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Abstract

Agents partition deterministic outcomes into good or
bad. A direct revelation mechanism selects a lottery over
outcomes – also interpreted as time-shares.
The utilitarian mechanism averages over all determin-

istic outcomes “good” for the largest number of agents.
It is e¢cient, strategyproof and treats equally agents and
outcomes.
Insist that for each agent, a good outcome is selected

during at least a fair share of total time: e¢ciency, strat-
egyproofness and equal treatment are then incompatible.
Three mechanisms guaranteeing fair share and equal

treatment are random priority (strategyproof, but e¢cient
only “ex-post”); the Nash bargaining solution, and a fair
variant of the utilitarian mechanism (both e¢cient, but
not strategyproof). The latter mechanism, unlike Nash
and random priority, is computed in linear time.
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Collective choice under
dichotomous preferences

1 The problem and the punch line
Randomization is surely the oldest and most practical tool to achieve equity
in collective decision making. The idea is to design a lottery choosing one of
several mutually exclusive outcomes: the weights of the lottery (the probability
distribution over the deterministic outcomes) are adjusted to capture a certain
notion of fair compromise. Say that we have three outcomes a; b; c, and ten
concerned agents split into 2 supporters of a; 5 of b and 3 of c : a prima facie
fair compromise is the lottery pa = :2; pb = :5; pc = :3:
An alternative interpretation of the convex combination of outcomes is time-

sharing. Think of our agents sharing a “source” such as a TV or radio in a public
space (a gym, the living room of the house they share), and allocating timeshares
to the available channels.
In this paper we revisit the classic negative result on collective choice using

randomization/time-sharing, under the assumption that the preferences are di-
chotomous. That is, each agent sorts the outcomes as either “good” or “bad”
(possibly “all good” or “all bad”); her preferences over deterministic outcomes
have at most two indi¤erence classes.
This is a considerable restriction of the standard domain of rational pref-

erences (complete and transitive). Yet dichotomous preferences arise naturally
in a number of time-sharing problems. In the TV example, the three channels
may broadcast the same news program but in English, French and Spanish re-
spectively, and each agent understands a certain subset of these languages. Or
think of an antenna broadcasting to geographically dispersed agents; for each
orientation of the antenna, only a certain subset of agents receive an adequate
signal, hence their preferences over the feasible set of orientations are dichoto-
mous. Or the source may be choosing the software to run the email server that
a number of machines are sharing, and each machine is compatible only with
certain softwares.
Scheduling problems provide another natural example where preferences are

dichotomous: a user’s only concern is that his job be completed before a certain
deadline. When the server cannot complete all jobs before their respective
deadlines, randomization is the preferred device for fair compromise (see Shenker
[1995], Demers et al. [1990]). We discuss a couple of scheduling examples in
Section 3 (Examples 1,2).
We investigate the compatibility, in the dichotomous domain, of the three

perennial goals of mechanism design: e¢ciency, incentive compatibility and
fairness.
Incentive compatibility takes the standard form of strategyproofness: truthtelling
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is a dominant strategy in the direct mechanism where agents report their pref-
erences.
E¢ciency is the usual Pareto optimality of the lottery/time-sharing. In the

case of lotteries, a weaker property is also of interest: it only requires that each
deterministic outcome chosen with positive probability be Pareto optimal. To
distinguish these two properties, we speak of ex-post e¢ciency for the latter,
and of ex-ante e¢ciency for the former. We stress that ex-post e¢ciency has
no convincing interpretation in the time-sharing context.
Fairness takes two forms. First, we wish to rule out any systematic bias

between agents, or between (deterministic) outcomes: this corresponds to the
familiar properties of anonymity and neutrality. A second and more interesting
constraint guarantees to each participant a certain share of the collective ben-
e…ts: speci…cally, for each one of the n agents, the time share (probability) of
the set of her good outcomes is at least 1

n : One interpretation of this Fair Share
property, in the spirit of bargaining theory, is that each participant can veto any
lottery/time-sharing and claim his fair share of control over the …nal outcome.
The property nicely captures the idea that the collective choice is a compromise,
taking into account to a signi…cant degree each participant’s preferences.
We …nd that the above properties reach the impossibility frontier. It is easy

to …nd anonymous, neutral and strategyproof mechanism which are also ex-post
e¢cient and guarantee the fair share, or which are ex-ante e¢cient. But none
of them can be ex-ante e¢cient and guarantee the fair share: Theorem 1 in
Section 7. We also propose several anonymous, neutral and ex-ante e¢cient so-
lutions guaranteeing the fair share. One of them is particularly easy to compute:
Theorem 3 in Section 8.

2 Overview of the results
Recall …rst the central “negative” result of the literature on collective choice
with lotteries/time-sharing, in the standard preference domain, i.e., when agents
have complete and transitive preferences over deterministic outcomes, and Von
Neumann-Morgenstern utilities over lotteries.
Consider the random dictator mechanism: an agent is randomly selected,

with equal probability for each agent, and chooses freely the …nal outcome.
This mechanism is fair (anonymous and neutral) and strategyproof (ignoring
tie-breaking issues). It is also e¢cient in the weak sense of ex-post e¢ciency,
namely every (deterministic) outcome selected with a positive probability is
Pareto optimal. However, it fails the stronger requirement of ex-ante e¢ciency:
the resulting lottery over outcomes may be Pareto inferior1 .

1 In the above example with 10 agents, imagine a fourth outcome d that is a good compro-
mise between a; b; and c: For instance, VNM utilities are:

# of agents u(a) u(b) u(c) u(d)
2 11 0 0 10
5 0 11 0 10
3 0 0 11 10
The utility of the random priority lottery is 2.2, 5.5, and 3.3 for the three types of agents
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Nandeibam [2001] shows the following converse statement. The random dic-
tator mechanism is essentially characterized by anonymity (equal treatment of
agents), strategyproofness, and ex-post e¢ciency2,3. If we insist on ex-ante e¢-
ciency, then a strategyproof mechanism involves a full time dictator, namely an
agent such that, for any utility pro…le, any outcome chosen with positive proba-
bility is among the dictator’s top outcomes. Gibbard [1977], the seminal paper
on collective choice with lotteries as outcomes, restricts attention to mechanisms
eliciting only ordinal preferences over deterministic outcomes; the same is true
of Barbera [1979], who describes the fair and strategyproof – yet ine¢cient –
mechanisms in this class. The tiny literature on mechanisms eliciting complete
Von Neumann-Morgenstern utilities consists of Gibbard [1978], Hylland [1980],
Freixas [1984], Barbera, Bogomolnaia and Van der Stel [1998], and Nandeibam
[2001].
When preferences are dichotomous over deterministic outcomes, …rst order

stochastic dominance is a complete preference ordering of the lotteries, and
the probability that a certain lottery assigns to an outcome good for agent i
is her canonical utility. The VNM axiomatic construction is pointless in this
preference domain, and the mechanisms eliciting ordinal preferences are the only
ones we need to consider. An easy consequence of this considerable simpli…cation
is this: the incompatibility between anonymity, strategyproofness and ex-ante
e¢ciency disappears. A mechanism meeting all three requirements is the one we
call utilitarian, inspired by plurality voting4: choose randomly and with equal
probability any one of the outcomes deemed “good” by the largest number of
agents (see Section 2, in particular Proposition 1 for details). Yet the utilitarian
mechanism is as uncompromising as any voting rule: if a single outcome has the
largest support, it is chosen with probability one and all agents who do not like
this outcome are left out in the cold (in our numerical example, those are the
…ve supporters of a and c): The utilitarian mechanism violates the Fair Share
property.
A natural mechanism meeting Fair Share simply adapts the random dictator

idea to the dichotomous domain. For each ordering of the agents, we select a
deterministic outcome maximizing lexicographically the utility pro…le (i.e., the
set of agents for whom the outcome is good). The random priority mechanism
obtains by randomizing uniformly over all n! priority orderings. A …xed priority
mechanism is clearly strategyproof, and this property is preserved by averaging:
therefore random priority is a strategyproof mechanism. On the other hand
averaging does not preserve e¢ciency ex-ante: random priority is only ex-post
e¢cient.

respectively, well below the 10 utils from choosing d:
2A much weaker form of e¢ciency is su¢cient for the result: when a certain outcome is

the top for every agent, it is chosen with probability one. Moreover, if we drop the anonymity
requirement, the only new mechanisms choose a dictator according to an arbitrary …xed
probability distribution.

3When preferences over lotteries (or any other convex set of outcomes) are strictly convex,
a similar characterization result obtains: Dutta, Peters and Sen [1999].

4Or approval voting (Brams and Fishburn [1978]): they are the same thing given dichoto-
mous preferences.
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Notice that in the time-sharing interpretation the random selection of a pri-
ority ordering is only virtual. We only care about the actual time shares of
the di¤erent outcomes: the time share of outcome a equals the relative fre-
quency of these priority orderings for which a is a lexicographic maximum. The
computation of these shares turns out to be hard (more on this below).
Thus, within the large family of strategyproof, anonymous and neutral mech-

anisms, we have one ex-ante e¢cient but uncompromising (utilitarian), and one
guaranteeing fair share but ine¢cient (random priority). It turns out that this
trade-o¤ is inescapable: Fair Share and ex-ante e¢ciency cannot both be met
by an anonymous, neutral and strategyproof mechanism: Theorem 1 in Section
7. The incompatibility is preserved if we strenghten strategyproofness to Pref-
erence Monotonicity (when the set of agents for whom outcome a is good grows,
the time-share of any other outcome cannot increase) and weaken Fair Share to
Positive Share (the time-share of any agent’s good outcomes must be strictly
positive): Theorem 2 in Section 7.
The next task is to discover some simple mechanisms meeting Fair Share and

ex-ante e¢cient (hence not strategyproof). The most natural approach is to
maximize a collective utility function. This is especially natural in our problem,
where the canonical utility representation of preferences over lotteries is simply
the probability ui(p) that lottery p chooses one of agent i’s good outcomes (i.e.,
we normalize ui(a) = 1 if a is good and ui(a) = 0 if it is bad).
The Nash collective utility function

P
i log (ui) is interesting on two ac-

counts. For any pro…le of dichotomous preferences, its maximization yields a
unique lottery p¤; moreover p¤ guarantees his fair share to every agent. This
Nash solution even satis…es a stronger lower bound property that we call Fair
Group Share: for any subset S of k agents in an n agents problem, the proba-
bility that (time-share when) the outcome selected is good for at least one agent
in S is no less than k

n : Fair Group Share rewards groups of agents with identical
preferences: each one of k identical agents is guaranteed the utility level kn : Note
that the random priority solution meets Fair Group Share as well. We show in
Section 6 that, among all solutions maximizing a separably additive collective
utility function, only the Nash solution meets Fair Group Share: Proposition 6.
In the last Section 8, we compare the computational complexity of the three

solutions, utilitarian, random priority and Nash. We …nd that the utilitarian
solution is by far the easiest to compute, and the random priority by far the
hardest.
Our main positive result (Theorem 3) proposes an e¢cient and fair mech-

anism that is as easy to compute as the utilitarian one. We call it the fair
utilitarian mechanism because it identi…es the linear combination of individual
utilities maximized on its support. It is anonymous, neutral, ex-ante e¢cient
and meets Fair Group Share.
The companion piece Bogomolnaia and Moulin [2001] develops a related

model of random assignment, under the same assumptions of dichotomous pref-
erences. The problem is to assign to each agent at most one from a set of het-
erogeneous objects, when each agent partitions the objects as “good” or “bad”.
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Randomization (time-sharing) restores fairness. The main simpli…cation of the
assignment problem, relative to the general decision problem discussed here, is
that a random assignment is e¢cient if and only if it is utilitarian (maximizes
the sum of utilities); in particular ex-post and ex-ante e¢ciency coincide. It is
then easy to …nd an e¢cient and strategyproof mechanism guaranteeing a “fair”
share to every participant: the random priority mechanism is an example, the
revelation mechanism selecting the Nash solution is another. In fact, the utility
pro…le of the Nash solution dominates every other feasible pro…le with respect
to the Lorenz partial ordering; moreover the associated revelation mechanism is
group-strategyproof as well.
The model is de…ned in Section 3. In Section 4, we discuss the utilitarian

solution, as well as the familiar property of Group Strategyproofness: we show
that this strengthening of strategyproofness allowing for coalitional manipula-
tions, is simply too demanding in our problem: Propositions 2, 3. Sections 5
and 6 are devoted to, respectively, the random priority and the Nash mecha-
nisms. The impossibility of combining ex-ante e¢ciency, strategyproofness and
fair share is the subject of Section 7. The …nal Section 8 discusses the issue of
computational complexity and de…nes the fair utilitarian mechanism. All non
trivial proofs are gathered in the Appendix.

3 The model
The set N of agents is …nite, and so is the set A of (deterministic) outcomes.
These two sets are …xed for most of our results, with the exception of the
complexity results in Section 8, and of a couple of “minor” axioms5.
A dichotomous preference on A is described by a row vector v 2 f0; 1gA with

the interpretation that outcome a is good if va = 1 and bad if va = 0: We also
say that an agent likes a if va = 1 and dislikes it if va = 0: Note that va = 0
for all a; and va = 1 for all a; are the same preference: agents who are thus
indi¤erent will not matter in any of the mechanisms discussed below.
A N -pro…le of dichotomous preferences is a N £ A matrix U with entry

uai = 0 or 1 : U 2 f0; 1gN£A: We abuse notations slightly by identifying the i¡
row Ui with agent i’s preference, i.e., the subset of outcomes that she likes, and
the a-column Ua with the set of agents who like outcome a:
A problem is a triple (N;A;U) and a lottery (vector of time-shares) is a

column vector p in the A-simplex: pa ¸ 0 for all a and
P
A pa = 1: The canonical

utility of agent i for the lottery p is thus written as ui(p) = Ui ² p =
P
A u

a
i :pa:

A solution to the problem (N;A;U) is a lottery p deemed desirable according
to certain properties of e¢ciency and fairness (de…ned below). When we discuss
properties relating the solutions of di¤erent problems, we speak of a mechanism.
Given N and A; a mechanism is a mapping ¼ selecting for each problem

(N;A;U) a solution p = ¼(U). The following three properties of a mechanism
are standard, and require no further comments:

5Namely independence of clones in Section 4, and outcome monotonicity in Section 7.
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Anonymity: for any pro…le U; and permutation ¾ of N
¼(U) = ¼(¾U) where ¾Ui = U¾(i)
Neutrality: for any pro…le U , and permutation ¿ of A
¼(¿U) =¿¼(U) where ¿pa = p¿(a) and ¿Ua = U¿(a)

Strategyproofness: for any i 2 N; and pro…les U; U 0
fUj = U 0j for all j 6= ig ) fUi ² ¼(U) ¸ Ui ² ¼(U 0)g
An outcome a; a 2 A; is e¢cient at pro…le U if for any other outcome

b; fUa · Ubg ) fUa = Ubg. We distinguish two notions of e¢ciency for a
lottery p :

Ex-Post E¢ciency (EXP): for all a in A fpa > 0g ) fa is e¢cient}
Ex-Ante E¢ciency (EXA): for all lotteries p0 fU ² p · U ² p0g ) fU ² p =

U ² p0g
Ex-ante e¢ciency coincides with ex-post e¢ciency for a deterministic out-

come a; but for lotteries the latter is a strictly weaker requirement than the
former. The simplest example involves …ve outcomes and six agents: see Figure
1. All …ve outcomes are e¢cient, thus any lottery is ex-post e¢cient. However
p; pc = pd = pe =

1
3 ; is strictly Pareto inferior to q; qa = qb =

1
2 :

4 The utilitarian solution
Given a problem (N;A;U) we denote by A1 the subset of outcomes liked by the
largest number of agents:

a 2 A1 , jUaj ¸ ¯̄Ub¯̄ for all b 2 A
One could de…ne the utilitarian solution as the uniform lottery with support

A1: However, the corresponding mechanism is not independent of “clones”.
Two outcomes a; b are clones at U if Ua = Ub: Amechanism ¼ is independent

of clones if the utility vector U ² ¼(U) depends only upon the subset in f0; 1gN
of feasible utility pro…les fUa j a 2 Ag: In other words, the utility pro…le does
not change if we replace a subset of clones by a single outcome. All solutions
discussed in the subsequent sections are independent of clones.
We de…ne the utilitarian solution by …rst decloning the set A1; namely keep-

ing only one copy of each set of clones, which leaves the set A¤1; then taking for
p the uniform lottery over A¤1:
This de…nes unambiguously the total probability/time-share of any set of

clones, but leaves the distribution among clones unspeci…ed. The utility pro…le
is, however, uniquely de…ned. We say that the utilitarian solution is de…ned
“modulo clones”. The obvious proof of our …rst results is omitted.

Proposition 1 The utilitarian mechanism is anonymous, neutral, strategyproof
and ex-ante e¢cient.
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The statement is preserved for the “clone-conscious” version of the utilitarian
mechanism, namely the uniform lottery over A1:
The utilitarian mechanism is robust against strategic misreporting by a single

agent, but it is eminently vulnerable to joint misreporting by several agents.
This is already the case in the simple example with three agents and three
outcomes depicted on Figure 2, where 1¤ stands for a misreport: any two agents
bene…t strictly by pretending to like each other’s good outcome!
The familiar strengthening of strategyproofness to coalitions writes as follows

for an arbitrary mechanism ¼ :
Group-Strategyproofness (GSP): for all S µ N; and pro…les U;U 0
fUj = U 0j for all j 2 NÂS; and Ui ² ¼(U 0) ¸ Ui ² ¼(U) for all i 2 Sg )

Ui ² ¼(U 0) = Ui ² ¼(U) for all i 2 S:
The next result shows that this property is not even compatible with neu-

trality and the weak version of e¢ciency.

Proposition 2 Assume jN j ¸ 4 and jAj ¸ 4: No mechanism is both ex-post
e¢cient and group-strategyproof.

A weaker requirement than GSP only rules out misreporting that strictly
improves the utility of each member of the deviating coalition.
Weak Group-Strategyproofness for all S µ N;and pro…les U;U 0 :
fUj = U 0j for all j 2 NÂSg ) fUi ² ¼(U 0) · Ui ² ¼(U) for some i 2 Sg
Weak Group-Strategyproofness is not incompatible with e¢ciency, even in

the ex-ante sense. Fix an arbitrary ordering ¾ of N; say i1 > i2 > ::: > in, and
a preference pro…le U . Say that outcome a is a ¾-priority outcome at U if Ua

is a lexicographic maximum for the ordering ¾ : for any b 2 A; there exists an
integer m; 0 ·m · n; such that:
uaik = u

b
ik
for k = 1; :::;m and uaik+1 > u

b
ik+1

(where m = 0 if uai1 > u
b
i1
and

m = n if Ua = Ub):
Notice that two ¾-priority outcomes at U must be clones. A ¾-priority

mechanism selects at pro…le U a ¾-priority outcome, or a lottery over these
outcomes. Such a mechanism is de…ned modulo clones, hence its utility pro…le
is uniquely de…ned.
The ¾-priority mechanism is obviously weakly group-strategyproof, as well

as ex-ante e¢cient. But if an ex-ante e¢cient mechanism treats equally agents
and outcomes, it must violate weak GSP, just like the utilitarian mechanism
does in the example of Figure 2.

Proposition 3 Assume jN j ¸ 4 and jAj ¸ 6: An anonymous and neutral mech-
anism cannot be both ex-post e¢cient and weakly group-strategyproof.

Proposition 3 is a tight statement. A ¾-priority mechanism shows that we
cannot drop anonymity. The following non neutral utilitarian mechanism shows
that we cannot drop neutrality either. Fix an arbitrary ordering of A and select
– with probability one – the smallest outcome in A1 according to this ordering:
this mechanism is e¢cient ex-ante, weakly groupstrategyproof and anonymous
(we omit the easy proof).
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5 The random priority solution
We introduce two fairness properties conveying the idea that collective choice is
a compromise awarding to each participant a fair share of the collective bene…ts.
In the two de…nitions below, a problem (N;A;U) and a solution p are given:
Fair Share (FS): for any i 2 N
fUi 6= 0g ) Ui ² p ¸ 1

jNj
Fair Group Share (FGS): for any S µ N
fUi 6= 0 for all i 2 Sg ) US ² p ¸ jSj

jNj ; where U
a
S = max

i2S
uai

Fair Group Share is especially advantageous for agents with identical pref-
erences: when Ui = Uj for all i; j 2 S; this common preference equals US as
well, therefore everyone in coalition S is guaranteed the utility jSj

jNj : For instance
consider a pro…le where each agent likes at most one outcome: given FGS, we
must share the time between the outcomes in proportion to the number of their
supporters.
The random priority solution selects a priority ordering ¾ of N; with uniform

probability over all orderings, and implements a ¾-priority outcome a(¾)(de…ned
at the end of Section 4). Formally, let SN be the set of permutations of N; then
for all pro…les U; this solution p is:

pa =
1

jN j! jf¾ 2 SN : a(¾) = agj for all a 2 A

Recall that the ¾-priority outcome a(¾) is de…ned “modulo clones”: the same
is true of the random priority solution.

Proposition 4 The random priority mechanism is anonymous, neutral and
meets Fair Group Share; it is strategyproof and ex-post e¢cient. It is not ex-
ante e¢cient.

Anonymity and neutrality are obvious. For any …xed ordering ¾; the ¾-
priority mechanism is strategyproof, and this property is preserved by convex
combinations with …xed coe¢cients. To check Fair Group Share, observe that
for a priority ordering ¾ such that the highest priority agent is in S; the outcome
a(¾) is such that Ua(¾)S = 1:
Finally the example of Figure 1 shows why random priority fails ex-ante

e¢ciency. Here the ¾-priority outcome is c if ¾ starts with agent 1 and agent 4
has a higher priority than 2 and 3, or if ¾ starts with 4 and agent 1 is higher
than 5 and 6. Thus pc = pd = pe =

1
9 ; pa = pb =

1
3 ; and ui =

4
9 for all i;

whereas qa = qb = 1
2 yields ui =

1
2 for all i:

It is easy to generalize this example so that the random priority lottery
wastes an arbitrary large fraction of total surplus.
Example 1 There are n = 2m2 agents, each requiring a job of length 1.

There are m types of job k = 1; 2; :::;m; and 2m agents in each type of job.
The server is available for 2m periods during which it can process all 2m agents
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of any given type. However, it takes the server 2m¡ 2 periods to switch from
one type of job to another. Thus it can only process two (any two) agents of
di¤erent types.
The fair and e¢cient solution chooses one of the m types with uniform

probability, and serves all agents of this type, resulting in utility ui = 1
m for

all i: In the random priority solution, on the other hand, for every ordering ¾
where the …rst two agents are of di¤erent types the server ends up processing
only these two. Hence the expected utility u0i =

4m¡3
m(2m2¡1) ' 2

m2 ; for all i:
In the next family of scheduling problems, on the contrary, the di¤erence

between ex-ante and ex-post e¢ciency is nil or small, therefore random priority
is ex-ante e¢cient, or nearly so.
Example 2 The job of agent i; i 2 N; requires xi units of the server’s time.

The server is available for T periods, and can switch instantly between jobs.
Utility of agent i is 1 if her job is completed within T periods, 0 otherwise.
A vector a 2 f0; 1gN is a feasible (deterministic) utility vector if and only if
x ² a · T where x = (xi): By e¢ciency we only need to consider the maximal
feasible vectors a; i.e., those for which the set of satis…ed agents is maximal.
Denote by A the set of these vectors, and simply take the column vector a to be
the corresponding column of U:
In the general problem just described, all outcomes of A are e¢cient by

construction, but a lottery over A may well be ine¢cient.
However, suppose that all e¢cient outcomes a exhaust the T available pe-

riods: x ² a = T for all a: (This holds true for instance if there are at least T
agents with a 1-period job). Then every feasible utility vector u (every convex
combination of the column vectors a) has x ² u = T as well, hence is ex-ante
e¢cient: the two notions of e¢ciency coincide.
Another interesting case is when the length of the di¤erent jobs are not too

di¤erent. Then the e¢ciency loss incurred at any (ex-post e¢cient) lottery will
be small 6.

6 The Nash and other welfarist solutions
Given an increasing and concave function f de…ned on [0; 1], any lottery p
maximizing the separably additive utility function

P
N f(ui) =

P
N f(Ui ² p) is

ex-ante e¢cient. If f is strictly concave, the utility pro…le of any such lottery
is unique for all U : this de…nes, modulo clones, an anonymous, neutral, and
ex-ante e¢cient mechanism. If f is not strictly concave, so that there may be
more than one optimal utility pro…le, it is clearly possible to select a solution
within the convex optimal set in such a way that the resulting mechanism is
anonymous and neutral.

6 Set ® = maxi xi and ¯ = mini xi: E¢ciency of the deterministic outcome a implies
T < x ² a + ® (ignoring the trivial case where all agents can be served at the same time).
Therefore T < x ² u+® for any feasible utility vector. If u0 is feasible and Pareto superior to
u; inequalities x ² u0 · T < x ² u+ ® imply easily Pi u

0
i ¡

P
i ui <

®
¯
:
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We call a f-solution any lottery maximizing the f -collective utility, and speak
of a f-mechanism if a f -solution is chosen for any problem. In this section, we
look for f-mechanisms satisfying Fair Share or strategyproofness.

Proposition 5 If f takes the form f(u) = g(log u), where g is increasing and
concave, then any f-solution meets Fair Share.

Note that we must remove “empty” agents (Ui = 0) when computing the
above f-collective utility function.
Two important members of the family of solutions described in Proposition

5 are the Nash solution corresponding to f(u) = log u, and, abusing language,
the egalitarian solution corresponding to the limit of f-mechanisms where f is
increasingly concave, e.g., f(u) = ¡ jlog ujt and t goes to in…nity: The latter
solution maximizes the leximin ordering (the lexicographic ordering over utility
pro…les rearranged increasingly).

Proposition 6 The Nash solution meets Fair Group Share. No other f-solution
meets this property for all N;A:

Recall from Section 4 that the utilitarian mechanism is strategyproof but fails
Fair Share. Now the Nash mechanism, and a number of other f-mechanisms,
meet Fair Share (Proposition 5) but neither of them is strategyproof.
The four agents, three outcomes example depicted in Figure 3 establishes

the latter claim for the Nash mechanism7: the Nash solution is pa = pb =
1
2

with utility ui = 1
2 for all i; if agent 2 (who likes a and b) denies that she likes

a; the Nash solution in the new problem is pa = 1
4 ; pb = pc =

3
8 and agent 2’s

true utility is 5
8 :

In fact the utilitarian mechanism is (up to the choice of the tie breaking
rule) the only strategyproof f-mechanism:

Proposition 7 If the f-mechanism is strategyproof for all N, A, then f is lin-
ear, so the mechanism chooses with probability one an outcome that is liked by
the largest number of agents.

Within the family of f -mechanisms, a clear trade-o¤ between strategyproof-
ness and Fair Share is the message of Propositions 5, 6, 7. The results of the
next section demonstrate that this trade-o¤ a¤ects a much broader set of mech-
anisms.

7 Two impossibility results
Theorem 1 Assume jN j ¸ 5 and jAj ¸ 17: An anonymous and neutral mech-
anism cannot be ex-ante e¢cient, strategyproof, and meet Fair Share.

7 In this example the same misreport by agent 2 shows that the egalitarian mechanism is
not strategyproof.
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In the above statement, we cannot dispense with either one of ex-ante e¢-
ciency, strategyproofness, or Fair Share: think of the random priority, Nash or
utilitarian mechanism respectively. However, we have not been able to deter-
mine if one of the anonymity or neutrality property (or both) can be dropped.
Another challenging open question is to …nd an anonymous, neutral, ex-ante

e¢cient and strategyproof mechanism that is not utilitarian i.e., at some pro…le
a positive weight goes to an outcome a that does not have the largest support
jUaj :
Our second impossibility results bears on a natural monotonicity property

reminiscent of the positive responsiveness axiom in classic social choice. The
property is de…ned as follows for a given pair N;A and mechanism ¼ :

Preference Monotonicity (PM): for any i 2 N and pro…les U;U 0

fUj = U 0j for all j 6= i and Ui ½6= U
0
ig ) ¼b(U) ¸ ¼b(U 0) for all b 2 U 0iÂUi

The PM property states that whenever a certain outcome a becomes more
popular (in the sense that one or more agents for whom a was bad, now see it
as good) the probability/time-share of every other outcome cannot increase. It
is easy to check that the utilitarian and random priority mechanisms are both
preference monotonic.
Preference Monotonicity is interesting in its own right: it rules out cross-

subsidization between outcomes (lobbying to increase the support of a cannot
increase the time-share of b): Moreover, PM implies strategyproofness.
We check this claim in the simple case where agent i with true utility Ui;

reports instead U 0i where U 0iÂUi = fag and UiÂU 0i = fbg (the general case
is just as easy). Set U 00i = UiÂfbg and write U 0; U 00 for the pro…les where Ui
is replaced by U 0i and U

00
i respectively. By PM and U 0i = U 00i [ fag we have

successively:

¼x(U) · ¼x(U
00) for all x =2 Ui ) Ui ² ¼(U 00) · Ui ² ¼(U)

¼y(U
0) · ¼y(U

00) for all y 2 Ui ) Ui ² ¼(U 0) · Ui ² ¼(U 00)

and strategyproofness follows.
On the fairness side, we consider a much weaker lower bound on individual

utilities. Given a problem (N;A;U) and solution p :

Positive Share (PS) : for any i 2 N fUi 6= 0g ) Ui ² p > 0
Positive Share merely rules out giving no bene…t at all to some agent. Having

thus strengthened the incentive compatibility requirement (to PM) and weak-
ened the fairness one (to PS), a striking incompatibility comes up.

Theorem 2 Assume jN j ¸ 6 and jAj ¸ 8: There is no mechanism meeting
ex-ante e¢ciency, Preference Monotonicity, and Positive Shares.
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Remark 1
In the statement of Theorem 2, we could replace Preference Monotonicity

by the Outcome Monotonicity (OM) property. OM compares two problems
(N;A;U) and (N;A0; U 0) where A ½

6=
A0 and U is the restriction of U 0 to A: It

requires ¼a(A0; U 0) · ¼a(A;U) for all a 2 A: the appearance of new outcomes
in the feasible set cannot result in a larger time share for any old outcome.
The interpretations of PM and OM are similar. The two properties are closely

related logically as well. See the Appendix for details.

8 Complexity and the fair utilitarian solution
We start this section by an informal discussion of the the computational com-
plexity of our three leading solutions, namely utilitarian, Nash and random
priority.
Working on small size examples such as the one depicted in Figure 4 and

involving 14 agents and 6 outcomes, one sees that the utilitarian solution is
the easiest to compute of the three. We remove …rst all but one copy of clone
outcomes, next identify the columns with the largest sum of coordinates and
…nally take the average of the columns with the largest sum. In Figure 1 we get
at once A1 = fa; bg hence the utilitarian solution is pa = pb = 1

2 :
Computing the Nash solution is harder because we must discover the sup-

port of the optimal lottery, thereby identifying the linear system of …rst order
optimality conditions. In the example the support of the Nash solutions p is
fa; b; c; e; fg: Notice that Fair Group Share guarantees pf = 3

14 ; therefore we
only need to solve the reduced system of …rst order conditions involving agents
1,..., 11 and outcomes a; b; c; e :

2

pabc
+

1

pac
+

3

pab
=

2

pabc
+

3

pab
+
1

pb
=

2

pabc
+

1

pac
+
2

pce
=

2

pce
+
2

pe

from which we deduce easily pa = 4
15 , pb =

1
3 , pc =

1
15 , pe =

1
3 .

In general, the Nash solution can be approximated by solving a linear pro-
gram. One way to see this is simply to approximate the Log function by a
piecewise linear function, thus transforming our maximization problem into a
linear program, known to be solvable in polynomial time8. Another way is to
observe that, up to the non-negativity constraints on the lottery p; the Nash
maximization problem amounts to …nd the analytic center of a polytope9, and
the latter is approximated in polynomial time. However the degree of the poly-
nomial rises with the pace of approximation, so that an exact computation of
the Nash solution may be prohibitively long.
The random priority mechanism appears to be even harder to compute than

the Nash one. A probable approximation obtains by a simple Monte Carlo

8We thank Rakesh Vohra for this argument.
9 See e.g., Ye [1997], Chapter 2, Section 2. We thank Eric Friedman for this observation.
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method: draw a priority ordering of N at random, compute the corresponding
priority outcome, and take the average of these outcomes. But a determin-
istic approximation is a much more challenging computation. We give in the
Appendix an exact computation in exponential time. We conjecture that the
random priority solution cannot even be approximated in polynomial time.
In the example, the algorithm described in the Appendix gives the random

priority lottery: pa = 0:177; pb = 0:214; pc = 0:105; pd = 0:100; pe = 0:190;
pf = 0:214: As with the Nash solution, we take advantage of the fact that
pf =

3
14 ; thus reducing the number of agents to 11 and that of outcomes to 5.

We now construct a mechanism as easy to compute as the utilitarian one
–indeed, its very de…nition consists of a sequence of “utilitarian” computations–
, and sharing our most demanding properties of fairness and e¢ciency. In
problems of large size, we submit this mechanism as a reasonable alternative to
the Nash mechanism.
Starting with a problem (N;A;U) in which there are no clones, we con-

struct …rst a …nite increasing sequence 1 = ¸1 < ¸2 < ::: < ¸T ; a partition
N1; N2; :::; NT of N; and a sequence A1; A2; :::; AT of pairwise disjoint subsets
of A such that:

uai = 0 if a 2 At; i 2 Nt0 ; 1 · t < t0 · T (1)

argmax
a2A

fuaN1
+ ¸2u

a
N2
+ :::+ ¸tu

a
Nt
g = [

1·k·t
Ak; for all t = 1; :::; T (2)

where we use the notation uaS =
P
S u

a
i :

De…ne …rst ¸1 = 1; A1 = argmaxuaN and N1 = [
a2A1

Ua: N1 contains all

agents who like at least one outcome in A1: If N1 = N; the algorithm stops here
and T = 1: Otherwise, set ¹ = uaN for any a 2 A1 and check ¹ = uaN1

for all
a 2 A1 and argmaxuaN1

= A1:
Next we de…ne for any a the weight ¸2(a) as the solution of:

uaN1
+ ¸2(a)u

a
Nc
1
= ¹; or ¸2(a) = +1 if uaNc

1
= 0

Observe that ¸2(a) = 0 if a 2 A1 and ¸2(a) > 1 otherwise. De…ne:

¸2 = min
Ac1

¸2(a); A2 = argmin
Ac1

¸2(a); N2 = f[
A2
UagÂN1

By construction uai = 0whenever i 2 N2 and a 2 A1; and argmaxfuaN1+
¸2u

a
N2
g =

A1 [A2:
The algorithm stops here if N1 [N2 = N: Otherwise we de…ne ¸3(a) as the

solution of:

uaN1
+ ¸2u

a
N2
+ ¸3(a)u

a
(N1[N2)c

= ¹ or ¸3(a) = 0 if ua(N1[N2)c
= 0
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and:

¸3 = min
(A1[A2)c

¸3(a); A3 = argmin
(A1[A2)c

¸3(a); N3 = f[
A3
UagÂ(N1 [N2)

One checks the announced properties (1), (2) at every step of this algorithm.
It stops whenever N1; :::; Nt partition N; which must happen after at most n+12
steps, where n = jN j (see below).
We are now ready to de…ne the fair utilitarian solution p¤: The idea is that

an agent i 2 Nt splits the weight 1
n equally between all outcomes of Ui \ At:

Thus:

p¤a =
X

i2Nt\Ua

1

n jUi \Atj if a 2 At; and p
¤
a = 0 otherwise (3)

Theorem 3 The fair utilitarian mechanism is anonymous, neutral, ex-ante ef-
…cient, and it satis…es the Fair Group Share.

From property (2) at t = T; every outcome in [
1·k·T

Ak maximizes a cer-

tain linear combination of the utility functions where all coe¢cients are strictly
positive. Any lottery with support in this set is therefore e¢cient ex ante.
Check now that the fair utilitarian solution meets Fair Group Share. Fix

a coalition S: As the i-th row Ui of the preference matrix is identi…ed with
the subset of good outcomes for agent i; so are US and [

S
Ui; namely the set of

outcomes liked by at least one agent in S:Writing St = S \Nt; by construction
USt \At receives a weight 1

n from each i 2 St therefore:

jStj
n
· (USt \At) ² p · (US \At) ² p

Because the subsets At are pairwise disjoint, the desired inequality follows
by summation over t:
In the example of Figure 1 the fair utilitarian algorithm gives:
A1 = fa; bg; N1 = f1; 2; :::; 7g;
¸2 =

3
2 ; A2 = fc; d; eg; N2 = f8; 9; 10; 11g;

¸3 = 2; A3 = ffg; N3 = f12; 13; 14g
hence the lottery pa = pb = 1

4 ; pc = pd =
1
21 ; pe =

4
21 ; pf =

3
14

The utility pro…les corresponding to our four solutions are given in our last
table. Taking away the utilitarian outlier, we see that for all agents the relative
variation in utility max u¡minu

max u is below 30%; and for half of the agents it is
below 22%:
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u1;2 u3 u4 u5;6 u7 u8;9 u10;11 u12
utilitarian 1 0.5 1 1 05 0 0 0
fair utilitarian 0.596 0.298 0.548 0.5 0.25 0.286 0.190 0.214
Nash 0.524 0.262 0.472 0.472 0.262 0.314 0.262 0.214
random priority 0.596 0.282 0.491 0.391 0.214 0.395 0.190 0.214
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APPENDIX: Proofs

1. Proposition 2
We assume N = f1; 2; 3; 4g and A = fa; b; c; dg: The generalization to more

agents or more outcomes is clear, by “neutralizing” all but four agents and
outcomes (i.e., neutral agents like no outcome and neutral outcomes are liked
by no one). We …x an ex-post e¢cient mechanism meeting GSP and derive a
contradiction.
Let, when agent 1 likes only a; agent 2 likes only b; agent 3 likes only c;

and agent 4 likes only d; the solution be p = (p1; p2; p3; p4): Without loss of
generality we can suppose that p1 > 0: We now …x preferences of agents 2, 3, 4
and consider changes in preferences of agent 1 only.
When agent 1 likes all four outcomes, EXP implies that a gets zero probabil-

ity and hence the solution is q = (0; q2; q3; q4), where q2+q3+q4 = 1. Note that
when agent 1 likes all outcomes she always gets utility 1. Therefore she can
deny liking some outcomes without decreasing her utility. GSP implies then
that such a lie by agent 1 cannot bene…t any other agent. Hence, if agent 1
announces to like a and any non-empty subset of fb; c; dg and the preferences
of agents 2, 3, 4 remain …xed, the solution must still be q = (0; q2; q3; q4).
Thus, if agent 1 likes fa; b; cg, then she gets 1¡ q4. However in this case, if

she lies and denies b and c, she receives utility 1¡ p4. Hence, strategyproofness
requires p4 ¸ q4. Analogously, we obtain p3 ¸ q3 and p2 ¸ q2. Therefore,
p2 + p3 + p4 ¸ q2 + q3 + q4 = 1; and so p1 = 0, a desired contradiction.

2. Proposition 3
We assume jAj = 6; N = f1; 2; 3; 4g, and …x a mechanism satisfying the four

properties listed in the statement. We use the same notations as in the previous
proof, namely outcome a is identi…ed (by neutrality) with the coalition of agents
who like a; and a pro…le is written as a list of at most six coalitions, with the
understanding that the list is completed by empty coalitions.
We compute …rst the lottery selected at a handful of simple pro…les, and

write such a statement as [12; 34] ! (12 ;
1
2); where the right-hand side lists the

probabilities of all the e¢cient outcomes in the order in which they appear in
the pro…le on the left-hand side. The above statement follows from anonymity.
Next consider [12; 34; 3; 3; 4] ! (p; 1 ¡ p); where the shares are for the two

e¢cient outcomes 12 and 34. Notice that p < 1
2 allows a pro…table misreport

by coalition f3; 4g at [12; 34]; whereas p > 1
2 allows such a move by f3; 4g at

[12; 34; 3; 3; 4]. Therefore [12; 34; 3; 3; 4]! (12 ;
1
2):

Our next pro…le is [12; 3; 4]; where by anonymity (combined with neutrality),
[12; 3; 4] ! (y; y0; y0) with y + 2y0 = 1. Next [12; 3; 3; 4; 4] ! (y; y02 ;

y0
2 ;

y0
2 ;

y0
2 )

follows, as in the previous paragraph, from weak GSP applied to coalition {3,4},
anonymity and neutrality. Moreover [12; 3; 4; 2]! (y; y0; y0) because, if outcome
12 receives z > y; agent 2 has a pro…table misreport at [12; 3; 4]; whereas z < y
gives him such a move at [12; 3; 4; 2]: Finally, agent 2 denying outcome “12”

19



changes the latter pro…le to [1; 3; 4; 2], where by symmetry, each outcome gets
probability 1

4 : Therefore strategyproofness implies y ¸ 1
2 : The following just

proven property will be used below:

[12; 3; 3; 4; 4]! (y; y00; y00; y00; y00) with y ¸ 1

2
and y + 4y00 = 1

Consider next [12; 23; 13; 4] where by symmetry the lottery selected is (w;w;w;w0):
By strategyproofness applied to agent 4, [12; 23; 13; 4; 4; 4]! (w;w;w; w03 ;

w0
3 ;

w0
3 );

and similarly [12; 23; 13; 4; 4]! (w;w;w; w02 ;
w0
2 ):

At the pro…le U = [12; 23; 13; 14; 24; 34] every agent gets utility 1
2 by sym-

metry. If each agent i; i = 1; 2; 3; denies outcome i4; the reported pro…le is
[12; 23; 13; 4; 4; 4]. Therefore weak GSP for coalition f1; 2; 3g requires 2w+ w0

3 ·
1
2 , w · 1

6 :
Finally we go back to pro…le V = [12; 23; 13; 4; 4] where (w;w;w; w02 ;

w0
2 ) is

selected. If each agent i; i = 1; 2 denies i3; the reported pro…le is [12; 3; 3; 4; 4]
and agents 1,2 each get utility y + y00 ¸ 1

2 : This is a pro…table manipulation
by coalition f1; 2g : we showed in the previous paragraph that agents 1 and 20s
common utility at V is 2w · 1

3 :

3. Proposition 5
Assume that g is continuously di¤erentiable. Fix a problem (N;A;U) where

Ui 6= 0 for all i. Then the f -collective utility is strictly concave over the set of
feasible utility pro…les U .
Let the (unique!) argmax

P
N f(ui) = v = (v1; :::; vn) where v1 · ::: · vn.

Concavity of g implies that g0(v1) ¸ ::: ¸ g0(vn) ¸ 0.
Since f is increasing, the convex set of feasible utility vectors u lies entirely

below the tangent hyperplane at v, i.e.,X
N

g0(vi)
vi

ui ·
X
N

g0(vi)
vi

vi =
X
N

g0(vi) · ng0(v1)

Applying this inequality to a feasible utility vector w with w1 = 1, we obtain

g0(v1)
v1

=
g0(v1)
v1

w1 ·
X
N

g0(vi)
vi

wi · ng0(v1)

and hence v1 ¸ 1=n; implying all agents get at least Fair Share 1=n:
The proof remains true if we drop the di¤erentiability assumption. We de-

note then by g0 the multi-valued increasing function s.t. g0(ui) is the interval
between the left and the right derivatives of g at ui, and notice that the coor-
dinates of the normal vector to the tangent hyperplane at v must be selections
from g0(vi):

4. Proposition 6
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Check …rst that the Nash solution meets Fair Group Share. Suppose to
the contrary that there is a set S = f1; :::;mg of agents who like outcomes
1; :::; k; (i.e., UaS = 1 for a = 1; :::; k) and the Nash solution p is such that
t = p1 + ::: + pk < k=n: Consider a small " > 0 and the probability vector q;
where qa = pa exp(n¡kn ") for a · k; and qa = pa exp(¡ k

n") for a > k:
Let N(r) =

P
i logUi ² r be the collective utility at lottery r. We compare

N(p) and N(q). Note that the utility of agents 1 to k increased by n¡k
n " from

p to q; while the utility of any of the remaining agents could not decrease by
more than k

n". Thus, we have N(q) ¸ N(p) + n¡k
n "k ¡ k

n"(n¡ k) = N(p):
On the other hand,

P
a qa = t exp(

n¡k
n ")+(1¡ t) exp(¡k

n") = t(1+
n¡k
n ")+

(1¡ t)(1¡ k
n")+ o("

2) = 1+ (tn¡kn ¡ (1¡ t) kn)"+ o("2) < 1 for " small enough,
since it follows from t < k=n that the expression in parentheses is negative. If
we now proportionally increase all qa to make their sum,

P
a q

0
a; equal to 1, we

obtain that N(q0) > N(q) ¸ N(p); and hence p cannot be the Nash solution.
To prove the converse statement, assume that f is continuously di¤eren-

tiable.
Consider n agents, an integer k; such that n > k ¸ 2, and 1+¡ n

k¡1
¢
outcomes.

Fix a pro…le at which there is one outcome a; liked by agent 1 only, and for any
subset of k agents among 2; :::; n there exists an outcome, liked by this subset
exactly. Let p be the probability the outcome a gets under the f -solution.
If we spread the probability 1 ¡ p over the outcomes other then a; the sumP
n¡f1g f(ui) will be maximized when all ui are equal, i.e., when each outcome

receives probability (1 ¡ p)
.¡

n
k¡1
¢
and the resulting utility vector is u1 = p;

u2 = ::: = un = k(1¡ p)=(n¡ 1): By Fair Group Share, p = u1 ¸ 1=n and the
total utility of the remaining agents 1¡ p ¸ (n¡ 1)=n: Thus, maxPN f(ui) =
maxp f(p) + (n ¡ 1)f(k(1 ¡ p)=(n ¡ 1)) is reached at p = 1=n: Assuming f
to be di¤erentiable, this implies f 0(1=n) ¡ kf 0(k=n) = 0; or (1=n)f 0(1=n) =
(k=n)f 0(k=n): Since k and n were arbitrary, it follows that uf 0(u) is a constant.
Hence uf(u) = a lnu+ b; and our f-solution is the Nash one.
Without the di¤erentiability assumption, f must be continuous on [0; 1) and

its derivative f 0 will be a decreasing interval-valued function. The argument
follows similar lines, but becomes more technically involved.

5. Proposition 7
Note that by concavity f is continuous on (0; 1]:
Fix the integers k;m; k > m ¸ 2 and considerm+k¡1 agents i1; :::; ik; j1; :::; jm¡1:

Suppose that for any S ½ I = fi1; :::; ikg of size m there exist an outcome a(S);
liked exactly by the agents from S; and in addition there is only one outcome
b; liked by fj1; :::; jm¡1g: Thus we have

¡
k
m

¢
+ 1 outcomes in total. Let p be

the total probability allocated to all outcomes a(S) and suppose without loss of
generality that agent i1 gets the maximal utility in I: Then ui1 ¸ pm=k; and
hence the total probability allocated to the outcomes a(S) with i1 =2 S is at
most p¡ pm=k · 1¡m=k:
Assume that the preferences of agent i1 change, and now he also likes b: If he

announces his old preferences, he gets at least m=k: Therefore announcing his

21



new preferences must give him at least m=k: Since every outcome is now liked
by exactly m agents, the sum of all utilities will be m and hence the sum of the
utilities of the remainingm+k¡2 agents will be at mostm¡m=k = m(k¡1)=k;
and the least happy of them would have utility at most m(k¡1)=(k(m+k¡2)):
Note that it is possible to …nd a lottery at which each agent gets utility

m=(m+ k ¡ 1): Choose outcome b with probability m=(m+ k ¡ 1) and divide
the remaining probability equally between all outcomes a(S) with i1 =2 S: Our
f-solution picks a utility vector maximizing

P
i f(ui); therefore

P
i f(ui) ¸P

i f(m=(m+ k ¡ 1)) = (m+ k ¡ 1)f(m=(m+ k ¡ 1)):
On the other hand, concavity of f implies

P
i f(ui) ·

P
i f(m=(m+ k¡ 1))

(recall that
P
i ui = m), with equality if and only if f is linear on [minui;maxui]:

Thus, for any k;m; we have equality and f is linear on [minui;maxui] ¶
[m(k¡1)=(k(m+k¡2));m=k]: Sincem(k¡1)=(k(m+k¡2)) < m=(m+k¡2) ·
m=(k + 1); these intervals for the same m and consecutive k have intersecting
interiors. It follows that f is linear on (0;m=(m + 1)] and, given that m is
arbitrary, on (0; 1) and hence on (0; 1]:

6. Theorem 1
Assume to the contrary that there exists a mechanism ¼; satisfying the

premises of the theorem. We will need the following two lemmas.

Lemma 1 Suppose that p = ¼(U), pa = 0; and an agent i likes the outcome a:
If i changes her message by denying liking a; her utility remains unchanged and
the outcome a still gets zero probability.

Proof. Let ui and u0i be agent’s i utility, respectively under her true and
falsi…ed preferences, and p0a be the probability of a under the latter. SP at the
two corresponding pro…les U; U 0 implies ui ¸ p0a+u0i ¸ p0a+(ui¡pa) = p0a+ui:
Hence, ui = u0i and p

0
a = 0:

Lemma 2 Suppose that an outcome a is the only one liked by all agents from
M; Ua = M = fi1; :::; img; for any ik 2 M there exists an outcome bk liked by
ik only, and there is no outcome liked by some agents from M and some from
N ¡M: Then pa ¸ m=n.
Proof. We proceed by induction on m. The case m = 1 is a special case of

FS. Assume m > 1. Note that EXP implies ui = pa for all i 2M .
Suppose that there is no outcome liked by all agents in M ¡ im. If agent

im claims to only like outcome bm (with resulting solution p0), then by FS
p0bm ¸ 1=n; and by induction p0a ¸ (m ¡ 1)=n. Hence by SP, pa = uim ¸
p0bm + p

0
a ¸ m=n.

Suppose now that there are some outcomes liked by all agents in M ¡ im.
By EXP they all must get zero probability. Hence by the previous lemma agent
i1 can lie and deny liking those outcomes without changing her utility ui1 = pa.
The above argument applied to the new preference pro…le gives pa ¸ m=n again.
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>From here on assume N = fi; j; k; l;mg. For any outcome ® call the set
U® a “coalition”. By EXP, only outcomes liked by inclusion maximal coalitions
receive positive probability. We will concentrate on the preference pro…les under
which there is an outcome ®, such that U® = fi; j; kg; and all other coalitions
are of size at most 2. We will represent such pro…les graphically, with vertices for
the agents, a shaded triangle to denote outcome ® and edges to denote maximal
coalitions of size 2. The six instances of interest are shown on Figure 5.
We will assume that all non-empty non-maximal coalitions are singletons,

i.e. coming from outcomes liked by only one agent. We will further insist that
each agent likes exactly 4 outcomes. Thus each diagram on the Figure 5 fully
speci…es the non-maximal coalitions as well. In the argument below we will often
imagine an agent lying, claiming to like or dislike a certain outcome. In each of
those cases we will also assume the agent who lies to keep a total of 4 outcomes of
which she likes, either by denying one of the outcomes only she likes or claiming
to like an outcome no one likes. We will not explicitly specify these …xes below.
Our assumption jAj ¸ 17 allows in each case to construct a preference pro…le
with the above features. For instance for the pro…le corresponding to the case
B we need 11 singleton-liked outcomes in addition to the 4 outcomes liked by at
least two agents; two of the remaining “empty” outcomes will be used when we
consider below a possibility that the agent 1 denies outcomes [1; 13] and [1; 3]
(and thus implicitly assume he claims to like instead another two outcomes,
previously not liked by anybody).
In Figure 5 each maximal coalition is labelled by the probability it receives

under our mechanism ¼. We will derive relations between those probabilities
below. Note that we have used anonymity and neutrality assumptions to label
certain edges with the same variable. To reference certain agents we have la-
belled some vertices by circled positive integers. We will denote the outcome
liked by coalition (x; y) as [x; y]:
Note also that certain edges were labelled by zero. This follows from neu-

trality and EXA as follows. Consider case F. By neutrality the four outcomes
[9; 11], [9; 12], [10; 11], and [10; 12] must all have the same probability. However
if [9; 11], and [10; 12] have positive probability, then we can obtain a Pareto
superior solution by splitting this probability equally between the outcomes ®
and [11; 12]. A similar remark gives zeroes in case D and shows that in case E
either i or k is zero.
Since certain edges have zero probability, we can now apply Lemma 1.
Looking at 10 denying [10; 11]; we see m = h+ k.
Looking at 11 denying [10; 11]; we see 1¡m = 1¡h¡j¡k; or m = h+j+k,

hence j = 0.
Looking at 10 denying [10; 11] and [10; 12]; we see m = b.
Looking at 12 denying [9; 12] and [10; 12]; we see 1 ¡ m = 1 ¡ e ¡ 2f , or

m = e+ 2f .
Looking at 7 denying [7; 8]; we see g = h+ i (since j = 0).
Now suppose 3 denies [1; 3] and simultaneously claims to approve an outcome

[2; 3]: In this case 3 gets 1¡ g, hence by SP we must have 1¡ b¡ c ¸ 1¡ g or
g ¸ b + c. Next suppose 4 denies [4; 5] and simultaneously claims to approve
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an outcome [4; 6]: In this case 4 gets g; hence by SP we must have e + f ¸ g:
Combining these we see that e+f ¸ h+i = g ¸ b+c ¸ b = m = h+k = e+2f:
Thus c = f = 0 and i = k, but since either i or k must be zero, this says

i = k = 0. Hence b = e = g = h = m. Applying Lemma 1 to 1 denying [1; 13]
and [1; 3], we see a = b. Applying Lemma 2 to case A twice we see that a ¸ 3=5
and 1¡ a ¸ 2=5, hence a = b = e = g = h = m = 3=5.
Consider now what happens if the true preferences are given by case B

from Figure 5. An agent 1 will have utility b = 2=5: Suppose he lies, denying
the outcome ®; liked by three agents coalition. The resulting pro…le is shown
on Figure 6. By Lemma 2, ® will receive at least 2=5 and by neutrality the
remaining outcomes liked by maximal coalitions of size 2 will each receive a
third of whatever is left, i.e. at most 1=5: But that means that agent 1 will have
utility at least 4=5. Thus SP is violated and no proposed mechanism exists.

7. Theorem 2
We prove …rst the variant of Theorem 2 where Outcome Monotonicity (OM,

Remark 1) replaces Preference Monotonicity (PM). The proof of Theorem 2 and
the close logical relation between OM and PM are discussed below.
Suppose we have a mechanism meeting OM, EXA and PS. We will look for

outcomes that get zero probability. By OM if an outcome gets zero probability
and we add additional outcomes (with any approval sets) then that outcome
still gets zero probability. We will use this remark to …nd an instance in which
all outcomes approved by a particular agent get zero probability, contradicting
PS.
Consider 6 agents f0; 1; 2; 3; 4; 5g. Suppose (i; j; k;m) is an (ordered) quadru-

ple of distinct elements of f1; 2; 3; 4; 5g. We will …rst look at sets of 5 out-
comes. The …rst four will be liked respectively by coalitions fi; jg, fj; kg, fk;mg,
and fm; ig (forming a “square”), and the …fth one by a coalition obtained by
adding 0 to one of these four. For example, consider coalitions fi; jg, fj; kg,
fk;mg, fm; ig, and f0;m; ig. For this example EXA requires either fi; jg or
fk;mg to get zero probability (and fm; ig must of course get zero probability).
If fi; jg gets zero probability then we will say fm; ig zeroes fi; jg and write
fm; ig ¡! fi; jg. Note that each edge of the square zeroes at least one of its
“neighbors”.
Suppose fm; ig ¡! fi; jg and fk;mg ¡! fj; kg. Then it follows from OM

that with six outcomes and coalitions fi; jg, fj; kg, fk;mg, fm; ig, f0;m; ig, and
f0; k;mg both fi; jg and fj; kg get zero probability and hence u(j) = 0, con-
tradicting PS. Thus the square must be ”oriented”, either fm; ig ¡! fi; jg ¡!
fj; kg ¡! fk;mg ¡! fm; ig, or the reverse. In particular, each edge zeroes
only one of its neighbors.
Consider 6 outcomes with respective coalitions f1; 2g, f2; 3g, f3; 4g, f4; 1g,

f1; 5g, and f5; 3g. These 6 outcomes form 3 squares (1; 2; 3; 4); (1; 2; 3; 5), and
(1; 5; 3; 4). It is impossible to orient all 3 squares in such a way that the orienta-
tions of any two squares coincide on their two common ages. Therefore without
loss of generality we may assume (1; 2; 3; 4) is oriented f4; 1g ¡! f1; 2g ¡!
f2; 3g ¡! f3; 4g ¡! f4; 1g and (1; 2; 3; 5) is oriented f1; 5g ¡! f5; 3g ¡!
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f3; 2g ¡! f2; 1g ¡! f1; 5g. Suppose we add two outcomes with coalitions
f0; 1; 4g and f0; 3; 5g respectively. From the square (1; 2; 3; 4) and f0; 1; 4g we
see f1; 2g gets zero probability. >From the square (1; 2; 3; 5) and f0; 3; 5g we
see that f2; 3g gets zero probability. Therefore u2 = 0 contradicting PS.
The above proof is easily turned into a proof of Theorem 2. We …x A with 8

outcomes, and we complete each one of the pro…les just discussed by “empty”
outcomes. This …x is used everywhere, except in the last pro…le of the previous
paragraph, where all 8 outcomes are non-empty. By PM, if an outcome gets zero
probability and the coalition liking certain other outcomes increases, then the
former outcome still gets zero probability. Thus the above proof remains valid
provided “adding new outcomes” is replaced by “…lling an empty outcome”.

Remark
We note that the two properties PM and OM are closely related. First, if

we make the assumption that adding “empty” outcomes does not change the
solution, then PM clearly implies OM. Conversely, if the mechanism is neutral
and EXP, then OM implies PM.
Indeed, suppose an agent i does not like an outcome a. Add a new outcome

b, such that Ub = Ua [ fig. By OM, the probabilities for all outcomes except b
do not increase. By EXP outcome a now gets zero probability. Again by OM,
deleting outcome a will not decrease the probabilities of other outcomes. Since
these probabilities sum to one, deleting a will not change the probabilities. Thus
we can replace a by b; which is equivalent to changing agent’s i preferences in
favor of a; and the probability of other outcomes will not increase. By neutrality
outcomes are interchangeable, and PM follows.

8. An algorithm computing the random priority solu-
tion.
Given a problem (N;A;U); we denote by (M;B) a subproblem where M µ

N; B µ A; and preferences are the M £ B restriction of U: We call a problem
(N;A;U) clean if it has neither clones or non-e¢cient outcomes, nor any agent
with a single indi¤erence class:

Ua µ Ub ) a = b for all a; b 2 A
; 6= U i 6= A for all i 2 N

Given a clean problem (N;A;U) and a subproblem (M;B); we set S(M;B) =
fi 2 M j ; 6= Ui \ B 6= Bgand check that S(M;B) = ; if and only if jBj = 1;
whereas (S(M;B);B) is a clean subproblem if jBj ¸ 2:
The algorithm starts from a “cleansed” problem (N;A;U) and relies on the

following recursive formula for the random priority solution over any subproblem
(M;B) :

¼a(M;B) =
1

jM j
X

i2Ua\M
¼a(S(M;Ui \B); Ui \B) for all a 2 B

where we set ¼a(;;B) = 1: To check the formula, notice that a can only be
chosen in problem (M;B) if the hightest priority agent is in Ua\M ; given that
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such an agent i is selected …rst, observe that all outcomes outside Ui\B become
irrelevant and all agents outside S(M;Ui \B) can similarly be dropped.
Next we …x an outcome a and an ordering ¾ of Ua: Writing for simplicity

S(B) instead of S(N;B) we construct a sequence ii; :::ik¤ of length at most
jUaj :

i1 is ¾-…rst in Ua; i2 is ¾-…rst in S(Ui1) \ Ua

; :::; ik is ¾-…rst in S(Vk¡1) \ Ua, where we set Vt = \
1·k·t

Uik

The sequence stops at the …rst integer k¤ such that Vk = fag, which happens
in at most jUaj steps, because cleanliness implies \

i2Ua
Ui = fag: Moreover, as

long as Vk contains one or more outcomes other than a; S(Vk) \ Ua 6= ; (by
cleanliness again). Now we set:

µ(a;¾) = (jS(V1)j £ jS(V2)j £ :::£ jS(Vk¤)j)¡1

and the share of a under random priority is …nally given by:

¼a =
1

jN j ¢ f
X

¾2SUa
µ(¾)g

where SUa is the set of permutations of Ua:
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a b c d e
1 1
1 1
1 1

1 1
1 1
1 1

Figure 1

a b c
1 1¤

1¤ 1
1

Figure 2

a b c
1
1 1

1 1
1

Figure 3

a b c d e f
1,2 1 1 1 1
3 1 1
4 1 1 1
5,6 1 1
7 1
8,9 1 1 1
10,11 1
12,13,14 1

Figure 4
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