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Introduction: Learning Models (1/2) ➣➟ ➠ ➪

Main assumption: strategies that have given the higher payoffs are used

more frequently.

Two strands:

1) Choose best strategy against some average of past behavior.

• Fictitious play: Brown (1951), Robinson (1951).

• Best response dynamics: Cournot models, Matsui (1991).

2) reinforcement model: Choose strategies with probabilities in proportion

to average of past payoff.

Bush and Mosteller (1951), Cross (1973), Roth and Erev (1995).

Camerer and Ho (1999): unification of the two strands of models
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Introduction: Learning Models (2/2) ➢➟ ➠ ➪

The Model

• N-player game, each player i has ni strategies.

• si
j ∈ Si: strategy j of player i.

• si(t): strategy played by player i at time t.

• s(t), s−i(t): strategy profiles at time t.

• ui(si
j, s

−i): payoff function. ui(si
j, s

−i) > 0 for all s ∈ S

• P i
j(t): probability that strategy si

j ∈ Si is chosenat time t.
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Learning by reinforcement (1/7) ➣➟ ➠ ➪

Roth and Erev (1995).

I(si
j, s

i(t)): indicator - 1 if j was used by i at time t, 0 otherwise.

Ai
j(t): “propensity” to play strategy j.

Ai
j(t) = A

j
j(t− 1) + I(si

j, s
i(t))ui(si

j, s
−i(t))

A strategy not played does not increase its “propensity”.

Strategies that are played increase their propensity by their payoff.

Strategy j for player i will be played with probability:

P i
j(t + 1) =

Ai
j(t)∑ni

k=1 Ai
k(t)

.

Rewrite this stochastic process, to use stochastic approximation tools.
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Learning by reinforcement (2/7) ➢➣➟ ➠ ➪

Let for all i ∈ N, Ai(t) = (Ai
1(t), ..., A

i
ni

(t)), A(t) = (A1(t), ..., AN(t)).

Let also for all i ∈ N, P i(t) = (P i
1(t), ..., P

i
ni

(t)), P (t) = (P1(t), ..., PN(t)).

Finally let γi(t) =
∑ni

k=1 Ai
k(t) and Πi

j(s(t)) = I(si
j, s

i(t))ui(si
j, s

−i(t)).

We can then write

P i
j(t + 1) = P i

j(t) +
1

γi(t)
Φi

j(P (t), γ(t)) (1)

γi(t + 1) = γi(t) +
ni∑

k=1

Πi
k(s(t)) (2)

with

Φi
j(P (t), A(t)) =

Πi
j(s(t))− P i

j(t)
∑ni

k=1 Πi
k(s(t))

1 + 1
γi(t)

∑ni
k=1 Πi

k(s(t))
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Learning by reinforcement (3/7) ➢➣➟ ➠ ➪

The process defined by 1 is related to the replicator dynamics, defined as:

∂P̂ i
j(t)

∂t
= P̂ i

j(t)

ui(si
j, P̂

−i(t))−
n∑

k=1

P̂ i
k(t)u

i(si
k, P̂−i(t))

 for all i ∈ N, j ∈ Si(3)

= fRD(P̂ (t)) (4)

Proposition 1 (Ianni 2002) There exist n′, ε′ and C such that for ε < ε′,
n > n′, the solutions to the stochastic process P (t) defined by 1 and the

differential equation system P̂ (t) defined by 3 satisfy

Pr

[
sup
k∈K

∣∣∣P̂ (tk)− P (tk)
∣∣∣ > ε

]
≤

C

ε2

K∑
k=1

1

infi∈N γi(tk)2

In other words, for t high enough the trajectories of P̂ (t) and P (t) are

guaranteed to stay arbitrarily close.
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Learning by reinforcement (4/7) ➢➣➟ ➠ ➪

The trick is to transform the stochastic process in a stochastic approxi-

mation algorithm.

These are dynamical systems of the form:

x(t) = x(t− 1) +
1

g(t)
(F (x(t)) + ε(t))

If g(t) is such that
∑∞

t=1 g(t) = ∞, and
∑∞

t=1 g(t)2 is bounded,

then x(t) converges to the solution of ∂x(t)
∂t = F (x(t))
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Learning by reinforcement (5/7) ➢➣➟ ➠ ➪

Proof. (Incomplete.) We can write

Φi
j(P (t), A(t)) = Πi

j(s(t))− P i
j(t)

ni∑
k=1

Πi
k(s(t)) + δi

j(P (t), γ(t))

with

δi
j(P (t), γ(t)) = −

1

γi(t)

Πi
j(s(t))− P i

j(t)
ni∑

k=1

Πi
k(s(t))

 ∑ni
k=1 Πi

k(s(t))

1 + 1
γi(t)

∑ni
k=1 Πi

k(s(t))

Let ū = maxi∈N maxs∈S ui(s). Then one can easily check∑ni
k=1 Πi

k(s(t))

1 + 1
γi(t)

∑ni
k=1 Πi

k(s(t))
≤ ū

Πi
j(s(t))− P i

j(t)
ni∑

k=1

Πi
k(s(t)) ≤ Πi

j(s(t)) ≤ ū

So that ∣∣∣δi
j(P (t), γ(t))

∣∣∣ ≤ 1

γi(t)
ū2
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Learning by reinforcement (6/7) ➢➣➟ ➠ ➪

Now notice that

E

Πi
j(s(t))− P i

j(t)
ni∑

k=1

Πi
k(s(t))|P (t), γ(t)


= ui(si

j, P
−i(t))−

ni∑
k=1

P i
k(t)u

i(si
k, P−i(t))

and then

Φi
j(P (t), A(t)) = fRD(P̂ (t)) + ηi

j(P (t), γ(t)) + δi
j(P (t), γ(t))

where

ηi
j(P (t), γ(t))

= Πi
j(s(t))− P i

j(t)
ni∑

k=1

Πi
k(s(t))− E

Πi
j(s(t))− P i

j(t)
ni∑

k=1

Πi
k(s(t))|P (t), γ(t)
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Learning by reinforcement (7/7) ➢➟ ➠ ➪

From these it is obvious that E
[
ηi
j(P (t), γ(t))|P (t), γ(t)

]
= 0 with bounded

variance. Also as shown above δi
j(P (t), γ(t)) goes to zero as t goes to

infinity

The result follows from straightforward application of the derivations above
and Chebyshev’s inequality.

Remark 2 Proposition 1 implies that if P (0) is close to a strict equilibrium
P ∗, limt→∞ P (t) = P ∗.

Remark 3 Posch (1997) using similar techniques shows that in 2×2 game

(a) The stochastic learning process converges almost surely to a stationary
point or a cycling path of the replicator dynamics.

(b) If the game has a strict equilibrium, the dynamics converge almost
surely to a strict equilibrium.
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Other learning models with low rationality (1/7) ➣➟ ➠ ➪

An alternative approach, by Cross (1973), is to update the probabilities

like:

P i
j(t + 1) =

{
ui(si

j, s
−i(t)) + (1− ui(si(t), s−i(t)))P i

j(t) if si
j = si(t)

(1− ui(si(t), s−i(t)))P i
j(t) if si

j 6= si(t)

It is easy to check that in this case:

E
[
P i

j(t + 1)− P i
j(t)|s(t), P (t)

]
= P i

j(t)

ui(si
j, P

−i(t))−
n∑

k=1

P i
k(t)u

i(si
k, P−i(t))


So the expected rate of change also follows the replicator equation.

Remark, nevertheless, that now the difference

P i
j(t + 1)− P i

j(t)− E
[
P i

j(t + 1)− P i
j(t)|s(t), P (t)

]
is not a term whose variance vanishes over time (as in Roth-Erev).
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Other learning models with low rationality (2/7) ➢➣➟ ➠ ➪

Let

P iθ
j (t + 1) =

 θui(si
j, s

−i(t)) + (1− θui(si(t), s−i(t)))P iθ
j (t) if si

j = si(t)

(1− θui(si(t), s−i(t)))P iθ
j (t) if si

j 6= si(t)

(5)

and the differential equation

∂P̂ i
j(t)

∂t
= P̂ i

j(t)

ui(si
j, P̂

−i(t))−
n∑

k=1

P̂ i
k(t)u

i(si
k, P̂−i(t))

 for all i ∈ N, j ∈ Si

(6)

This presumes that 0 < ui(si(t), s−i(t)) < 1 for all s ∈ S. Then:

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 11
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Other learning models with low rationality (3/7) ➢➣➟ ➠ ➪

Proposition 4 (Börgers and Sarin 1997) Consider solutions to system

5 for all θ and to system 6, all with identical initial conditions. Let a

time T < ∞ and assume that θ → 0 and θt → T. Then P θ(t) converges in

probability to P (T ).

Proof. (Sketch.) The proof relies on an application of a standard theo-

rem on stochastic processes (Norman 1977, th. 1.1.), and only requires

differentiability, (Lipschitz) continuity and finiteness of the conditional ex-

pectation of
∣∣∣P θ(t + 1)− P θ(t)

∣∣∣3 /θ.
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Other learning models with low rationality (4/7) ➢➣➟ ➠ ➪

Proposition 5 (Börgers and Sarin 1997) The stochastic process P θ(t)

converges a.s. to a pure strategy state, and if the initial condition is

completely mixed to all of them with positive probability.

Proof. (Sketch.) An application of another theorem of Norman 1977 (2.3)

which says that the stochastic process converges a.s. to one absorbing

state. In this case, it is immediate that the only absorbing states are

the pure strategy profiles. The second assertion can be shown from the

methods in section 7.2 Bush and Mosteller 1955.
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Other learning models with low rationality (5/7) ➢➣➟ ➠ ➪

Yet another approach from Cabrales (2000).

Let xi
j(t) the proportion of i agents using j at t.

Time is discrete, periods of length τ.

A player i using j at t gets ui(si
j, x

−i(t))τ + εi(t).

εi(t) is i.i.d. uniform random shock with support
[
−A

2 , A
2

]
.

Agents change strategies when total payoff is less than the acceptable

level, normalized to 0. Assume:

max
i∈N,s∈S

ui(s) ≤ A, min
i∈N,s∈S

ui(s) ≥ −A

If the performance of a strategy is adequate, agents keep using it.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 14
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Other learning models with low rationality (6/7) ➢➣➟ ➠ ➪

If it is not, they choose si
j next period with probability xi

j(t).

With these assumptions the probability of changing a strategy j by an
agent i is

pi
j(t) =

A− ui(si
j, x

−i(t))τ

A

hen the dynamics are:

xi
j(t + τ) = xi

j(t)(1− pi
j(t)) +

ni∑
k=1

xi
j(t)x

i
k(t)p

i
k(t)

This can be rewritten as

xi
j(t + τ) = xi

j(t)
ui(si

j, x
−i(t))τ

A
+

ni∑
k=1

xi
j(t)x

i
k(t)

A− ui(si
k, x−i(t))τ

A

= xi
j(t) +

xi
j(t)

A

(
ui(si

j, x
−i(t))τ − ui(si

j, x
−i(t))τ

)
By letting the period length τ go to zero by obtain again the replicator
dynamics.
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Other learning models with low rationality (7/7) ➢➟ ➠ ➪

• We have drifted far from the Roth-Erev reinforcement learning.

• Bad because it is a simple model that captures well observed behavior.

• In fact, Roth-Erev claim that the long run is irrelevant (and their model

probably not good there).

• Unfortunately for reinforcement learning they are not perfect either.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢ 16
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Fictitious play and best-response dynamics (1/6) ➣➟ ➠ ➪

Brown (1951), Robinson (1951), Cournot (1971), Matsui (1991).

Each agent i forms beliefs about the probability that her opponent k will

use strategy sk
j , which we denote by ŝik

j (t),

ŝik
j (t + 1) = (1− λ(t))ŝik

j (t) + λ(t)I(sk
j , sk(t))

where λ(t) = φ + ρ/t.

➟➠ ➪➲ ➪ ➟➠ ➣ ➥ 17
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Fictitious play and best-response dynamics (2/6) ➢➣➟ ➠ ➪

ŝ−i beliefs of player i about others, and BRi(ŝ−i(t)) best responses of i to

ŝ−i(t).

P i
j(t + 1) =


1 if si

j = BR(ŝ−i(t))

0 if si
j /∈ BR(ŝ−i(t))

γi
j if si

j ∈ BR(ŝ−i(t)) and there is k 6= j, si
k ∈ BR(ŝ−i(t))

• Fictitious play strictly speaking when φ = 0, ρ = 1.

• Best response dynamics when φ = 1, ρ = 0.

Proposition 6 A stationary state of P i
j(t + 1) is a Nash equilibrium.

Proof. Trivial, since in a steady state s∗ we have for all s∗ij ∈ BR(s∗−i).

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 18
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Fictitious play and best-response dynamics (3/6) ➢➣➟ ➠ ➪

Remark 7 It is also trivial to show that iteratively strictly dominated

strategies will not be played in the limit.

The first round necessarily eliminates strictly dominated strategies (they

are never a best response), then iterate.

Convergence is not guaranteed in general. For best response dynamics

just think of matching pennies:

1/2 H T
H 1,-1 -1,1
T -1,1 1,-1

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 19
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Fictitious play and best-response dynamics (4/6) ➢➣➟ ➠ ➪

For fictitious play, the famous Shapley (1964) counterexample

1/2 L m R
T 1,0 0,0 0,1
M 0,1 1,0 0.0
B 0,0 0,1 1,0

Empirical frequencies cycle with ever increasing period.
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Fictitious play and best-response dynamics (5/6) ➢➣➟ ➠ ➪
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Fictitious play and best-response dynamics (6/6) ➢➟ ➠ ➪

In some games it does converge:

• Common interest games.

• Zero-sum games.

• 2X2 games.

• Like for other dynamics, strict equilibria are locally stable.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢ 22
33



The experience-weighted attraction learning
model (1/5)

➣➟ ➠ ➪

Camerer and Ho (1999).

The probability that strategy s
j
i ∈ Si is chosen by agent i at time t + 1 is

given by

P i
j(t + 1) =

e
λAi

j(t)∑ni
k=1 e

λAi
j(t)

where Ai
j(t) is the “attraction” of strategy j for agent i at time t, which

is given by:

Ai
j(t) =

φN(t− 1)Ai
j(t− 1) + [δ + (1− δ)I(si

j, s
i(t))]ui(si

j, s
−i(t))

N(t)
.

➟➠ ➪➲ ➪ ➟➠ ➣ ➥ 23
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The experience-weighted attraction learning
model (2/5)

➢➣➟ ➠ ➪

N(t) is a variable that is used to express the importance of past experience

and is recursively defined by

N(t) = ρN(t− 1) + 1, t ≥ 1.

the variables N(t) and Ai
j(t) are started with some initial values N(0), and

Ai
j(0).

Let F i
j(s(t)) = [δ +(1− δ)I(sj

i , si(t))]u
i(si

j, s
−i(t)), then one can also write:

Ai
j(t) =

∑t−1
k=0 φiF i

j(s(t− k)) + φtN(0)Aj
i(0)

ρtN(0) +
∑t−1

k=0 ρk
.
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The experience-weighted attraction learning
model (3/5)

➢➣➟ ➠ ➪

Summary:

• ρ = φ = 1, δ = 1, λ = ∞: fictitious play.

• ρ = φ = 0, δ = 1, λ = ∞: best reply.

• ρ = φ = 0, δ = 0, λ = 1: learning by reinforcement.

• In general ρ = φ, and δ = 1: geometric-weighted belief model.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 25
33



The experience-weighted attraction learning
model (4/5)

➢➣➟ ➠ ➪

β = (ρ, φ, δ, λ, N(0), Aj
i(0)): vector of parameters of this model.

The vector β can be estimated by minimizing:

Qn(s(t), A(t− 1), β) = n−1
n∑

t=1

q(s(t), A(t− 1), β)

where the function

q(s(t), A(t− 1), β) =
J∑

j=1

mi∑
i=1

[I(sj
i , si(t))− P

j
i (t)]

2

in the case of minimum quadratic deviations or

q(s(t), A(t− 1), β) = −
J∑

j=1

mj∑
i=1

[I(sj
i , si(t)) logP

j
i (t)])]

in the case of maximum likelihood.

➟➠ ➪➲ ➪ ➟➠ ➥ ➢➣ ➥ 26
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The experience-weighted attraction learning
model (5/5)

➢➟ ➠ ➪

• No theorems here. This model is vocationally descriptive (Roth-Erev

philosophy).

• Cabrales and Garćıa-Fontes (2000):

Consistent estimates and nice asymptotic distribution if φ < 1.

• So strictly speaking fictitious play and reinforcement learning have too

long memory.

• But, bad small sample properties (with up to 200 repetitions of the

game).

• Solution: random parameters and use cross section.
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Further themes (1/2) ➣➟ ➠ ➪

1. The futile search for convergence.

(a) Hart-Mas Colell (Econometrica 2000, JET 2001) show that regret

matching leads to correlated equilibrium.

(b) Hart-Mas Colell (American Economic Review 2003) show that de-

terministic “uncoupled” dynamics (like all the ones we have seen)

cannot lead to Nash equilibrium in general.

(c) Foster and Young (2003) Hart-Mas Colell (2004 WP), Germano-

Lugosi (2005 WP) show that some “uncoupled” (and weird) sto-

chastic dynamics guarantee convergence to Nash (basically through

exhaustive search).
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Further themes (2/2) ➢➟ ➠ ➪

2. The futile search for uniqueness.

(a) Stochastically stable sets - Kandori-Mailath-Young (Econometrica

1993), Young (Econometrica 1993).

(b) Add to (finite) dynamics like the ones we have seen some mutations.

All populations states should be visited, but spend the longest time

at equilibrium. But some equilibria require more mutations to get

out than others.

(c) Make mutation small. Then the (infinite) amount of time spent in

each equilibrium depends on the likelihood of mutations that move

you out. So at each equilibria you spend 1/εmutations.
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