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ABSTRACT

Full lattice dynamical calculations on a monatomic cubic lattice have confirmed the linear relationship between the
Griineisen parameter and the first derivative of incompressibility with respect to pressure. The exact expressions are
dependent upon the details of the simulation, but generally take the form

y=a45 b ¢))
where y is the Griineisen parameter, K is the bulk modulus, P is pressure and a and b are constants. In our atomistic
simulation we considered pairwise additive Lennard-Jones and Morse potential models. We found that if we only
considered short-range nearest neighbour forces, @ and b take the values 0.50 and 0.90, respectively. This result differs from
the forms of the well-known definitions of the Slater, Dugdale—-Macdonald and Vaschenko-Zubarev (or free-volume) y, but
provides an exact confirmation of the approximations used to obtain the Barron y. In order to determine the wider validity
of such a simple model, further calculations considered long-range forces and the NaCl lattice. This resulted in a reduction
in the values of both ¢ and b in the case of the long-range interactions thereby approaching the free-volume fomulation.
However, no simple relation could be found in the case of the more complex NaCl structure, with no linearity existing
between y and the pressure dependence of the shear modulus.

1. Introduction

The Griineisen parameter, vy, is a valuable
quantity in solid-state geophysics because it can
be used to set limitations on the pressure and
temperature dependence of the thermal proper-
ties of the mantle and core, and to constrain the
adiabatic temperature gradient. It is dimension-
less and, for a wide range of solids, has an ap-
proximately constant value, varying only slowly
with the pressure and temperature (Anderson,
1989).

The Griineisen parameter has both a micro-
scopic and macroscopic definition (Griineisen,
1912), yet the physical connection between them
has been the source of much confusion. The
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macroscopic definition is in terms of familiar
thermodynamic properties, which in principle may
be evaluated experimentally. The microscopic
definition arises from a consideration of the mo-
tion of atoms in a solid and their vibrational
frequencies. If both descriptions are calculated
accurately for a particular structure, they should
take the same value under the limitations of the
quasi-harmonic approximation (Gillet et al.,
1991).

Unfortunately the experimental determination
of the macroscopic Griineisen parameter for many
geophysically relevant materials is very difficult,
requiring prohibitively high temperatures and
pressures which are inaccessible in most laborato-
ries. Furthermore, the microscopic definition may
not be used to evaluate y precisely for real lower
mantle systems since it requires a knowledge of
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the dispersion of the phonon frequencies in the
first Brillouin zone. To allow estimates of y to be
obtained where little experimental data exist, al-
ternative, approximate formulations, relating vy to
the first derivative of bulk modulus (X) with
respect to pressure, dK/dP, and other thermo-
dynamic quantities, have been constructed and
used to evaluate y in the Earth’s interior (see
Poirier, 1991, for a review). However, such ex-
pressions may only be valid if the alternative
formulations used (e.g. Slater 1939; Dugdale and
MacDonald 1953; Barron, 1955; Vaschenko and
Zubarev, 1963) are supported by a strong theoret-
ical underpinning. This can be achieved by com-
paring the results of the approximate solutions
with those of computer modelling of the lattice
dynamics of a model system. In order to enable
us to compare our conclusions directly with those
of previous workers, we have used the computer
code PARAPOCS (Parker and Price, 1989) to
calculate y from the predicted phonon frequen-
cies for a monatomic cubic lattice as a function of
volume. The program uses interatomic potentials
(e.g. Lennard-Jones, Morse, etc.) to describe the
interactions between atoms in the lattice. For
sufficiently simple potentials, the necessary ther-
modynamic properties (such as d K/d P) can also
be evaluated analytically and hence a link be-
tween the microscopic definition and approxi-
mate formulations.

In the following sections, the background is
given to the Griineisen parameter and a brief
description of the potential models and method-
ology used in the computer simulations is pre-
sented. Results are given for simple nearest-
neighbour pairwise additive interactions within a
monatomic cubic lattice, and for less idealized
systems involving firstly longer range interactions
and then for materials with the more complex
Nadl structure.

2. Definitions of the Griineisen parameter

The thermal or macroscopic formulation of the
Griineisen parameter is given by
aVK

Cy-

(2

Y =

where « is the thermal expansion, V is the molar
volume, K is the isothermal bulk modulus and
Cy is the heat capacity at constant volume. The
microscopic definition of y was in fact the origi-
nal definition proposed by Griineisen (1912), who
postulated that the vibrational frequencies of the
individual atoms in a solid, varied with the vol-
ume, V, via the relation

3 In w(q);
)=~ (3)
where w(q); is the frequency of the ith mode of
vibration, which itself is a function of wavevector
(g) in the first Brillouin zone, and V is the
volume. Unfortunately, except for y,(0), it is im-
possible in general to evaluate y(q) without ei-
ther using some lattice dynamical model or using
high-pressure inelastic neutron scattering data.
Under certain circumstances, the microscopic
definition of y can be related to the thermal
definition. It can be shown (e.g. Barron, 1957)
that at high temperatures but within the quasi-
harmonic approximation, vy, = (1/n)Ly{q),
where n is the number of vibrational modes
(equivalent to 3 Nm, where N is the number of
atoms in the crystal and m is the number of
Brillouin zone points sampled). At lower temper-
atures the low-frequency modes dominate and
the thermodynamic vy is given by vy, =
(1/C\)XCy;y,, where Cy; is the heat capacity at
constant volume contributed by each mode i.
However, the high-temperature approximation is
found to give values which are too small when
applied to real materials (e.g. Chopelas, 1990). It
has been suggested (Price et al., 1987) that this
may result from the intrinsic anharmonicity of the
atomic vibrations at high temperatures. Gillet et
al. (1991) have derived an expression for the
high-temperature Griineisen parameter (T > 65),
which includes intrinsic anharmonic contribu-
tions, that reduces to the low-temperature rela-
tion when the system is within the limitations of
the quasi-harmonic approximation.

To circumvent the intractable nature of y,(q),
there have been many approximate formulations
of the Griineisen parameter, all of which may be
written (in their zero pressure form) in the style
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of Eq. (1). One of the oldest is from Slater (1939)
and is given by

=395 & “

This relation is valid only if Poissons ratio, v, is
independent of volume, and therefore pressure,
and if all y,(q) are equal, which is a direct conse-
quence of the Debye model from which it is
derived.

However, it has been suggested (Knopoff and
Shapiro, 1969) that the Griineisen parameter
does, in fact, have a significant shear modulus
dependence, especially when considering more
complex structures such as the NaCl structure.
They suggest the following relation for the ther-
mal Debye Griineisen parameter, which is simi-
larly derived from Debye theory, but in this case
the average acoustic wave velocity is replaced by
a weighted average of the longitudinal and shear
velocities

1/3
3
Vo= |2 )
+
v vg
giving
1 1dK 1—2 dK
= - — 4 — — — — ——
="V 39, 1255
2g du
+T(1+V)ﬁ (6)

where K and p are the bulk and shear modulus,
respectively, and g(v) is an arithmetic function of
Poisson’s ratio.

If v is independent of Poisson’s ratio, implying
that all elastic constants have the same pressure
or volume dependence, Eq. (6) reduces to the
original yg derived from Debye theory (Eq. (4)).
However, Falzone and Stacey (1980) suggest that
this independence is fundamentally impossible
for purely geometric reasons, therefore invalidat-
ing Slater’s formulation of y. If, however, dv/d P
is non-zero, then this has a significant effect on v,
depending upon the relative values of du/dP
and dK/d P (Knopoff and Shapiro, 1969).

By defining the average acoustic velocity dif-
ferently, thus

v = (vpvd)"”’ (7)

the acoustic Griineisen parameter is obtained
(Stacey, 1992)

1dK 4—5v K dv
YT 24P T (1+v)(1—»)(1-2v) 3 dP
1
3 (8

This also reduces to yg if Poisson’s ratio is inde-
pendent of pressure. The difference between the
above two expressions for y lies only in the
definition of the average acoustic velocity.

Dugdale and MacDonald (1953) also consid-
ered a simple cubic lattice of independent pairs
of nearest-neighbour atoms undergoing harmonic
oscillations. Implicit in their analysis is the rela-
tion: dv/3V = —1/3 V51/2V~2/3 (Pastine, 1965).
The model assumes one-dimensional oscillations,
and so by implication only a one-dimensional
lattice, which can therefore only take into ac-
count longitudinal vibrational modes and at zero
pressure the model gives

YoM 2dP 2 (9)
In contrast, Barron (1955) derived an expression
for y based upon an approximate lattice dynami-
cal solution to the frequency spectrum where the
nth moment between nearest neighbours in a
simple cubic lattice is given by u,=["w"g
(w) dw. The theory behind this approach is sig-
nificantly different from those using the Debye
approximation and resulted in

14X 0.94 10
'yBan'on_ZdP . ( )

When extended to include all neighbours, the
linear approximation becomes

Y Barron — E E -1.12 (11)

Vaschenko and Zubarev (1963) derived their for-
mulation of the Griineisen parameter, y_, from
free-volume theory based on anharmonic central
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pairwise potentials between nearest-neighbour
atoms in a three-dimensional cubic lattice, and
obtained (at zero pressure)

Yvz 2dP 6 (12)
This model automatically incorporates the vol-
ume dependence of Poisson’s ratio and reduces
to ypm for one-dimensional vibrations.

Many variations on the above formulations
have been put forward, each trying to reduce the
assumptions and approximations inherent in their
derivation (e.g. Pastine, 1965; Leibfried and Lud-
wig, 1961; Knoppoff and Shapiro, 1969; Irvine
and Stacey, 1975; Quareni and Mulargia, 1989).
However, such approximate derivations of the
Griineisen parameter usually consider only first-
order elastic interactions which are greatly sim-
plified by radial symmetry and elastic isotropy
and neglect any adiabatic corrections, however
small; some neglect optical modes and consider
acoustic modes as being independent of each
other and non-dispersive—an assumption valid
only at low temperatures. Of the models consid-
ered, all but Barron’s approach are based upon
Debye theory; the differences between the ap-
proximate formulations are generally just the dif-
ferences in the treatment of averaging out the
acoustic velocities, and therefore how Poisson’s
ratio varies with volume.

To assess the shortcomings in these previous
analyses it is essential to compare their resuits
with the complete and strictly defined y that can
be obtained from the exact analysis of the lattice
dynamics of a model system.

3. Computer modelling

One of the first attempts at the computer
simulation of y was by Welch et al. (1978) who
simulated the motion of atoms via molecular dy-
namics in which the potential range was effective
within second neighbours at constant volume.
Each computer experiment determined pressure
as a function of temperature and energy for an
individual atom at constant volume and a y was
derived which was found to be equivalent to the

v of Leibfried and Ludwig (1961), which reduced
to the free-volume y when only nearest-neighbour
interactions were considered.

“Barton and Stacey (1985) also used molecular
dynamics to obtain values for y using potential
models such as the Born—Mie potential function.
They found no agreement with existing theoreti-
cal relations for the Griineisen parameter and
proposed a modified free-volume theory as the
closest approximation which, at zero pressure,
has a value approaching that of Barron.

In this paper, attempts have been made to
provide a microscopic underpinning of the rela-
tion between y and d K/d P, using lattice dynam-
ical computer modelling employed in the code
PARAPOCS. As with previous theoretical mod-
els, our simulations deal firstly with a simple
monatomic cubic lattice and then the more com-
plex NaCl structure. In both cases, simulations
were performed at zero pressure and tempera-
ture and were constrained within the quasi-
harmonic approximation.

4. Potential models

The four potential forms used in our calcula-
tions, based on the PARAPOCS code (Parker
and Price, 1989), were

(1) the simple harmonic potential which takes
the form

1
Y(r) = Sk(r=ro)’° (13)

where k is the harmonic spring constant, r is the
interatomic separation and r, is the equilibrium
separation)\ at zero pressure—a full discussion of
the properties of this special case is given by
Stacey (1993);

(2) the Lennard-Jones potential with the form

A B

Y(ry=%--= (14)
where A and B are constants, n and m are
integers and r is the interatomic separation: to
within a constant term, the harmonic potential is
equivalent to a Lennard-Jones potential with »
=—land m= -2;
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(3) the Morse potential with the form
¥(r) =A{1 - exp[-B(r-r)]f' -4 (15)

where 4 and B are constants and r, is the
equilibrium interatomic separation;
(4) the Buckingham potential with the form

Y(r)y=4 exp(—%)—% (16)

where A4, B and C are constants and r is the
interatomic separation. It can be shown analyti-
cally that for an harmonic potential at zero pres-
sure dK/dP = 1. By setting the equilibrium in-
teratomic separation to unity, it can be shown
that for a Morse potential, dK/dP = (1 + B) and
is independent of the energy scaling factor A;
and for the Lennard-Jones potential, dK/dP =
(m+n+6)/3, and n4A = mB. In order to model
dynamically stable equilibrated structures, the
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harmonic potential was used to sample the
dK/dP = 1 region, the Morse potential with suit-
ably chosen values of B was used to sample the
dK/dP =2-4 region. For the Lennard-Jones
potential we set A=m and B =n, and chose
suitable values of m and n to sample the dK/d P
> 4 region.

5. Results
5.1. Pairwise interactions

The Griineisen parameter was calculated at
zero pressure by perturbing the volume of a
monatomic cubic lattice and calculating the sub-
sequent frequency shifts via Eq. (3). Special points
(g,>4q,>4q,) in the first asymmetric Brillouin
zone (Chadi and Cohen, 1973) were sampled, and
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Fig. 1. Comparison of various approximations to y with lattice dynamical y (cut-off 1.3 lattice units).
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only first nearest-neighbour interactions (cut-off
range of 1.3 lattice units) were considered (see
Table 1 and Fig. 1). Our calculations of y;p, 3,
based on lattice dynamics, are in close agreement
with Barron’s approximate formulation and result
in a linear relation of the form

dK
Yiors =05 £0.02—— ~ 0.9 +0.02 (17)

5.2. Long-range interactions

Having established an exact expression for y
for a system determined by first-neighbour inter-
actions, we investigated the effect of including
longer range interactions as would be found in
real materials, and summed the potentials up to a
cut-off of 15.0 lattice units. Although still based
upon a simple lattice model, we would expect

TABLE 1

Comparison of various approximations to y with the lattice
dynamical Griineisen parameter, vy, , (cut-off 1.3 lattice units).

dK/dP  yp s YpM  Yvz ¥ Barron
1 -0.402 0.33 0.00 -0.33 -0.44
2 0.098 0.83 0.50 0.17 0.06
3 0.597 1.33 1.00 0.67 0.56
4 1.095 1.83 1.50 1.17 1.06
5 1.592 2.33 2.00 1.67 1.56
6 2.089 2.83 2.50 217 2.06
6.7 2419 3.17 2.83 2.50 2.39
7 2.584 3.33 3.00 2.67 2.56
8 3.079 3.83 3.50 3.17 3.06

that such a simulation would better approximate
real materials than considering nearest-neighbour
interactions alone. If we were to find any signifi-
cant effect in this case, then the result would
undermine the usefulness of the simple free-
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Fig. 2. Comparison of various approximations to y with lattice dynamical y (cut-off 15.0 lattice units).
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TABLE 2

The variation of y with dK /dP and du /dP for NaCl-type
structures as a function of Buckingham potential parameters
A and B (C = 0), with the ion charge magnitude maintained
atg=+1

AeV) B(A) Y dK/dP du /dP
500 0.30 1.590 5.006 1.947
800 0.30 1.599 5.192 1.775

1000 0.30 1.613 5.260 1.719

2500 0.30 1.704 5.958 1.591

5000 0.30 1.792 5.958 1.562
800 0.35 1.629 5.266 1.831

1000 0.35 1.645 5.515 1.782

2500 0.35 1.743 5914 1.676

5000 0.35 1.834 6.262 1.662
800 0.40 1.660 5.406 1.909

1000 0.40 1.679 5.825 1.865

2500 0.40 1.783 6.217 1.778

5000 0.40 1.878 6.668 1781

1.85

1.80

1.75

.70

gamma

1.65

1.60

1.55

volume theory which does not address the influ-
ence of long-range interactions upon y. We found
that y; s, is significantly larger than vy, ,, 5, and
in fact lies somewhere between ypy and vy,
(see Fig. 2) and takes the following linear form

dK
Yip1so =045 + 0.033)- —-0.43+£0.03 (18)

In this case our result is significantly different
from Barron’s long-range relation, presumably
because of the greater uncertainty in the method
of moments technique when extended to include
long-range interactions. If our, albeit simple,
long-range interaction model has some similarity
to reality, our results could give credence to the
relatively successful application of the free-
volume formulation to real systems, for which

1.50 | L L 2 L e B B B B R B

4.50 5.00 5.50 6.00
dK /dP

Fig. 3. v vs. dK /d P for NaCl-type structures.

6.50 7.00
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dK/dP usually lies between 3 and 6 (Anderson,
1989), since in this range our results are reason-
ably comparable with those of the free-volume
approach. However, the free—volume theory was
derived under the assumption that only nearest-
neighbour interactions occur, so its universal suc-
cess when applied to real materials is a result of
good fortune since the effect of long-range inter-
actions in real systems are not negligible.

5.3. The NaCl structure and the role of the shear
modulus

The above calculations considered a mona-
tomic simple cubic lattice, which, for short-range
interactions has, by definition, a zero shear
strength. Knopoff and Shapiro (1969) suggested,
however, that the Griineisen parameter should

1.90
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O 1.75
E 1.70
O

o

1.65
1.60

1.55
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*

1.50

have a significant shear modulus dependence (Eq.
(6) above). Geophysically, this would be a vital
consideration, since all real materials have a
non-zero shear modulus.

In this section therefore, we consider the ef-
fect of the shear modulus on y for a NaCl-type
structure in order to establish the validity of the
approximate expression given in Eq. (6). Using
the PARAPOCS computer code and the Buck-
ingham potential model, the structure was per-
turbed about its equilibrium position by slightly
adjusting the ambient pressure, within the con-
straints described in the last section, such that
P <« K. The pressure dependence of both the
incompressibility and shear modulus was then
obtained from the resulting calculated elastic
constants, The simulations were based on mono-
valent ions interacting via a Buckingham poten-

1.20 1.40 1.60

dp/dp

Fig. 4. y vs. du /d P for NaCl-type structures.
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tial model (Eq. (16)), set to include nearest neigh-
bours only. By varying the parameters A and B
of the potential different regions of dK/dP and
du/dP space were sampled, and therefore the
variation of y with both dX/dP and du/dP
could be investigated. The results are given in
Table 2 and are illustrated in Figs. 3 and 4, where
we note that the relationship between y and
dK/dP for the NaCl lattice is quite different
from that for a simple cubic lattice. Futhermore,
from these results it would appear that there is
no obvious form for the dependence of y on the
du/dP as suggested by Knopoff and Shapiro
(1969).

6. Summary

Computer calculations of the lattice dynamics
of a monatomic cubic lattice with short-range
nearest-neighbour, pairwise additive potentials
have resulted in a linear relation between the
Griineisen parameter and dK/dP which con-
firms that found by Barron (1955) in preference
to free-volume and other formulations. However,
a different conclusion is reached for the long-
range calculations where the free-volume ap-
proach is the closest approximation and that of
Barron differs significantly. The possible success
of the free-volume formulation may be because it
gives similar results to lattice dynamics irrespec-
tive of the cut-off range in the dK/dP =3-6
region—where most real materials lie. In addi-
tion, we have failed to find any simple relation-
ship between y and du/dP as suggested by
Knoppoff and Shapiro, and, to a first approxima-
tion, this dependence may be ignored.

We conclude that it is not viable to use any of
the approximations for y described in this paper
when making assumptions about the lower man-
tle or planetary interiors. We have found that vy
is lattice dependent since the variation of y with
dK/dP for a simple cubic lattice is significantly
different to that for NaCl-type structures. There-
fore, there is no reason to expect that any of
these approximations for y would be valid for
complex lower mantle oxides such as MgSiO,-
perovskite. In order to be able to predict how vy

varies within planetary interiors, we need either
accurate experimental data at high P and T con-
ditions or full computer calculations on the dy-
namics of the appropriate phases.
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