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Summary In recent years a number of panel estimators have been suggested for sample

selection models, where both the selection equation and the equation of interest contain

individual effects which are correlated with the explanatory variables. Not many studies

exist that use these methods in practise. We present and compare alternative estimators,

and apply them to a typical problem in applied econometrics: the estimation of the wage

returns to experience for females. We discuss the assumptions each estimator imposes on the

data, and the problems that occur in our applications. This should be particularly useful to

practitioners who consider using such estimators in their own application. All estimators rely

on the assumption of strict exogeneity of regressors in the equation of interest, conditional

on individual specific effects and the selection mechanism. This assumption is likely to be

violated in many applications. Also, life history variables are often measured with error in

survey data sets, because they contain a retrospective component. We show how this particular

measurement error, and not strict exogeneity can be taken into account within the estimation

methods discussed.
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1. INTRODUCTION

In many problems of applied econometrics, we only observe data for a subset of individuals from
the overall population, while the parameters of interest refer to the whole population. Examples
are the estimation of wage equations, or hours of work equations, where the dependent variable
can only be measured when the individual participates in the labour market. If the subpopulation
is nonrandomly drawn from the overall population, straightforward regression analysis leads to
inconsistent estimators. This problem is well known as sample selection bias, and a number of
estimators are available which correct for this (see Heckman 1979; Powell 1994 for an overview).

Another problem is the presence of unobserved heterogeneity in the equation of interest.
Economic theory often suggests estimation equations that contain an individual specific effect,
which is unobserved, but correlated with the model regressors. Examples are the estimation
of Frisch demand functions in the consumption and labour supply literature (see, for instance,
Browning et al. 1985; Blundell and MaCurdy 1999; MaCurdy 1981). Similarly, in many
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applications, not all variables that ought to be included in the estimation equation are observed.
An example is unobserved ability in wage equations (see Card 1994 for details). If unobserved
individual specific (and time constant) effects affect the outcome variable, and are correlated with
the model regressors, simple regression analysis does not identify the parameters of interest. For
the estimation of coefficients on variables which vary over time, panel data provide a solution
to this problem, and a number of straightforward estimators are available (see e.g. Chamberlain
1984; Hsiao 1986; Lee 2002; Wooldridge 2002; Arellano 2003 for overviews).

In many applications, both problems occur simultaneously. If the selection process is time
constant, panel estimators solve both problems. But often this is not the case. Some estimators
have been proposed that deal with both sources of estimation bias. We consider three estimators
that allow for additive individual specific effects in both the (binary) selection equation and the
equation of interest and, at the same time, allow for nonrandom selection of the subpopulation
over which the equation of interest is defined.

Wooldridge (1995) has proposed the first estimator we consider. It relies on a full
parameterisation of the sample selection mechanism, and requires specifying the functional form
of the conditional mean of the individual effects in the equation of interest. It does not impose
distributional assumptions about the error terms and the individual effects in the equation of
interest. The second estimator we discuss has been proposed by Kyriazidou (1997). The basic
idea of this estimator is to match observations within individuals that have the same selection effect
in two time periods, and to difference out both the individual heterogeneity term, and the selection
term. The third estimator has been proposed by Rochina-Barrachina (1999). It also differences
out the individual heterogeneity term in the equation of interest, but it imposes distributional
assumptions to derive an explicit expression for the selectivity correction term.

In the first part of the paper we describe, in a unified framework, the main features of the three
estimators, and point out the conditions under which each of them produces consistent estimates
of the parameters of interest. One objective of the paper is to compare alternative estimators, and
to show how the methods can be applied in practise. This is done in the second part of the paper,
where we apply the three methods to a typical problem in labour economics: to estimate the effect
of actual labour market experience on wages of females. Obtaining a consistent estimate of this
parameter is a crucial pre-requisite for the analysis of male–female wage (growth) differentials. A
large literature is concerned with this problem, but not many papers address in depth the problems
arising when estimating this parameter (see England et al. 1988; Polacheck and Kim 1994 for
discussions).

The data for our empirical application is drawn from the first 12 waves of the German Socio-
Economic Panel (GSOEP). In this application, all the before mentioned problems arise. Female
labour market participants are nonrandomly drawn from the overall population. Their participation
propensity depends on unobservables, which are likely to be correlated with the model regressors.
And their productivity depends on unobservables, which are likely to be correlated with the
regressors in the wage equation.

We first present results from standard methods, like OLS, fixed effects and difference
estimators. We then apply the before mentioned estimators, and discuss problems which may
occur in a typical application as ours.

All three estimators impose the assumption of strict exogeneity1 of the explanatory variables.
In many typical applications, like the one we use as an illustration, this assumption is likely to

1Let the model be yt = xt β + ut , t = 1, . . . , T . We define the explanatory variables {x 1, . . . , xT} as strictly exogenous
if E(ut |x 1, . . . , xT ) = 0, t = 1, . . . , T (see also Wooldridge 2002).
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be violated. Some recent papers (Honore and Lewbel 2002; Kyriazidou 2001) consider binary
and/or selection models with nonexogenous explanatory variables. We suggest a simple extension
to the three estimators to relax this assumption in the main equation, maintaining only the strict
exogeneity of the regressors in the selection equation.

Another problem that frequently occurs with panel data is measurement error in explanatory
variables that are based on biographical information obtained at the start of the panel. This is
particularly the case for work history variables. As the error stems mainly from information
relating to events before the panel starts, it is constant over the course of the panel. If the affected
variables enter the equation of interest in a nonlinear manner, IV estimation does not generally
solve the problem. We show how to address this problem for the special case where the variable of
interest is included as a second order polynomial (which is likely to cover a range of specifications).

The paper is organised as follows. In the next section we describe briefly the three estimators
and their underlying assumptions. Section 3 compares the estimators. Section 4 discusses problems
of implementation, and describes extensions to the case where strict exogeneity of some of the
model regressors in the main equation is violated. Section 5 describes the data and the model we
estimate. Section 6 presents the results, and Section 7 concludes.

2. THE MODEL AND ESTIMATORS

2.1. The model

The model we consider in the following consists of a binary selection rule, which depends on a
linear index, and an unobserved (time constant) additive individual effect, which may be correlated
with the model regressors. The selection rule assigns individuals in the overall sample population
to two different regimes. For one regime, a linear regression equation is defined, which, again, has
an additive unobserved individual component, correlated with the model regressors. The slope
parameters of this equation are the parameters of interest.

This model can be written as:

wi t = xitβ + αi + εi t ; i = 1, . . . , N ; t = 1, . . . , T , (1)

d∗
i t = zitγ + ηi + uit ; dit = 1

[
d∗

i t > 0
]
, (2)

where 1[.] is an indicator function, which is equal to one if its argument is true, and zero
otherwise. Furthermore, β and γ are unknown parameter (column) vectors, and xit , zit are vectors
of explanatory variables with possibly common elements, including both time variant and time
invariant variables, and time effects. We assume throughout that there are exclusion restrictions
in (1), although this is not required for some of the estimators we will discuss. The α i and ηi are
unobserved and time invariant individual specific effects, which are possibly correlated with xit

and zit. The ε i t and uit are unobserved disturbances. The variable wit is only observable if dit =
1. The parameter vector we seek to estimate is β.

We assume that panel data is available. Equation (1) could be estimated in levels by pooled
ordinary least squares (OLS). A sufficient condition to obtaining consistent estimates of β is:

E (αi + εi t |xit , dit = 1) = E (αi |xit , dit = 1) + E (εi t |xit , dit = 1) = 0, ∀t . (3)
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OLS estimates on the selected subsample are inconsistent if selection is nonrandom, and/or
if correlated individual heterogeneity is present. In both cases, the conditional expectation in (3)
is unequal to zero.

One way to eliminate the individual heterogeneity term α i is to use some type of difference
estimator. Given identification,2 a sufficient condition for OLS using differences across time to
be consistent is:3

E (εi t − εis |xit , xis, dit = dis = 1) = 0, s �= t, (4)

where s and t are time periods.
Since condition (4) puts no restrictions on how the selection mechanism or the regressors

relate to α i , differencing equation (1) across time not only eliminates the problem of correlated
individual heterogeneity but also any potential selection problem which operates through
α i .

If conditions (3) or (4) are satisfied, the OLS estimator or the difference estimator, respectively,
lead to consistent estimates. If conditions (3) and (4) are violated, consistent estimation requires
taking account of the selection process. The estimators we describe in the next section take the
consistency requirements (3) or (4) as a starting point. The idea of the estimator by Wooldridge
(1995) is to derive an expression for the expected value in (3), and to add it as an additional
regressor to the equation of interest. The estimator by Rochina-Barrachina (1999) derives an
expression for the expected value in (4), which is then added as an additional regressor to the
differenced equation. The estimator by Kyriazidou (1997) matches pairs of observations for a
given individual for whom the conditional expectation in (4) is equal to zero.

2.2. Estimation in levels: Wooldridge’s estimator

The estimation method developed by Wooldridge (1995) relies on level equations. The basic idea
is to parameterise the conditional expectations in (3) and to add these expressions as additional
regressors to the main equation. The method is semiparametric with respect to the main equation,
in the sense that it does not require joint normality of the errors in both equations. Similar to
Heckman’s (1979) two-stage estimator, only marginal normality of the errors in the selection
equation and a linear conditional mean assumption of the errors in the main equation are required.
The time dimension allows controlling for individual effects, which requires further assumptions
for the conditional means of the individual effects in both equations. Wooldridge (1995) imposes
two assumptions on the selection equation (W1 and W2 below), and two assumptions about the
relationship between αi , εi t and the resulting error term in the selection equation (W3 and W4
below).

(1) W1: The conditional expectation of ηi given zi = (zi1, . . . , ziT ) is linear.

Following Chamberlain (1984), Wooldridge (1995) assumes that the conditional expectation
of the individual effects in the selection equation is linear in the leads and lags of the
observable variables zit: ηi = zi1δ1 + . . . + ziTδT + ci, where ci is a random component
independent of everything else.

2Sufficient for identification is that the matrix E[ (xt − xs)
′ (xt − xs)dtds] is finite and nonsingular for all pairs {s,t}.

3If s = t − 1, the data is transformed by applying first differencing over time.
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(2) W2: The errors in the selection equation, vi t = uit + ci , are independent of z̃i and normal
(0, σ 2

t ), where z̃i = (xi , z+
i ) with xi = (xi1, . . . , xiT ) and z+

i containing the nonoverlapping
elements in zi .

(3) W3: The conditional expectation of αi given z̃i and νi t is linear.
Accordingly,4 E (αi |z̃i , νi t ) = xi1ψ1 + . . . + xiT ψT + φtνi t .

5,6 We do not observe ν i t ,
however, but only the binary selection indicator dit. Therefore, E (αi |z̃i , νi t ) has to be replaced
by the expectation of α i given (z̃i , dit = 1), which is obtained by integrating E (αi |z̃i , νi t ) =
xi1ψ1 + . . . + xiT ψT + φtνi t over ν i t > −Hit, where Hit = zi1γ t1 + . . . + ziTγ tT is the
reduced form index for the selection equation in (2), once the time-constant unobserved
effect ηi is specified as in W1 and we have allowed for different σ t according to W2. This
yields E (αi |z̃i , dit = 1) = xi1ψ1 + . . . + xiT ψT + φt E [νi t |z̃i , dit = 1]. No other restriction
is imposed on the conditional distribution of α i given z̃i and ν i t .
(4) W4: εi t is mean independent of z̃i conditional on νi t and its conditional expectation is

linear inνi t .
Accordingly, E (εi t |z̃i , νi t ) = E (εi t |νi t ) = ρtνi t . Again, as we do not observe ν i t but the

binary selection indicator dit, we integrate E (εi t |z̃i , νi t ) = ρtνi t over ν i t > − Hit, resulting in
E (εi t |z̃i , dit = 1) = ρt E [νi t |z̃i , dit = 1].

Under assumptions W1–W4, Wooldridge (1995) derives an explicit expression for

E
(
αi + εi t

∣∣z̃i , dit = 1
) = E

(
αi

∣∣z̃i , dit = 1
) + E

(
εi t

∣∣z̃i , dit = 1
) = xi1ψ1 + . . . + xiT ψT

+ (φt + ρt ) · E
[
νi t

∣∣z̃i , dit = 1
]

(3′)

which results in the following model:

wi t = xi1ψ1 + . . . + xiT ψT + xitβ + tλ (Hit ) + eit , (5)

where t = φ t + ρ t , and λ(Hit ) = E[νi t |z̃i , dit = 1].7 The error term eit ≡ (αi + εi t ) −
E(αi + εi t |z̃i , dit = 1) has the conditional expectation E(eit |z̃i , dit = 1) = 0.

Notice that, under assumption W2 and since ν ir for r �= t is not included in the conditioning
sets of assumptions W3 and W4, the selection term E[νi t |z̃i , dit = 1] is not strictly exogenous in
(5).

To obtain estimates for λ (·), a probit on Hit is estimated for each t in the first step. In
the second step, Wooldridge (1995) proposes to consistently estimate equation (5) either by
minimum distance or pooled OLS regression.8 Under the assumptions W1–W4, the estimator for
β is consistent. Since dependence between the unobservables in the selection equation,ν i t , and

4Recall that we assume throughout exclusion restrictions on (1). For this reason, even if we condition on z̃i the conditional
expectation depends only on xi. This accounts for z+

i being independent of α i and ε i t .
5Alternatively, one may assume that α i depends only on the time average of xit (see Mundlak 1978; Nijman and Verbeek

1992; Zabel 1992).
6The key point for identifying the vector β is that, under vit being independent of z̃i , and the conditional expectation

E (αi |z̃i , νi t ) being linear, the coefficients on the xir , r = 1, . . . , T , are the same regardless of which ν i t is in the
conditioning set (see Wooldridge 1995).

7λ(Hit ) = φ(Hit )/�(Hit ), where φ(·) is the standard normal density function and �(·) is the standard normal cumulative
distribution function.

8In our application we use the minimum distance approach. It is computationally easier to estimate each wave separately
by OLS and to impose cross-equation restrictions by minimum distance. For details on the asymptotic distribution and
variance for the minimum distance estimator of Wooldridge’s (1995) panel data sample selection model see weblink in
acknowledgements.
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the unobservables in the main equation, (ε i t , α i ), is allowed for, selection may depend not only
on the error ε i t , but also on the unobserved individual effect α i . For time varying variables we
can identify β under assumption W3.

2.3. Estimation in differences

2.3.1. Kyriazidou’s estimator. The estimator developed by Kyriazidou (1997) relies on
pairwise differences over time applied to model (1) for individuals satisfying dit = dis = 1,
s �= t . The idea of the estimator is as follows. Reconsider first the expression in (4):

E (εi t − εis |z̃i t , z̃is, αi , ηi , dit = dis = 1)

= E (εi t |z̃i t , z̃is, αi , ηi , dit = dis = 1) − E (εis |z̃i t , z̃is, αi , ηi , dit = dis = 1)

≡ λi ts − λist , (4′)

where z̃i t = (xit , z+
i t ), z̃is = (xis, z+

is), with z+
i t , z+

is containing the nonoverlapping elements in zit

and zis, respectively, and for each time period the selection terms are

λi ts = E(εi t |z̃i t , z̃is, αi , ηi , uit > −zitγ − ηi , uis > −zisγ − ηi )

= �[−zitγ − ηi , −zisγ − ηi ; F(εi t , uit , uis |z̃i t , z̃is, αi , ηi )]

λist = E
(
εis |z̃i t , z̃is, αi , ηi , uis > −zisγ − ηi , uit > −zitγ − η i

)
= � [−zisγ − ηi , −zitγ − ηi ; F (εis, uis, uit |z̃i t , z̃is, αi , ηi )]

where � (·) is an unknown function and F(·) is an unknown joint conditional distribution function
of the errors. The individual effects in both equations are allowed to depend on the explanatory
variables in an arbitrary way, and are not subject to any distributional assumption. Different to
Wooldridge (1995), the individual effects are now included in the conditioning set.

Under the assumption that for individuals for whom zitγ = zisγ and dit = dis = 1, the sample
selection effect is equal in t and s [i.e. λits = λist in equation (4′)], differencing between periods s
and t will entirely remove the sample selection problem and, at the same time, the time constant
individual heterogeneity component.

To ensure that λits = λist holds, Kyriazidou (1997) imposes a ‘conditional exchangeability’
assumption. The resulting estimator is semiparametric with respect to both the error distribution
and the distribution of the individual effects.

To implement this estimator, Kyriazidou (1997) imposes the following condition:

(1) K1: (εi t , εis, uit , uis) and (εis, εi t , uis, uit ) are identically distributed conditional
on z̃it , z̃is, αi , ηi . That is, F (εi t , εis, uit , uis |z̃i t , z̃is, αi , ηi ) =
F (εis, εi t , uis, uit |z̃i t , z̃is, αi , ηi ) .

This ‘conditional exchangeability’ assumption may be rather restrictive in practical
applications. Necessary conditions are that the marginal distributions of (εi t , εis) and (uit, uis)
are identical, respectively. As Lee (2002) points out, in view of the necessary conditions,
exchangeability seems plausible in stationary environments with weak (the error is generated by
a process whose mean and variance are not changing over time) as well as strong (the distribution
is not changing over time) stationarity. Such stationary environments are unlikely to hold in many
applications, as we demonstrate below. Furthermore, joint conditional stationarity is weaker than
joint conditional exchangeability (see Kyriazidou 1997).
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For individuals satisfying dit = dis = 1 (s �= t) and zitγ = zisγ , under assumption K1 and
provided identification is met,9 the OLS estimator applied to

wi t − wis = (xit − xis) β + (εi t − εis) , (6)

is consistent.10 In practice, it is difficult to find individuals with zitγ = zisγ and thus,
more generally, (6) becomes wit − wis = (xit − xis)β + (λits − λist) + ϑ its, where the
error term ϑ its ≡ (ε i t − ε is) − (λits − λist) has a conditional expectation that satisfies
E (ϑi ts |z̃i t , z̃is, αi , ηi , dit = dis = 1) = 0.

To implement the estimator, Kyriazidou (1997) constructs kernel weights, which are a
declining function of the distance |zitγ − zisγ |, and estimates pairwise differenced equations
by weighted OLS.11

The procedure requires estimates of γ , which can be obtained either by smoothed conditional
maximum score estimation (see, for instance, Charlier et al. 1997; Kyriazidou 1997) or conditional
logit estimation (see Chamberlain 1980).12

2.3.2. Rochina-Barrachina’s estimator. This estimator is also based on pairwise differencing
equation (1) for individuals satisfying dit = dis = 1, s �= t . Different from Kyriazidou’s (1997)
estimator, Rochina-Barrachina’s (1999) estimator relies on a parameterisation of the conditional
expectation in (4). On the other hand, it does not impose the ‘conditional exchangeability’
assumption.

To implement the estimator, the following assumptions are made:

(1) RB1: The conditional expectation of ηi given zi is linear.13

(2) RB2: The errors in the selection equation, νi t = uit + ci , are independent of z̃i and normal
(0, σ 2

t ) .
(3) RB3: The errors [(εi t − εis) , νi t , νis] are trivariate normally distributed and independent

of z̃i .

The first two assumptions refer to the selection equation and are similar to assumptions W1
and W2 above. The third assumption imposes restrictions on the joint conditional distribution of
the error terms in the two equations. The method is nonparametric with respect to the individual
effects in the main equation and allows, under its semiparametric version, for a nonparametric
conditional mean of the individual effects in the selection equation on the leads and lags of the
explanatory variables in that equation.

Under assumptions RB1–RB3, the resulting estimation equation is given by

wi t − wis = (xit − xis) β + tsλ (Hit , His, ρts) + stλ (His, Hit , ρts) + ξi ts, (7)

9In this model identification of β requires E[ (xt − xs)
′ (xt − xs)dtds | (zt − zs)γ = 0] to be finite and non-singular.

This shows that an exclusion restriction on the set of regressors in xit is necessary.
10The asymptotic distribution and variance of the minimum distance estimator for the Kyriazidou’s (1997) panel

data model with more than two time periods is derived by Charlier et al. (1997). For more details see the website in
acknowledgements.

11Due to the nonparametric matching involved by this approach convergence of this estimator will be slower than the
usual root n rate.

12In cases with ‘small’ fixed effects, an alternative class of estimators is suggested by Laisney and Lechner (2003).
13We use here the more parametric version of the estimator proposed in Rochina-Barrachina (1999), where the conditional

expectation of η i given zi is parameterised. Alternatively, Rochina-Barrachina (1999) proposes an estimator where the
conditional expectation is left unrestricted.
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where Hiτ = zi1γτ1 + . . . + ziT γτT , τ = t, s, are the resulting reduced form indices in the
selection equation for periods t and s, and ρts = ρ(νt /σt )(νs/σs) is the correlation coefficient between
the errors in the selection equation. Furthermore, tsλ (Hit, His, ρ ts) + stλ (His, Hit, ρ ts) is
the conditional mean E(εi t − εis |z̃i , dit = dis = 1) derived from the three-dimensional normal
distribution assumption in RB3.14 The new error term ξ its ≡ (ε i t − ε is) − [ tsλits + stλist] has
a conditional expectation E(ξi ts

∣∣z̃i , νi t > −Hit , νis > −His ) = 0. To construct estimates of the
λ (·) terms the reduced form coefficients (γ t , γ s) will be jointly determined with ρ ts , using a
bivariate probit for each combination of time periods. The second step is carried out by applying
OLS to equation (7).15

3. COMPARISON OF ESTIMATORS

Table 1 summarises the main features of the three estimators, and the assumptions they impose on
the data. Wooldridge’s (1995) method is the only one that relies on level equations. This makes it
necessary to specify the functional form for the conditional mean of the individual effects in the
main equation (α i), with respect to the explanatory variables (to allow for individual correlated
heterogeneity) and with respect to the random error term ν i t (to allow for selection that depends
on the unobserved effect α i ). In the other two methods, α i is differenced out, and selection may
therefore depend on α i in an arbitrary fashion.

With respect to the assumptions on the functional form of the sample selection effects,
Kyriazidou’s (1997) estimator is the most flexible. It treats them as unknown functions, which
need not to be estimated. Wooldridge (1995) and Rochina-Barrachina (1999) parameterise these
effects, which imposes three assumptions. First, normality for the random component of the
unobservables in the selection equation. Secondly, parameterisation of the way ηi depends on
the explanatory variables. Thirdly, an assumption about the relationship between the errors in
the main equation and the ν i t in the selection equation. In Wooldridge (1995) joint normality of
unobservables in both equations is not needed once a conditional mean independence assumption
(W4), a linear projection specification for ε i t on ν i t and a marginal normality assumption for
the ν i t are imposed. In Rochina-Barrachina’s (1999) estimator, joint normality is assumed, and
linearity between ε i t and ν i t results from the joint normality assumption.

Kyriazidou (1997) does not impose any parametric assumption on the distribution of the
unobservables in the model, but the conditional exchangeability assumption imposes restrictions
on the time series properties of the model, in that it allows for time effects only in the conditional
mean of the regression equation. In Wooldridge (1995) and Rochina-Barrachina (1999) not only
the conditional mean of the regression equation, but also the conditional means of the selection
equation and the second moments of the error terms may incorporate time effects.

No method imposes explicitly restrictions on the pattern of serial-correlation in the error
processes. In Kyriazidou (1997) serial correlation is allowed as far as this does not invalidate the
‘conditional exchangeability’ assumption. Wooldridge’s (1995) method imposes no restriction

14In particular, λ (Hit , His , ρts ) = φ (Hit ) �
(
M∗

i ts

)
/�2 (Hit , His , ρts ) and λ (His , Hit , ρts ) =

φ (His ) �
(
M∗

ist

)
/�2 (Hit , His , ρts ), where M∗

i ts = (His − ρts Hit )/
(
1 − ρ2

ts

)1/2
, M∗

ist = (Hit − ρts His )/
(
1 − ρ2

ts

)1/2
,

φ(·) is the standard normal density function, and �(·), �2(·) are the standard univariate and bivariate normal cumulative
distribution functions, respectively. See Rochina-Barrachina (1999) for more details.

15For the asymptotic distribution and variance of the minimum distance estimator for the Rochina-Barrachina’s (1999)
panel data model with more than two time periods see the website under acknowledgements.
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on the way the time-varying error in the main equation (ε it) relates to the time-varying error in
the selection equation (ν is), for s �= t . Rochina-Barrachina’s (1999) estimator, due to the joint
normality assumption (RB3), imposes linearity on the correlation between ε i t and ν is for s �= t ,
since it includes dit, dis in the conditioning set.

The estimators differ in terms of sample requirements. In Wooldridge (1995) the parameters
of interest are estimated from those observations that have dit = 1. Rochina-Barrachina’s (1999)
estimator uses individuals with dit = dis = 1. Kyriazidou (1997) uses those observations that have
dit = dis = 1, and for which zitγ and zisγ are ‘close’.

The three methods assume i.i.d. cross-section observations. Although Kyriazidou’s method
does not require in principle an i.i.d. assumption across individuals, but identical distribution over
time for a given individual, the asymptotic properties of her estimator are developed under the
i.i.d. assumption.

Kyriazidou’s (1997) estimator imposes the fewest parametric assumptions. However, in
particular applications, problems may arise if there are strong time effects in the selection equation.
In this case, it may be difficult to find observations for which the indices zitγ and zisγ are ‘close’.
Furthermore, identification problems arise if for individuals for whom zitγ and zisγ are ‘close’,
also xit is ‘close’ to xis. In this case, a higher weight is given to observations with little time-
variation in the explanatory variables in the main equation. Similarly, if high matching weights
are assigned to observations whose x variables change in a systematic manner, and low matching
weights to observations where x changes nonsystematically (for example changes in the number of
children is likely to lead to nonsystematic changes in actual experience, thus leading to indices that
are not close), it may not be possible to separately identify the coefficients of these variables from
coefficients on a time trend, or time dummies. These problems occur in our specific application,
as we demonstrate below. Finally, Kyriazidou’s estimator is computationally rather demanding
(it is bandwidth dependent and it requires smoothing) and slower than

√
n-consistent.

4. EXTENSIONS

4.1. Estimation if regressors in the main equation are not strictly exogenous

All the estimators above assume strict exogeneity of the regressors. In many empirical applications,
the strict exogeneity condition (after controlling for both individual heterogeneity and sample
selection) is likely to be violated. The above three estimators can be extended to take account
of not strict exogeneity in the main equation. We maintain the strict exogeneity assumption of
regressors in the selection equation.16

As pointed out by Wooldridge (1995), a more complex case arises when the variables in the
equation of interest are predetermined, and possibly correlated with the individual effects α i . In
this case, the set of valid conditioning variables for the conditional expectation of α i given the
regressors differs for different time periods, in period t the conditioning set is the vector xt

i ≡
(x i1, . . . , xit). If however the conditioning set changes over time, the coefficients for the leads
and lags of the explanatory variables in the linear projection of α i will likewise vary over time,
thus invalidating W3. Hence, the condition for β to be separately identified from ψ(implying that
ψ t1 = ψ 1, . . . , ψ tT = ψ T , t = 1, . . . , T ) does not hold.

16See Lewbel (2003), Honore and Lewbel (2002) and Kyriazidou (2001) for more general discussions of nonexogenous
explanatory variables in binary/selection models.
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One way to deal with this problem is to substitute the not strictly exogenous (predetermined)
time-varying correlated regressors by their predictions, and to apply Wooldridge´s (1995)
estimator. Predictions for this method should be done in a particular way, given that the equations
for all time periods require T unique predictions for each not strictly exogenous variable. This
accounts for the coefficients of all the leads and lags of the linear projection of α i on x̂i , where
x̂i is the vector of predicted regressors for the original xi, to be constant over time. To identify β,
assumption W3 must hold and this constraints the way of obtaining predictions. One way to obtain
valid and unique predictions is to predict each component of the vector xi, using the entire sample
of individuals in the participation equation, and all leads and lags of the explanatory variables in
that equation as instruments.

The other two estimators rely on difference estimation. Hence pre-determined regressors in
the level equation may lead to endogenous regressors in the difference equation. In Kyriazidou’s
(1997) method, a straightforward way to allow for endogenous regressors is an IV type
procedure.17 Let zi be the set of instrumental variables. Then the difference (xit − xis)
fitted by zi is (x̂i t − x̂is) = zi {

∑
j z′

j z j }−1
∑

j z′
j (x jt − x js), and the IV estimator bIV has the

form

bI V =
{∑

i

(x̂i t − x̂is)′ (xit − xis) dit dis�ts [(zit − zis) γ̂ ]

}−1

×
∑

i

(x̂i t − x̂is)′ (wi t − wis) dit dis�ts [(zit − zis) γ̂ ], (8)

where �ts [(zit − zis) γ̂ ] is the kernel weight for individual i in pair (t , s). This approach allows
maintaining the same dimension of (xit − xis) in the estimated instrument set (x̂i t − x̂is), which
is computationally convenient. This pre-estimation of instruments does not affect the asymptotic
distribution of bIV .

Given the nonparametric nature of the sample selection terms in this method, identification
of the parameters of interest requires some component of zit to be excluded from both the
main equation and the instrument set. In practical applications, to find such variables can be
difficult.

A way to allow for endogenous regressors in the main equation for Rochina-Barrachina’s
(1999) estimator is to use a generalised method of moments estimator of the form

bG M M =
{∑

i

ẍ ′
i ts z̈i ts�

−1
∑

i

z̈′
i ts ẍi ts

}−1 ∑
i

ẍ ′
i ts z̈i ts�

−1
∑

i

z̈′
i ts (wi t − wis), (9)

where ẍi ts ≡ [(xit − xis) , λi ts, λist ] and z̈i ts ≡ (zi , λi ts, λist ). The matrix � is given by � =∑
i

z̈′
i ts z̈i tsr2

i ts , where rits = (wit − wis) − (xit − xis)bIV − [IV
ts λits + IV

st λist] are the estimated

residuals. The zi are defined as above, but now the instrument vector for a given pair (t , s), z̈i ts ,
also includes the corresponding sample selection terms λits and λist. By setting � = ∑

i z̈′
i ts z̈i ts

the GMM estimator becomes a simple IV estimator, and estimates can be used as initial estimates
for the GMM estimator.

17The IV version of Kyriazidou’s (1997) estimator has been proved to be consistent in Charlier et al. (1997).
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4.2. Measurement error

In typical panel surveys, the construction of work history variables, like tenure and experience,
is based on retrospective information, which is likely to suffer from measurement error. An
example is labour market experience, which is updated quite precisely during the course of the
panel, but where the pre-sample information stems from retrospective data. The measurement
error in this case is constant within individuals. If this variable enters the equation of interest
in a linear way, differencing eliminates the measurement error. If this variable enters in a
nonlinear way, differencing over time does not eliminate the measurement error. In what
follows, we show how to address this problem for the special case where the variable of
interest is included as a second order polynomial (which is likely to cover a range of
specifications).

For illustration, suppose that the scalar variable xit is measured with error, and we include its
level and its square among the regressors in equation (1). Let the measured variable x∗

i t be equal
to the true variable xit, plus an individual specific error term:

x∗
i t = xit + μi , (10)

where μi is assumed to be uncorrelated with xit, and independent of the errors in the selection
equation (the vit in Wooldridge and Rochina-Barrachina’s estimators or the uit in Kyriazidou’s
estimator). Assume that the variable xit enters the equation of interest as a second order polynomial.
For Wooldridge’s (1995) estimator, writing the true regression equation in (5) in terms of the
observed variables leads to the following expression:

wi t = x∗
i1ψ1 + . . . + x∗

iT ψT + x∗2
i1 θ1 + . . . + x∗2

iT θT + x∗
i tβ1 + x∗2

i t β2 + tλ (Hit )

+ [
eit − (ψ1 + . . . + ψT + β1) μi + (θ1 + . . . + θT + β2) μ2

i

− 2
(
θ1x∗

i1 + . . . + θT x∗
iT + β2x∗

i t

)
μi

]
(11)

where the new error term is now given by the expression in brackets.
A common solution to solve the measurement error problem is to use instrumental variable

estimation. However, this estimation strategy does no longer lead to consistent estimates in a
nonlinear error in variables problem, because the error of measurement is no longer additively
separable from the regressors (see expression (11)). Hence, it is impossible to find instruments
which are correlated with the observed regressors, but uncorrelated with the new error term
in (11).

An alternative solution is to use predicted regressors. In contrast to standard instrumental
variables techniques, the use of predicted regressors, once the disturbances of the equation of
interest have been purged for correlated heterogeneity and sample selection, allows to estimate
the model under some conditions.

Let the true variable xit be determined by a vector of instruments zi,

xit = ziδt + sit . (12)

Assume that δ t is known since it is identified from

x∗
i t = ziδt + sit + μi . (13)

C© Royal Economic Society 2007



ectj˙208 ECTJ-xml.cls May 3, 2007 14:0

Selection correction in panel data models 275

For Wooldridge’s (1995) estimator, substitution of (12) into equation (5) yields the following
expression

wi t = (ziδ1)ψ1 + . . . + (ziδT )ψT + (ziδ1)2θ1 + . . . + (ziδT )2θT

+(ziδt )β1 + (ziδt )
2β2 + tλ(Hit )

+[
eit + (si1ψ1 + . . . + siT ψT + sitβ1) + (

s2
i1θ1 + . . . + s2

iT θT + s2
i tβ2

)
+2((ziδ1)si1θ1 + . . . + (ziδT )siT θT + (ziδt )sitβ2)

]
,

where the term in brackets is the new error term, which is a function of the error term (eit) in (5),
of linear and quadratic terms in sit, and of cross products sit(zi δ t ). To obtain consistent estimates
of slope parameters, we need to assume that E(new error term|zi δ t ) is a constant that does not
vary with zi. This holds if the zi are uncorrelated with the error term (eit) in (5), and if the sit

are independent of zi. Independence guaranties not only that the first conditional moment of sit is
equal to zero, but also excludes conditional heteroskedasticity of sit.

When estimating the model in differences, writing the true regression equation in (6) and (7)
in terms of the observed variables in (10) yields:

wi t − wis = (
x∗

i t − x∗
is

)
β1 + (

x∗2
i t − x∗2

is

)
β2 + E (εi t − εis |· ) + [

πi ts − 2β2

(
x∗

i t − x∗
is

)
μi

]
= (

xit − xis

)
β1 + (

x∗2
i t − x∗2

is

)
β2 + E (εi t − εis |· ) + [

πi ts − 2β2

(
xit − xis

)
μi

]
(14)

where E(ε i t − ε is |·) and π its are equal to E (εi t − εis |z̃i t , z̃is, αi , ηi , dit = dis = 1) and ϑ its,
respectively, for Kyriazidou (1997) and to E (εi t − εis |z̃i , dit = dis = 1) and ξ its for Rochina-
Barrachina (1999). The new error is given by the term in brackets. Therefore, differencing does
not take care of the measurement error, which will lead to biased and inconsistent OLS estimates.
However, the IV estimators in Section 4.1 can be used to address not only the problem of not
strictly exogenous regressors but also the measurement error problem.18

5. EMPIRICAL MODEL AND DATA

5.1. Estimation of wage equations for females

There is a large literature that analyses male–female wage differentials (see e.g. Cain 1986
for a survey, Blau and Kahn 1997 for some recent trends, and Fitzenberger and Wunderlich
2002 for a detailed descriptive analysis for Germany). Much of this literature is concerned
with establishing the difference in returns to human capital and work history variables between
males and females. To obtain an estimate of this parameter requires consistent estimation of the
underlying parameters of the wage equation. This is not an easy task, as selection and individual
heterogeneity lead to estimation problems in straightforward regressions. An additional problem
arises from the measurement of work experience. Many data sets have no information on actual
work experience, and analysts have used potential experience (Age-Education-6) instead. While
in some circumstances being an acceptable approximation for males, this measure is likely to

18Notice that this holds only for this specific type of measurement error, and if the specification is quadratic in the
respective variable. Still, this is likely to cover many applications.
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overestimate experience for females, thus resulting in underestimated returns to labour market
experience.

Some recent studies use data from longitudinal surveys, which provide measures of actual
work experience. This variable however adds to the problems in estimating wage equations for
females. Work experience is likely to be correlated with unobservables, which determine current
wages. Kim and Polacheck (1991), among others, suggest difference estimators to deal with this
problem. This leads to consistent estimates only if the selection process is time constant, as we
have shown above. Furthermore, since work experience is the accumulation of past participation
decisions, it is unlikely to be strictly exogenous in a wage equation.

Our objective in this application is to obtain an estimate of the effect of work experience on
log wages for females, using the estimators discussed in Section 2. Our empirical analysis is based
on data from a 12-year panel.

We define the log wage equation and the participation equation as follows:

wi t = xitβ + Expitϕ + Exp2
i tζ + αi + εi t ; i = 1, . . . , N ; t = 1, . . . , T , (15)

d∗
i t = zitγ + ηi + uit ; dit = 1

[
d∗

i t > 0
]
, (16)

where wit are log real wages. The variable d∗
i t is a latent index, measuring the propensity of

the individual to participate in the labour market, and dit is an indicator variable, being equal to
one if the individual participates. Our parameter of interest is the effect of actual labour market
experience (Exp) on wages. The vector xit is a subset of zit that contains education and time
dummies. The vector zit contains, in addition to education and time dummies, age and its square,
three variables measuring the number of children in three different age categories, an indicator
variable for marital status, an indicator variable for the husband’s labour market state, and other
household income. We consider the participation equation as a reduced form specification, where
labour market experience is reflected by the children indicators, age, and the other regressors. We
assume that all regressors in the participation equation are strictly exogenous. The wage variable
wit in (15) is only observable if dit = 1.

Within this model, there are a number of potential sources of bias for the effects of the
experience variable. First, unobserved heterogeneity. Unobserved worker characteristics such as
motivation and ability or effort may be correlated with actual experience. If high ability workers
have a stronger labour market attachment than low ability workers, OLS on equation (15) results
in upward biased coefficients (see Altonji and Shakotko 1987; Dustmann and Meghir 2005 for a
discussion). Second, sample selection bias through unobservable characteristics affecting the work
decision being correlated with unobservable characteristics affecting the process determining
wages. This problem is particularly severe for females. Third, experience is likely to be not
strictly exogenous, even after controlling for heterogeneity and sample selection. Labour market
experience in any period t is an accumulation of weighted past participation decisions: Expit =∑t−1

s=1 risdis , where ris is the proportion of time individual i allocates in period s to the labour
market.19 In turn, participation depends on wage offers received. Accordingly, any shock to
wages in period t affects the level of labour market experience in the future, thus violating the
strict exogeneity condition for this variable. Furthermore, given the above formulation, past shocks
to wages affect current experience also by altering the weights ris. A final problem is measurement

19Labour market experience is formed according to Expit = Expit−1 + r it−1 d it−1, where we obtain by direct substitution
Expit = ∑t−1

s=1 risdis .
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error. As typical in survey data, the experience variable is constructed as the sum of pre-sample
retrospective information, and experience accumulated in each year of the survey (see data section
for details). Experience updates constructed within the 12 years window of the survey should only
be marginally affected by missmeasurement, but the pre-sample experience information is likely
to suffer considerably from measurement error. As a consequence, the experience variable is
measured with error, which is constant over time for a given individual.

5.2. Data and sample retained for analysis

Our data is drawn from the first 12 waves of the German Socio-Economic Panel (GSOEP) for
the years 1984–1995 (see Wagner et al. 1993 for details on the GSOEP). We extract a sample of
females between 20 and 64 years old, who have finished their school education, and who have
complete data during the sample period on the variables in Table 2 (with the exception of wages for
females who do not participate in a given period). We exclude individuals who are self-employed
in any of the 12 years. We define an individual as participating in the labour market if she reports
to have worked for pay in the month preceding the interview. We compute wages by dividing
reported gross earnings in the month before the interview by the number of hours worked for
pay. We obtain a final sample of 1053 individuals, resulting in 12636 observations. We use both
participants and nonparticipants for the estimation of the selection equation. For estimation of the
wage equations, we use all females that participate in at least two waves.20

Summary statistics and a more detailed description of the variables are given in Table 2.
The variable Exp, which reports the total labour market experience of the individual in the year
before the interview, is computed in two stages: First, we use information from a biographical
scheme, which collects information on various labour market states before entering the panel. This
information is provided on a yearly basis, and participation is broken down into part- and full-time
participation. We sum these two labour market states up to generate our total experience variable
at entry to the panel. In every succeeding year, this information is updated by using information
from a calendar, which lists labour market activities in every month of the year preceding the
interview. Again, we sum up part- and full-time work.21 Accordingly, after entering the panel, our
experience variable is updated on a monthly basis. Furthermore, it relates to the year before the
wage information is observed. If wage contracts are renegotiated at the beginning of each calendar
year, this experience information should be the information on which the current contract is based.
Participation is defined as being in the state of part- or full-time employment at the interview time.
Nonparticipation is defined as being in the state of nonemployment or unemployment. On average,
54% of our sample population participates. The average age in the whole sample is 42 years, with
individuals in the working sample being slightly younger than in the nonworking sample.

We do not restrict our sample to married females. From the 12636 observations, 10680
(84.52%) are married, of whom 51% participate in the labour market. We observe a higher
percentage of labour market participants (72%) among the nonmarried. Of the 1053 females in
our sample, 780 are married in each of the 12 periods, 87 are not married in any period, and 186
are married between 1 and 11 years of the sample periods.

20To check whether this selection introduces a bias, we compare the means of explanatory variables for the samples
excluding, and including females who are only observed once in participation (5861 and 5915 observations, respectively).
Differences are very small, and never statistically significant.

21This assumes that part- and full-time experience adds to human capital in the same way. An alternative would be to
give a lower weight to part-time experience. The choice of the weight is problematic, however.
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Table 3. State frequencies

No. of Years Participating individuals Number of state changes

Frequency Percent Changes Frequency Percent

0 241 22.89 0 502 47.67

1 45 4.27 1 273 25.93

2 29 2.75 2 131 12.44

3 40 3.80 3 84 7.98

4 53 5.03 4 47 4.46

5 47 4.46 5 10 0.95

6 37 3.51 6 3 0.28

7 49 4.65 7 3 0.28

8 49 4.65

9 59 5.60

10 61 5.79

11 82 7.79

12 261 24.79

1053 100 1053 100

Our children variables distinguish between the number of children aged between 0 and
3 years, the number of children aged between 3 and 6 years, and the number of children between
6 and 16 years old. As one should expect, for all three categories, numbers are higher among the
nonparticipants.

To estimate our wage equation conditional on individual effects, we need repeated wage
observations for the same individual. Table 3 reports frequencies of observed wages, as well as
the number of state changes between participation and nonparticipation. Twenty-three precent of
our sample individuals participate in none of the 12 years, and about 25% in each of the 12 years.
More than half of the sample has at least one state change within our observation window. There
are no individuals who change state more than seven times over the 12-years period. In the
longitudinal dimension, 767 women (corresponding to 6757 observations) worked for a wage
at least in 2 years during the sample period. Once we drop observations of individuals who do
declare participation, but not wages, our number reduces to 5861 observations (Table 4).22

6. ESTIMATION RESULTS

We concentrate most of our discussion on the effect of labour market experience. We use
experience and its square as regressors in the wage equation. To facilitate the comparison of
results in the various model specifications, we compute the rate of return to work experience

∂w
/
∂ Exp = ϕ + 2ζ Exp, (17)

22To check whether this selection introduces a bias, we compare the means of explanatory variables for the two samples
(6757 and 5861 observations, respectively). Differences are very small, and never statistically significant.
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Table 4. Number of observations work = 1 versus work = 0

Years Ratios Work = 1/0 Number of Work = 1

in participation dropping individuals with

sample participation in one year only

and observations

with missing wages

84 565/488 482

85 579/474 500

86 572/481 512

87 561/492 493

88 551/502 479

89 563/490 488

90 576/477 480

91 592/461 496

92 578/475 503

93 576/477 487

94 554/499 482

95 535/518 459

84–95 6802/5834 5861

where we evaluate the expression in (17) at 14 years (the sample average).23 We report estimates
of ϕ and ζ as well as the total effect in (17) in Table 5. The full set of results is given in
Table A.1 in Appendix A. Rates of return implied by the different methods and for increasing
levels of work experience are presented in Table A.2.

Columns (1) and (2) present OLS and the standard random effects estimates (RE), respectively,
where we allow for time effects, but not for individual heterogeneity that is correlated to the model
regressors. The results are very similar and suggest that, evaluated at 14 years of labour market
experience, an additional year increases wages by 1.48 and 1.47%, respectively. If high ability
individuals have a stronger labour market attachment than low ability individuals, then these
estimates should be upward biased. Sample selection, on the other side, may lead to a downward
bias if selection is positive, and if participation is positively related to past employment. Likewise,
measurement error in the experience variable leads to downward biased estimates.

In columns (3) and (4), we present estimators that difference out the individual effects.
Column (3) displays standard fixed-effects (within) estimates (FE), and column (4) difference
estimates (DE), where all pair differences within time periods per individual are used.24 A
Hausman test of correlation between the regressors and unobserved individual heterogeneity
(comparing the RE and FE estimators) leads to rejection of the Ho : βF E = βRE (see Table 5).

The FE-DE estimates increase relative to the simple OLS and the standard RE estimations—
point estimates for the fixed effect estimator and the difference estimator are 0.022 and 0.020,

23Standard errors of this term are easily derived from the variances and covariances of the parameter estimates for ϕ

and ζ .
24We estimate pooled OLS on 66 pairs corresponding to 25 021 observations.
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Table 5. Marginal experience effects, wage equation(a)

(1) (2) (3) (4) (5) (6)

OLS RE FE DE DE DE

(OLS) (IV) (GMM)

Exp 0.0309∗ 0.0274∗ 0.0349∗ 0.0324∗ 0.0522∗ 0.0473∗

(0.0019) (0.0023) (0.0062) (0.0042) (0.0058) (0.0017)

Exp2 −0.0058∗ −0.0045∗ −0.0045∗ −0.0044∗ −0.0065∗ −0.0060∗

(0.0005) (0.0005) (0.0005) (0.0002) (0.0003) (0.0001)

∂w
/
∂ Exp 0.0148∗ 0.0147∗ 0.0223∗ 0.0200∗ 0.0340∗ 0.0305∗

(14 years) (0.0007) (0.0013) (0.0056) (0.0039) (0.0054) (0.0014)

Hausman1 χ 2
13 = 160.2

(Fixed Effects) (0.000)

Hausman2 χ2
14 = 92.84 χ2

14 = 55.35

(Exogeneity (0.000) (0.000)

and absence

of measurement

error –ME–)

respectively. One explanation is that the partial elimination in the FE-DE estimates of the
downward bias by sample selection working through the fixed effect overcompensates the upward
bias in the OLS-RE estimates via the correlated individual effects.

The FE-DE estimates can still have a problem of measurement error. Further, we argued above
that experience is not strictly exogenous in the wage level equation if past wage shocks affect
current experience levels. In this case, it is endogenous in the difference equation. A solution
to these problems is to use instrumental variable techniques. Column (5) and (6) present results
when applying IV and GMM techniques to our particular problem. These estimators are obtained
by pooled IV and GMM on 66 pairs of combinations of time periods.25 As instruments, we use
all leads and lags of the variables in the sample selection equation.

The estimates we obtain for the rate of return to work experience are higher than those
obtained with the difference estimators, with point estimates of 0.034 and 0.030 in the IV and
GMM estimators, respectively. This is consistent with the existence of measurement error and/or
experience being predetermined. If past positive shocks to wages increase the probability of past
participation, then the coefficient on the experience variable should be downward biased in a
simple difference equation. A Hausman/Wu type test26 to compare the IV and GMM estimators
with the OLS estimator in differences leads to a rejection of exogeneity of the experience variables
in the difference specification and/or to a rejection of not existence of measurement error.

One concern may be the validity of our instruments as, in particular the children variables.
We have re-estimated the IV equations excluding the children variables from the instrument set

25The IV estimates are used as the first step estimates to obtain the GMM estimates.
26In contrast to the standard form of the Hausman test, the test here does not assume efficiency of one estimator under

the null hypothesis. This requires estimation of the covariance matrix between estimators (Lee 1996).
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Table 5. (Continued).

(7)(b) (8)(c) (9)(d) (10)(d) (11)(e) (12)(e)

W W K K RB RB

(MD) (MD) (Ex p̂) (IV) (GMM)

Exp 0.0230∗ 0.0320∗ 0.0525∗ 0.0157 0.0244∗ 0.0229∗

(0.0090) (0.0060) (0.0222) (0.1935) (0.0060) (0.0021)

Exp2 −0.0029∗ −0.0049∗ −0.0041 −0.0014 −0.0041∗ −0.0047∗

(0.0009) (0.0012) (0.0050) (0.0470) (0.0005) (0.0002)

∂w
/
∂ Exp 0.0148∗ 0.0182∗ 0.0409∗ 0.0116 0.0129∗ 0.0097∗

(14 years) (0.0077) (0.0038) (0.0105) (0.0637) (0.0054) (0.0017)

Wald Test3 χ 2
12 = 17.22 χ2

12 = 17.44 χ2
132 = 292.60 χ2

132 = 3859.11

(Selection) (0.1412) (0.1336) (0.000) (0.000)

Wald Test4 χ 2
2 = 6.03 χ 2

2 = 5.66

(Fixed Effects) (0.049) (0.062)

Hausman5 χ 2
2 = 6.6332

(Selection) (0.036)

Hausman6 χ2
29 = 46.39 χ2

2 = 3.27

(Exogeneity (0.021) (0.195)

and absence

of ME)

Notes: (a)The numbers in parentheses below the coefficient estimates are standard errors. The numbers in parentheses
below the test statistics are p-values. (b)Standard errors corrected for the first stage maximum likelihood probit
estimates. (c)Standard errors corrected for the first stage maximum likelihood probit estimates and the use of predicted
regressors. (d )Standard errors corrected for the use of pre-estimated time dummies coefficients obtained from the
simple difference estimator in (4). (e)Standard errors corrected for the first stage maximum likelihood bivariate probit
estimates. ∗Statistically different from zero at the five-percent significance level. 1–6Please see Appendix B for notes
1–6.

for experience, and including higher polynomials of age and education as well as cross terms of
these two variables. The estimates of the rate of return to experience, evaluated at 14 years, are
0.028 and 0.031 for the IV and GMM estimators in columns (5) and (6), respectively. These are
close to those we report in the table, and suggest that the differences between these estimators
and those obtained in columns (3) and (4) are not due to using children as instruments.

The IV difference estimates are consistent under the assumption that selection only works
through the individual effects. We now turn to estimation results which take account of a selection
process that operates both through ε and α.27

27We have also estimated models using a standard Heckman two steps and full maximum likelihood estimator. Results
for the experience effects are nearly identical to the OLS/RE estimators (see Tables A.1 and A.2 in Appendix A). This is
not surprising, as these estimators share the same problems as the OLS/RE level estimators.
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6.1. Wooldridge’s estimator

Estimation results for Wooldridge’s (1995) estimator are presented in columns (7) and (8).
Following Mundlak (1978) we specify the conditional mean of the individual effects as a linear
projection on the within individual means of experience and its square. Results in column (7) are
based on the assumption that experience is (strictly) exogenous. Results in column (8) allow for
endogeneity by using predictions28 for the experience terms. This procedure takes care of both
measurement error, and not strict exogeneity.

The coefficient estimate for Wooldridge’s (1995) estimator is 0.0148 (column 7), which is
nearly identical to the OLS/RE results. It is smaller than the standard fixed effects estimators in
columns (3) and (4) and the IV difference estimators in columns (5) and (6). To test for sample
selection, we have performed a Wald test on the joint significance of the twelve selection effects
involved, where Ho: 84 = 0, 85 = 0, . . . , 95 = 0. This test can be interpreted as a test of selection
bias. However, the assumptions under the null hypothesis are stronger than what is required for
simple fixed effects estimators, as W3 is maintained under Ho.29 The value for the test statistic
is χ2

12 = 17.22, with a p-value of 0.1412. Thus, the null hypothesis cannot be rejected. We also
performed a Wald test for the joint significance of the ψ coefficients, where Ho: ψ = 0. We reject
the null hypothesis, which suggests the presence of correlated individual effects.

In column (8) we use predictions for the experience variables. This leads to an increase of
the experience coefficient—what we would expect if experience is pre-determined and/or there
exists measurement error. Hausman-type tests, comparing (7) and (8), reject exogeneity both
after controlling for correlated heterogeneity and sample selection. We perform Wald tests for
the estimates in column (8), testing the null hypotheses that Ho:  = 0 and Ho: ψ = 0. Again,
we cannot reject the null hypothesis Ho:  = 0, but we reject the null hypothesis Ho: ψ = 0 at a
6.21% significance level.

6.2. Kyriazidou’s estimator

To implement this estimator, we estimate in a first step a conditional logit fixed effects model
(see Chamberlain 1980). These first step estimates are then used to calculate weights for the pairs
of observations in the difference estimator. To construct the weights we use a normal density
function for the kernel. For bandwidth selection in the kernel weights we follow the procedure in
Kyriazidou (1997). Finally, we perform minimum distance to obtain the parameter estimates. The
minimum distance estimator is the weighted average of the estimators for each pair, with weights
given by the inverse of the corresponding covariance matrix estimate.30

As discussed above, the estimator relies on a conditional exchangeability assumption that
seems plausible in stationary environments. The assumption that the error terms in the selection
equation are stationary over time is testable. We have estimated the selection equation under the
assumption of equal variances over time, and allowing for variances to differ across time periods,

28To obtain the predictions for the experience variables, we predict the vector (Expi1, . . . , Expi12, Exp2
i1, . . . , Exp2

i12)
using the entire sample of individuals in the participation equation, and all leads and lags of the explanatory variables in
that equation as instruments.

29See Wooldridge (1995) for details on this point.
30In principle, to estimate the optimal weighting matrix for the minimum distance step requires estimates for the

covariance matrix of the estimators for the different pairs of time periods. Charlier et al. (1997) proof that these covariances
converge to zero due to the fact that the bandwidth tends to zero as the sample size increases. As a consequence, the
optimal weighting matrix simplifies to a block diagonal matrix.
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using Chamberlain´s (1984) estimator (results not reported). A χ2 test leads to rejecting the null
hypothesis of equal variances (with a p-value of 0.0002).

When applying this method to our data, a further problem arises: Asymptotically, the method
uses only observations for which the index from the sample selection rule is the same in the two time
periods. In our application, there are strong time effects in the selection equation. Furthermore,
changes in the variable experience are strongly related to changes in our identifying instruments,
like, for instance, the number of children. Any systematic increase in experience between two
periods cannot be distinguished from the time trend; any nonsystematic change coincides with a
change of variables in the selection equation. However, the latter pairs of observations obtain a
small kernel weight, and they therefore contribute very little to identifying the experience effects.
Hence, without further assumptions, we cannot identify the experience effects. One possible
solution is to use information on aggregate wage growth from other sources. To illustrate the
estimator, we use here time effects we obtain from the simple difference estimator in column (4).

Estimation results are displayed in columns (9) and (10). Column (9) displays results of simple
weighted OLS estimation of equation (6). The IV estimates presented in column (10) are obtained
by following the procedure described in Section 4.1 above.

Given the nonparametric nature of the sample selection terms in this method, identification of
the IV estimator requires at least one time-varying variable in the selection equation, which is to be
excluded not only from the main equation, but also from the instrument set for experience. Such
exclusions are difficult to justify in most circumstances. In our particular case, the experience
variable measures the total labour market experience of the individual in the year before the
interview. Since it is the weighted sum of past participation decisions, it should be explained by
variables that influence past participation, like lags of other household income. Participation in
the current period however is affected by current variables (like current other household income).
Current variables should therefore qualify as valid exclusions. We exclude current other household
income from the instrument set for experience.

The estimator in (9) does not correct for possible endogeneity of the experience variable and/or
for measurement error. The coefficient for the experience effect indicates that a year of labour
market experience increases wages by 4.1%. This estimate is very large, which may be due to
inaccuracies in the pre-estimated time effects we are using. The estimator in (10) corrects both for
not strict exogeneity of the experience variable and for measurement error in the main equation,
after accounting for sample selection and individual heterogeneity. Instrumenting reduces the
experience effect to 1.2%, but the effect is not statistically significant.

To test for selectivity bias in the simple difference equation, we use a Hausman-type test,
comparing the parameter estimates in column (9) with the difference estimator in column (4).
The test compares a linear model where selectivity only enters through the individual effects
(column 4), and a model which incorporates more general selectivity effects (Kyriazidou’s
estimator in column 9). We then test the assumption of no selectivity bias in the linear panel
data model. The test indicates that the null hypothesis of no selectivity bias is rejected.

6.3. Rochina-Barrachina’s estimator

Columns (11) and (12) present estimates, using the method by Rochina-Barrachina (1999).
Column (11) displays results of simple OLS estimation of equation (7). GMM estimates are
presented in column (12). For estimation, we use each combination of panel waves (t,s), resulting
in a total of 66 pairs. To combine these estimates, we use minimum distance. The standard errors
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we present in Table 5 are corrected for the first step bivariate probit estimates. The variables used
as instruments are the leads and lags of the variables included in the sample selection equation,
and the corresponding two sample selection terms of each pair of time periods.

The mean value of the correlation coefficient between the errors in the selection equation in
two time periods is 0.7862 (se = 0.1299), with a minimum value of 0.4845 and a maximum value
of 0.9658. Correlation appears because of the ci component in the error term and/or because of
serially correlated idiosyncratic errors.

To test whether the 66∗2 correction terms are jointly significant, we use a Wald test. The
values for the test statistics for the estimators in Columns (11) to (12) are clearly larger than
the critical values of the χ2

132 at any conventional significance level.31 Furthermore, Hausman-
type tests comparing the GMM parameter estimates for experience with the OLS estimates in
column (11) do not lead to jointly rejecting exogeneity and the absence of measurement error,
after controlling for correlated heterogeneity and sample selection. Consequently, RB estimates
do not differ very much between specifications. They indicate that, evaluated at 14 years of labour
market experience, an additional year increases wages by about 1%.

The estimated parameters are lower than the simple difference estimators. Compared to
Wooldridge’s (1995) estimator, estimates are also smaller, which may be due to different
parametric assumptions imposed by the two estimators.

7. CONCLUSIONS

In this paper we discuss three estimators that address the problems of sample selection and
correlated individual heterogeneity in selection and outcome equation simultaneously. We discuss
and compare the assumptions under which these estimators produce consistent estimates. We show
how they can be extended to take account of not strict exogeneity and/or time constant nonlinear
errors in variables in the main equation—problems that are likely to occur in many practical
applications. We illustrate that the methods of Kyriazidou (1997) and Rochina-Barrachina (1999)
can be straightforwardly extended to IV or GMM type estimators. For Wooldridge’s (1995)
estimator, we propose to use predicted regressors that are constructed according to the problem
at hand.

Not many applications exist for sample selection estimators in panel data models. To
understand how the different methods perform in practical application, we apply the estimators
and their extensions to a typical problem in labour economics: The estimation of wage equations
for females. The parameter we seek to identify is the effect of actual labour market experience
on wages. The problems that arise in this application are nonrandom selection, and unobserved
individual specific effects, possibly correlated with the regressors. In addition, actual experience is
predetermined, and the experience measure is likely to suffer from (time-constant) measurement
error, due to reliance on biographical information before the start of the panel.

We show estimates from different benchmark estimators. OLS/RE do not control for
correlated individual heterogeneity, sample selection and measurement error. Standard estimators
that difference out the individual effects do not take care of sample selection acting through
the idiosyncratic error in the regression of interest, of not strict exogeneity of experience in the

31Another way of testing for sample selection is using a Hausman-type test, comparing estimators in columns (11) and
(12) with (4) and (6), respectively.
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difference equation, or measurement error. Instrumental variable techniques applied to the
standard difference estimators may correct for the not strict exogeneity and measurement error
problems but not for sample selection. Tests reject random effects specifications (against fixed
effects specifications), and exogeneity and/or absence of measurement error of the experience
variables in the difference specification.

When we turn to estimation results which take account of a selection process that operates
both through the idiosyncratic error and the individual effect in the equation of interest, the
estimator by Kyriazidou (1997) avoids specifying the functional form of the sample selection
effects, and it requires no parametric assumptions about the unobservables in the model. It does
however impose a conditional exchangeability assumption, which is rejected by the data in our
particular application. Furthermore, in the case where any nonsystematic variation in the variable
of interest (experience in our case) coincides with changes in the selection index, this estimator
runs into identification problems, that can be solved by using additional information. We use
pre-estimated time dummies from simple difference estimators. The estimate we obtain for the
effect of labour market experience for the simple Kyriazidou estimator is quite large: Evaluated
at 14 years of labour market experience, an additional year increases wages by about 4%. The
estimates are clearly sensitive to the pre-estimated time effects, and it is likely that the simple
difference estimator leads to an underestimate of the time effects. The corresponding IV estimates
are smaller, but not precisely estimated.

With Wooldridge’s (1995) estimator, the null hypothesis of no correlated individual effects is
rejected for all specifications. Conditional on individual effects, the null hypothesis of no sample
selection cannot be rejected. Using this estimator, we reject the specification which does not allow
for predetermined regressors and measurement error.

Rochina-Barrachina´s estimators indicate that there is nonrandom sample selection, but the
joint hypothesis of strict exogeneity of the experience variable and the absence of measurement
error can not be rejected, conditional on taking care of correlated heterogeneity and sample
selection.

The most general estimator using Wooldridge’s (1995) method implies an increase in wages
by 1.8% for 1 year of labour market experience, evaluated at 14 years of experience. According
to this estimator, the return to experience decreases from 3.1% for the first year to 2.2% after
10 years to 1.2% after 20 years (see Table A.2). Estimates of Rochina-Barrachina’s (1999) for
all specifications are lower. They range, on average, from 2.3% after the first year to 1.6% after
10 years to 0.8% after 20 years.

The finding that conditional on individual effects, the null hypothesis of no sample selection
cannot be rejected with Wooldridge´s (1995) estimator, but is clearly rejected with Rochina-
Barrachina’s (1999) estimators, may be due to different parametric assumptions imposed by the
two methods. The test on selection bias for Wooldridge’s estimator requires assumption W3 to
be maintained under the null, which is stronger than what is required for difference fixed effects
estimators (for instance the RB estimators).32

What are our conclusions? We illustrate that there are several easily implementable estimators
available that offer solutions to estimation problems facing the researcher in many typical
economic applications. However, our application also illustrates considerable sensitivity of
estimates to the particular estimator that is used. As we discuss in detail, this may be due to

32In selection correction estimators based on differences (in contrast to level equations) the individual effect in the main
equation is differenced out, and we do not have to impose any particular parametric shape to allow for correlated individual
heterogeneity and/or selection acting through the individual effect.
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different parametric assumptions imposed by the different estimation methods, as well as lack of
identifying variation in the data. This suggests caution when interpreting any set of estimates in
isolation.
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APPENDIX B: NOTES TO TABLE 5

1The test statistic for H0: βFE = βRE is (βFE − βRE)′ · [Vce(βFE) − Vce(βRE)]−1 · (βFE −
βRE) ⇒ χ2

13.
2The test statistics for H0: βDE(IV) = βDE(OLS) or βDE(GMM) = βDE(OLS) are (βDE(IV) −

βDE(OLS))
′· [Vce(βDE(IV) − βDE(OLS))]

−1· (βDE(IV) − βDE(OLS)) ⇒ χ2
14, or (βDE(GMM) − βDE(OLS))

′·
[Vce(βDE(GMM) − βDE(OLS))]

−1· (βDE(GMM) − βDE(OLS)) ⇒ χ2
14, respectively.

3For Wooldridge’s estimators, Wald tests for the linear hypothesis H0: 84 = 0, 85 = 0, . . . ,
95 = 0. The test statistics for H0 are (� β W (MD))

′ · [ Vce(� β W (MD))]
−1· (� β W (MD)) ⇒ χ2

12

and (�βW (M D)(Ex p̂)
)′ · [V ce(�βW (M D)(Ex p̂)

)]−1 · (�βW (M D)(Ex p̂)
) ⇒ χ2

12, respectively, where � is the
matrix of zeros and ones that allows selecting the 12 lambda terms coefficients to be able to
test for the previous linear hypothesis. For Rochina-Barrachina’s estimators, Wald tests for the
linear hypothesis H0: 84,85 = 0, 85,84 = 0, . . . , 94,95 = 0, 95,94 = 0. The test statistics for
H0 are (RβRB)′ · [ Vce(RβRB)]−1· (RβRB) ⇒ χ2

66∗2 and (RβRB(GMM))
′ · [ Vce(RβRB(GMM))]

−1·
(RβRB(GMM)) ⇒ χ2

66∗2, respectively, where R is the matrix of zeros and ones that allows selecting
the 132 lambda terms coefficients to be able to test for the previous linear hypothesis.

4Wald tests for the linear hypothesis H0: ψExp = 0, θExp2 = 0. The test statistics
for H0 are (�̄βW (M D))

′ · [V ce(�̄βW (M D))]
−1 · (�̄βW (M D)) ⇒ χ2

2 and (�̄βW (M D)(Ex p̂)
)′ ·

[V ce(�̄βW (M D)(Ex p̂)
)]−1 · (�̄βW (M D)(Ex p̂)

) ⇒ χ2
2 , respectively, where �̄ is the matrix of zeros

and ones that allows selecting the two coefficients for average experience and average squared
experience to be able to test for the previous linear hypothesis.

5The test statistic for H0: Rβ K = RβDE(OLS) is (Rβ K − RβDE(OLS))
′· [Vce(Rβ K −

RβDE(OLS))]
−1· (Rβ K − RβDE(OLS)) ⇒ χ2

2, where R is the matrix of zeros and ones that allows
selecting the two coefficients for experience and squared experience to be able to test for the
previous hypothesis.

6The test statistics for H0: βW (M D)(Ex p̂)
= βW (M D) or R̄βRB(G M M) = R̄βRB are

(βM D(Ex p̂)
− βM D)′ · [V ce(βM D(Ex p̂)

− βM D)]−1 · (βM D(Ex p̂)
− βM D) ⇒ χ2

29 or (R̄βRB(GMM) −
R̄βRB)′· [Vce(R̄βRB(GMM) − R̄βRB)]−1· (R̄βRB(GMM) − R̄βRB) ⇒ χ2

2, respectively, where R̄ is the
matrix of zeros and ones that allows selecting the two coefficients for experience and squared
experience to be able to test for the last hypothesis.
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