.D. Price / PhysicsoftheEarth and PlanetaryInteriors 82 (1994)261—270

only first nearest-neighbourinteractions(cut-off TABLE 1

rangeof 1.3 lattice units) were considered(see Comparisonof various approximationsto y with the lattice

Table 1 and Fig. 1). Our calculationsof ‘YLD1.3’ dynamicalGrOneisenparameter,y~ (cut-off 1.3latticeunits).
basedon latticedynamics,arein closeagreement dK/dP Yw v~ YDM i~

with Barron’sapproximateformulationandresult — 0.402 0.33 0.00 —0.33 —0.44

in alinear relationof the form 2 0.098 0.83 030 0.17 0.06

dK 3 0.597 1.33 1.00 0.67 0.56
YLD1 3 = 0.5±0.02——0.90±0.02 (17) 4 1.095 1.83 1.50 1.17 1.06dP 5 1.592 2.33 2.00 1.67 1.56

6 2.089 2.83 2.50 2.17 2.06
6.7 2.419 3.17 2.83 2.50 2.39

5.2. Long-rangeinteractions 7 2.584 3.33 3.00 2.67 2.56

8 3.079 3.83 3.50 3.17 3.06
Having establishedan exact expressionfor y

for a systemdeterminedby first-neighbourinter-
actions,we investigatedthe effect of including that such a simulationwould betterapproximate
longer rangeinteractionsas would be found in realmaterialsthanconsideringnearest-neighbour
realmaterials,andsummedthepotentialsup to a interactionsalone.If we were to find any signifi-
cut-off of 15.0 latticeunits. Although still based cant effect in this case,then the result would
upon a simple lattice model, we would expect undermine the usefulnessof the simple free-
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Fig. 2. Comparisonof various approximationsto y with lattice dynamicaly (cut-off 15.0latticeunits).



N.L. Vo~adlo,G.D. Price / Physicsof theEarth andPlanetary Interiors 82 (1994)261—270 267

TABLE 2 volume theory which doesnot addressthe influ-
The variationof y with dK/dP and djs/dP for NaCI-type enceof long-rangeinteractionsupon y. We found
structuresas a function of Buckinghampotential parameters that y~15ois significantlylargerthan YLDi.3’ and
A and B (C = 0), with the ion chargemagnitudemaintained in fact lies somewherebetween YDM and

1vz
at q = ±1 (seeFig. 2) andtakesthe following linear form

A(eV) B(A) y dK/dP d~s/dP
dK

500 0.30 1.590 5.006 1.947 vLD15.o = 0.45±0.03-~-~— 0.43±0.03 (18)
800 0.30 1.599 5.192 1.775

1000 0.30 1.613 5.260 1.719
2500 0.30 1.704 5.958 1.591 In this caseour result is significantly different
5000 0.30 1.792 5.958 1.562 from Barron’s long-range relation, presumably
800 0.35 1.629 5.266 1.831 becauseof thegreateruncertaintyin the method

1000 0.35 1.645 5.515 1.782 of momentstechniquewhenextendedto include
2500 0.35 1.743 5.914 1.676
5000 035 1.834 6.262 1.662 long-range interactions. If our, albeit simple,
800 0.40 1.660 5.406 i.9o9 long-rangeinteractionmodelhassomesimilarity

1000 0.40 1.679 5.825 1.865 to reality, our resultscould give credenceto the
2500 0.40 1.783 6.217 1.778 relatively successful application of the free-
5000 0.40 1.878 6.668 1.781 volume formulation to real systems,for which
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Fig. 3. y vs. dK/dP for NaC1-typestructures.
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dK/dP usually lies between3 and6 (Anderson, havea significantshearmodulusdependence(Eq.
1989), since in this rangeour resultsare reason- (6) above). Geophysically, this would be a vital
ably comparablewith those of the free-volume consideration, since all real materials have a
approach.However, the free—volumetheory was non-zeroshearmodulus.
derivedunder the assumptionthat only nearest- In this section therefore,we considerthe ef-
neighbourinteractionsoccur,so its universalsuc- fect of the shearmoduluson y for a NaCl-type
cesswhen appliedto real materialsis a resultof structurein order to establishthe validity of the
good fortune sincethe effectof long-rangeinter- approximateexpressiongiven in Eq. (6). Using
actionsin real systemsarenot negligible, the PARAPOCScomputercode and the Buck-

ingham potentialmodel, the structurewas per-
5.3. TheNaC1 structureand the role of the shear turbed about its equilibrium position by slightly

modulus adjusting the ambient pressure,within the con-
straints describedin the last section, such that

The above calculationsconsidereda mona- P <K. The pressuredependenceof both the
tomic simple cubic lattice,which, for short-range incompressibility and shearmodulus was then
interactions has, by definition, a zero shear obtained from the resulting calculated elastic
strength.Knopoff and Shapiro(1969) suggested, constants.The simulationswere basedon mono-
however, that the Gruneisenparametershould valent ions interactingvia a Buckinghampoten-
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Fig. 4. y vs. d~/dP for NaCI-typestructures.
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tial model(Eq. (16)),set to includenearestneigh- varieswithin planetaryinteriors, we needeither
hoursonly. By varying the parametersA and B accurateexperimentaldataathigh P andT con-
of the potentialdifferent regionsof dK/dP and ditions or full computercalculationson the dy-
dp./dP spacewere sampled,and thereforethe namicsof the appropriatephases.
variation of y with both dK/dP and dp./dP
could be investigated.The results are given in
Table2 andareillustratedin Figs. 3 and4, where Acknowledgements
we note that the relationship between y and The authorswould like to thankFrank Stacey
dK/dP for the NaC1 lattice is quite different for his helpful comments.NLV gratefully ac-
from that for a simple cubic lattice. Futhermore,
from theseresultsit would appearthat thereis knowledgesthe receiptof aNERC studentship,

and GDP thanks NERC for researchgrant
no obviousform for the dependenceof y on the
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