How do Families Deal with Adverse Labour Market Conditions?

CHILDREN, FAMILY TIME-USE AND CONSUMPTION SMOOTHING

Richard Blundell (UCL & IFS)

Understanding Society Scientific Conference 2017

Uni of Essex, July 2017

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017 1 / 47

• This research studies how families deal with labor market shocks. The overall agenda is to examine household behaviour and the dynamics of inequality.

- This research studies how families deal with labor market shocks. The overall agenda is to examine household behaviour and the dynamics of inequality.
- The aim of this presentation is to explore some of the key mechanisms individuals and families use to accommodate labour market shocks, especially persistent adverse shocks to earnings.

- This research studies how families deal with labor market shocks. The overall agenda is to examine household behaviour and the dynamics of inequality.
- The aim of this presentation is to explore some of the key mechanisms individuals and families use to accommodate labour market shocks, especially persistent adverse shocks to earnings.
- The focus is on longitudinal data models of life-cycle family labour supply, time-use, consumption and savings.

- This research studies how families deal with labor market shocks. The overall agenda is to examine household behaviour and the dynamics of inequality.
- The aim of this presentation is to explore some of the key mechanisms individuals and families use to accommodate labour market shocks, especially persistent adverse shocks to earnings.
- The focus is on longitudinal data models of life-cycle family labour supply, time-use, consumption and savings.
- The research is motivated by two key features of the labour market:
 - falling real earnings for low skilled, especially younger men, and
 - growing overall earnings inequality.

- This research studies how families deal with labor market shocks. The overall agenda is to examine household behaviour and the dynamics of inequality.
- The aim of this presentation is to explore some of the key mechanisms individuals and families use to accommodate labour market shocks, especially persistent adverse shocks to earnings.
- The focus is on longitudinal data models of life-cycle family labour supply, time-use, consumption and savings.
- The research is motivated by two key features of the labour market:
 - falling real earnings for low skilled, especially younger men, and
 - growing overall earnings inequality.
- Here I will look at implications for consumption, labour supply and time-use allocations within families.
- I will also briefly examine the impact of deteriorating economic outcomes for young adults on family living arrangements.

- Family labour supply can play an important role in consumption smoothing of shocks:
 - document a large response of female labour supply to a persistent change in the earnings of partner,
 - especially for young families with low assets.

- Family labour supply can play an important role in consumption smoothing of shocks:
 - document a large response of female labour supply to a persistent change in the earnings of partner,
 - especially for young families with low assets.
- Becker Puzzle: Is labour supply within the family a substitute or a complement? *"Love, specialisation and the added worker effect."*

- Family labour supply can play an important role in consumption smoothing of shocks:
 - document a large response of female labour supply to a persistent change in the earnings of partner,
 - especially for young families with low assets.
- Becker Puzzle: Is labour supply within the family a substitute or a complement? *"Love, specialisation and the added worker effect."*
- Children play key role in determining how households allocate goods and time over the life cycle: "[...] *The raising of children requires time, especially wife's time, and goods. Thus, time and goods must be allocated between child services and other commodities.*" Ghez and Becker (1975).

- Family labour supply can play an important role in consumption smoothing of shocks:
 - document a large response of female labour supply to a persistent change in the earnings of partner,
 - especially for young families with low assets.
- Becker Puzzle: Is labour supply within the family a substitute or a complement? *"Love, specialisation and the added worker effect."*
- Children play key role in determining how households allocate goods and time over the life cycle: "[...] *The raising of children requires time, especially wife's time, and goods. Thus, time and goods must be allocated between child services and other commodities.*" Ghez and Becker (1975).

We ask how time spent with children affect labor supply elasticities and consumption insurance mechanisms.

- Blundell, Pistaferri and Preston [BPP] 'Consumption inequality and partial insurance' (*AER*, 2008)
- Blundell, Graber and Mogstad [BGM] 'Labor income dynamics and insurance' (*JPubE*, 2015; 2017)
- Arellano, Blundell and Bonhomme [ABB] 'Earnings and consumption dynamics: a nonlinear panel data framework' (*Ecta*, 2017)

- Blundell, Pistaferri and Preston [BPP] 'Consumption inequality and partial insurance' (*AER*, 2008)
- Blundell, Graber and Mogstad [BGM] 'Labor income dynamics and insurance' (*JPubE*, 2015; 2017)
- Arellano, Blundell and Bonhomme [ABB] 'Earnings and consumption dynamics: a nonlinear panel data framework' (*Ecta*, 2017)
- Blundell, Costa-Dias, Meghir and Shaw [BCMS] 'Female labour supply, human capital and welfare reform' (*Ecta*, 2016).
- Blundell, Pistaferri and Saporta-Eksten [BPS1] 'Consumption inequality and family labor supply' (*AER*, 2016; 2017)
- Blundell, Pistaferri and Saporta-Eksten [BPS2] 'Children, Time-Use and Consumption' (2017)
- Blundell, Crossley and Etheridge [BCE] 'Intergenerational Co-residence and Intra-Household Allocation' (*WP*, 2017).

- Blundell, Pistaferri and Preston [BPP] 'Consumption inequality and partial insurance' (*AER*, 2008)
- Blundell, Graber and Mogstad [BGM] 'Labor income dynamics and insurance' (*JPubE*, 2015; 2017)
- Arellano, Blundell and Bonhomme [ABB] 'Earnings and consumption dynamics: a nonlinear panel data framework' (*Ecta*, 2017)
- Blundell, Costa-Dias, Meghir and Shaw [BCMS] 'Female labour supply, human capital and welfare reform' (*Ecta*, 2016).
- Blundell, Pistaferri and Saporta-Eksten [BPS1] 'Consumption inequality and family labor supply' (*AER*, 2016; 2017)
- Blundell, Pistaferri and Saporta-Eksten [BPS2] 'Children, Time-Use and Consumption' (2017)
- Blundell, Crossley and Etheridge [BCE] 'Intergenerational Co-residence and Intra-Household Allocation' (*WP*, 2017).

It's team work!

RICHARD BLUNDELL ()

- Blundell, Pistaferri and Preston [BPP] 'Consumption inequality and partial insurance' (*AER*, 2008)
- Blundell, Graber and Mogstad [BGM] 'Labor income dynamics and insurance' (*JPubE*, 2015; 2017)
- Arellano, Blundell and Bonhomme [ABB] 'Earnings and consumption dynamics: a nonlinear panel data framework' (*Ecta*, 2017)
- Blundell, Costa-Dias, Meghir and Shaw [BCMS] 'Female labour supply, human capital and welfare reform' (*Ecta*, 2016).
- Blundell, Pistaferri and Saporta-Eksten [BPS1] 'Consumption inequality and family labor supply' (*AER*, 2016; 2017)
- Blundell, Pistaferri and Saporta-Eksten [BPS2] 'Children, Time-Use and Consumption' (2017)
- Blundell, Crossley and Etheridge [BCE] 'Intergenerational Co-residence and Intra-Household Allocation' (*WP*, 2017).

It's team work!To set the scene, some background descriptives....

RICHARD BLUNDELL ()

Weekly earnings and hourly wage growth, men and women, UK 1994–95 to 2014–15

Notes: Average annualised real growth (%). Source: Belfield, Blundell, Cribb, Hood and Joyce (2016)

RICHARD BLUNDELL ()

Household income growth for working households, UK 1994–95 to 2014–15

Notes: Average annualised real growth (%). Source: Belfield, Blundell, Cribb, Hood and Joyce (2016)

RICHARD BLUNDELL ()

Proportion of Men Working Less than 30 hours per week, UK 1994–95 to 2014–15

Notes: LFS; Source: Blundell, Norris-Keiller and Ziliak (2017)

RICHARD BLUNDELL ()

Proportion of Men Working Less than 30 hours per week, UK 1994–95 to 2014–15

Notes: LFS; Source: Blundell, Norris-Keiller and Ziliak (2017)

RICHARD BLUNDELL ()

Earnings Change by Education and Gender, US

Notes: CPS, real median earnings 1976-2014, Ages 25-55; Source: Blundell, Norris-Keiller and Ziliak (2017)

RICHARD BLUNDELL ()

Male Median Real Wages by Education in the US

Notes: CPS, Ages 25-55; Source: Blundell, Norris-Keiller and Ziliak (2017)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017 10 / 47

Male Median Real Wages by Education and Race in the US

Notes: CPS, Men Ages 25-55; Source: Blundell, Norris-Keiller and Ziliak (2017)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017

11 / 47

Expenditure per Capita, Non-Medicaid Means Tested Programs, US.

Source: Moffitt (2016); SNAP, EITC and SSI, [note AFDC/TANF].

RICHARD BLUNDELL ()

Male Real Wages Inequality by Birth Cohort and Age in the US

Notes: CPS FTFY workers aged 25-55; Source: Blundell, Norris-Keiller and Ziliak (2017)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017 13 / 47

Consumption inequality by age and birth cohort (UK)

Notes: Variance (log); Source: Blundell, O'Dea and Joyce (2016).

RICHARD BLUNDELL ()

Co-residence Patterns by Age and Time in Britain

Notes: BHPS-USoc. Source: Blundell, Etheridge and Crossley (2017).

RICHARD BLUNDELL ()

• Life-cycle setting with *four* key potential sources of 'consumption smoothing' in response to unexpected changes (shocks) to labour market earnings:

- Life-cycle setting with *four* key potential sources of 'consumption smoothing' in response to unexpected changes (shocks) to labour market earnings:
 - Self-insurance (i.e., savings),
 - Family labor supply and time-use,
 - Nonlinear taxes and welfare-benefits,
 - Family networks, transfers and co-residence.

- Life-cycle setting with *four* key potential sources of 'consumption smoothing' in response to unexpected changes (shocks) to labour market earnings:
 - Self-insurance (i.e., savings),
 - Family labor supply and time-use,
 - Nonlinear taxes and welfare-benefits,
 - Family networks, transfers and co-residence.
- The aim is to develop a longitudinal/panel data modelling approach for uncovering the role of these 'mechanisms',
 - during working life,
 - primarily among families with children.

- In this research we use various sources of:
 - household longitudinal data, e.g. PSID, BHPS, USoc.
 - population register data, e.g. Norwegian Register Data.
 - (often) combined with other cross-section surveys, e.g. FES, ATUS.

- In this research we use various sources of:
 - household longitudinal data, e.g. PSID, BHPS, USoc.
 - population register data, e.g. Norwegian Register Data.
 - (often) combined with other cross-section surveys, e.g. FES, ATUS.
- For example, in this talk, I will focus mostly on work using the new PSID data (1999-2015) for the US:
 - more comprehensive consumption measure,
 - relatively good quality earnings, hours, asset data,
 - but time-use outside labour supply is poorly measured,
 - combine with time-use moments from American Time Use Survey (ATUS) and CEX.

- In this research we use various sources of:
 - household longitudinal data, e.g. PSID, BHPS, USoc.
 - population register data, e.g. Norwegian Register Data.
 - (often) combined with other cross-section surveys, e.g. FES, ATUS.
- For example, in this talk, I will focus mostly on work using the new PSID data (1999-2015) for the US:
 - more comprehensive consumption measure,
 - relatively good quality earnings, hours, asset data,
 - but time-use outside labour supply is poorly measured,
 - combine with time-use moments from American Time Use Survey (ATUS) and CEX.
- Also look at responses in family living arrangements,
 - return to Understanding Society and BHPS for this!

- In this research we use various sources of:
 - household longitudinal data, e.g. PSID, BHPS, USoc.
 - population register data, e.g. Norwegian Register Data.
 - (often) combined with other cross-section surveys, e.g. FES, ATUS.
- For example, in this talk, I will focus mostly on work using the new PSID data (1999-2015) for the US:
 - more comprehensive consumption measure,
 - relatively good quality earnings, hours, asset data,
 - but time-use outside labour supply is poorly measured,
 - combine with time-use moments from American Time Use Survey (ATUS) and CEX.
- Also look at responses in family living arrangements,
 - return to Understanding Society and BHPS for this!
- Start with the analysis of family labour supply and consumption responses to idiosyncratic earnings shocks.
- Then incorporate family time-use and the impact on mother's time with children.

MODELLING EARNINGS DYNAMICS.....

- The panel data dynamics of earnings can usefully be described through two latent components:
 - a permanent (or *persistent*) component,
 - a transitory (or *mean-reverting*) component.

MODELLING EARNINGS DYNAMICS.....

- The panel data dynamics of earnings can usefully be described through two latent components:
 - a permanent (or *persistent*) component,
 - a transitory (or *mean-reverting*) component.
- There exist micro-econometric methods to isolate these two components,
 - their variance-covariance structure, and even,
 - their complete distributions using longitudinal data, see ABB (2017).

MODELLING EARNINGS DYNAMICS.....

- The panel data dynamics of earnings can usefully be described through two latent components:
 - a permanent (or *persistent*) component,
 - a transitory (or *mean-reverting*) component.
- There exist micro-econometric methods to isolate these two components,
 - their variance-covariance structure, and even,
 - their complete distributions using longitudinal data, see ABB (2017).
- There is also good economic reasoning behind this decomposition:
 - persistent shocks to earnings are more difficult for individuals and families to 'insure',
 - especially the young with low assets.
MODELLING EARNINGS DYNAMICS.....

- The panel data dynamics of earnings can usefully be described through two latent components:
 - a permanent (or *persistent*) component,
 - a transitory (or *mean-reverting*) component.
- There exist micro-econometric methods to isolate these two components,
 - their variance-covariance structure, and even,
 - their complete distributions using longitudinal data, see ABB (2017).
- There is also good economic reasoning behind this decomposition:
 - persistent shocks to earnings are more difficult for individuals and families to 'insure',
 - especially the young with low assets.
- For each worker in a family we allow persistent and transitory earnings shocks. The distributions of these shocks differ by age, gender, cohort, education and region.

MODELLING WAGE GROWTH IN FAMILIES

• Assume the log of real wage of earner *j* = {1,2} at age *t* can be written as:

$$\log W_{j,t} = X'_{j,t}\beta^j_W + F_{j,t} + u_{j,t}$$

$$F_{j,t} = F_{j,t-1} + v_{j,t}$$

 $X'_{i,j,t}$: observed characteristics (e.g. age, education, region, etc.).

MODELLING WAGE GROWTH IN FAMILIES

• Assume the log of real wage of earner *j* = {1,2} at age *t* can be written as:

$$\log W_{j,t} = X'_{j,t}\beta^j_W + F_{j,t} + u_{j,t}$$

$$F_{j,t} = F_{j,t-1} + v_{j,t}$$

 $X'_{i,j,t}$: observed characteristics (e.g. age, education, region, etc.).

• For earner $j = \{1, 2\}$, wage growth is then given by:

$$\Delta \log W_{i,j,t} = \Delta X'_{i,j,t} \beta_j + \underbrace{\Delta u_{i,j,t}}_{\text{Trans.shock}} + \underbrace{v_{i,j,t}}_{\text{Perm.shock.}}$$

• The shocks vary with age and cohort, and can be correlated across spouses.

IDENTIFICATION (WAGE PARAMETERS)

From:

$$\Delta w_{i,j,t} = \Delta u_{i,j,t} + v_{i,j,t}$$

where $w_{it} = \log W_{i,j,t} - X'_{i,j,t}\beta_i$. It follows that the variance-covariance structure has the form:

$$\begin{aligned} \sigma_{u_j}^2 &= -E\left(\Delta w_{i,j,t}\Delta w_{i,j,t+1}\right) \\ \sigma_{v_j}^2 &= E\left(\Delta w_{i,j,t}\left(\Delta w_{i,j,t+1}+\Delta w_{i,j,t}+\Delta w_{i,j,t-1}\right)\right) \\ \sigma_{u_ju_{-j}} &= -E\left(\Delta w_{i,j,t}\Delta w_{i,-j,t+1}\right) \\ \sigma_{v_jv_{-j}} &= E\left(\Delta w_{i,j,t}\left(\Delta w_{i,-j,t+1}+\Delta w_{i,-j,t}+\Delta w_{i,-j,t-1}\right)\right) \end{aligned}$$

• Estimated wage process in the PSID:

- $\sigma_{\mu_1}^2 = 0.0275, \sigma_{\mu_2}^2 = 0.0125, \sigma_{\nu_1}^2 = 0.0303, \sigma_{\nu_2}^2 = 0.0382.$
- Cross-spouse wage correlations are small and positive, see BPS (2016). Allow to vary by age, region and education. Detailed work on birth cohorts in the Norwegian Population panel data.
- No insurance here!

0

ASSORTATIVE MATCHING AND PREFERENCE COMPLEMENTARITIES

- Allow for correlated shocks to spouses *individual wages*
 - assortative matching (and data) suggests positive correlation,
 - no insurance through wages!

ASSORTATIVE MATCHING AND PREFERENCE COMPLEMENTARITIES

• Allow for correlated shocks to spouses *individual wages*

- assortative matching (and data) suggests positive correlation,
- no insurance through wages!

• 'Leisure' time preferences tend to display complementarity

- like each others company loving or caring preferences,
- no insurance there either!

ASSORTATIVE MATCHING AND PREFERENCE COMPLEMENTARITIES

• Allow for correlated shocks to spouses *individual wages*

- assortative matching (and data) suggests positive correlation,
- no insurance through wages!

• 'Leisure' time preferences tend to display complementarity

- like each others company loving or caring preferences,
- no insurance there either!
- 'Frisch' complements but 'Marshallian' substitutes!
 - even with correlated wages and complementary preferences, the framework allows a **persistent** (Marshallian) decline in one spouse earnings to induce an increase earnings of the other to maintain consumption.
 - \implies might love to spend time together but have to eat!

For example, for a couple, the impact of a persistent shock to his wages will depend on:

- preferences and constraints over family labour supply and consumption, also on
- the net assets the family can draw on, and
- how important his earnings are in the human capital of the family

For example, for a couple, the impact of a persistent shock to his wages will depend on:

- preferences and constraints over family labour supply and consumption, also on
- the net assets the family can draw on, and
- how important his earnings are in the human capital of the family

We develop a panel data model the transmission of transitory and persistent shocks from earnings through to family labour supply and consumption.....

• then look at impact on time with children.

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_j,u_j} = \eta_{h_j,w_j} \rightarrow [Frisch]$$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$\kappa_{h_j,u_j} = \eta_{h_j,w_j} \rightarrow [\text{Frisch}] \quad \kappa_{h_j,v_j} \rightarrow [\text{Marshall}]$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$\kappa_{h_j, v_j} = \eta_{h_i, v_j} \rightarrow [\text{Frisch}] \quad \kappa_{h_j, v_j} \rightarrow [\text{Marshall}] \quad \kappa_{h_j, v_{-j}} \rightarrow [\text{AWE}]$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_{j},u_{j}} = \eta_{h_{j},w_{j}} \rightarrow [\text{Frisch}] \quad \kappa_{h_{j},v_{j}} \rightarrow [\text{Marshall}] \quad \kappa_{h_{j},v_{-j}} \rightarrow [\text{AWE}]$$

$$\kappa_{c,v_{j}} = (1 - \pi_{i,t}) s_{i,j,t} \frac{\eta_{c,p} \left(1 + \eta_{h_{j},w_{j}}\right)}{\eta_{c,p} + (1 - \pi_{i,t}) \overline{\eta_{h,w}}}$$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_{j},u_{j}} = \eta_{h_{j},w_{j}} \rightarrow [\text{Frisch}] \qquad \kappa_{h_{j},v_{j}} \rightarrow [\text{Marshall}] \qquad \kappa_{h_{j},v_{-j}} \rightarrow [\text{AWE}]$$

$$\kappa_{c,v_{j}} = (1 - \pi_{i,t}) s_{i,j,t} \frac{\eta_{c,p} \left(1 + \eta_{h_{j},w_{j}}\right)}{\eta_{c,p} + (1 - \pi_{i,t}) \overline{\eta_{h,w}}}$$

$$\pi_{i,t} \approx \frac{\text{Assets}_{i,t}}{\text{Assets}_{i,t} + \text{Human Wealth}_{i,t}}$$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_{j},u_{j}} = \eta_{h_{j},w_{j}} \rightarrow [\text{Frisch}] \qquad \kappa_{h_{j},v_{j}} \rightarrow [\text{Marshall}] \qquad \kappa_{h_{j},v_{-j}} \rightarrow [\text{AWE}]$$

$$\kappa_{c,v_{j}} = (1 - \pi_{i,t}) \frac{\eta_{c,p} \left(1 + \eta_{h_{j},w_{j}}\right)}{\eta_{c,p} + (1 - \pi_{i,t}) \overline{\eta_{h,w}}}$$

$$\frac{s_{i,j,t}}{Human \text{Wealth}_{i,t}}$$

23 / 47

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_{j},u_{j}} = \eta_{h_{j},w_{j}} \rightarrow [\text{Frisch}] \quad \kappa_{h_{j},v_{j}} \rightarrow [\text{Marshall}] \quad \kappa_{h_{j},v_{-j}} \rightarrow [\text{AWE}]$$

$$\kappa_{c,v_{j}} = (1 - \pi_{i,t}) s_{i,j,t} \frac{\eta_{c,p} \left(1 + \eta_{h_{j},w_{j}}\right)}{\eta_{c,p} + (1 - \pi_{i,t}) \overline{\eta_{h,w}}}$$

 $\eta_{c,p} \rightarrow \text{Consumption EIS}$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_{j},u_{j}} = \eta_{h_{j},w_{j}} \rightarrow [\text{Frisch}] \quad \kappa_{h_{j},v_{j}} \rightarrow [\text{Marshall}] \quad \kappa_{h_{j},v_{-j}} \rightarrow [\text{AWE}]$$

$$\kappa_{c,v_{j}} = (1 - \pi_{i,t}) s_{i,j,t} \frac{\eta_{c,p} \left(1 + \eta_{h_{j},w_{j}}\right)}{\eta_{c,p} + (1 - \pi_{i,t}) \overline{\eta_{h,w}}}$$

$$\overline{\eta_{h,w}} = s_{i,j,t}\eta_{h_j,w_j} + s_{i,-j,t}\eta_{h_{-j},w_{-j}}$$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_{j},u_{j}} = \eta_{h_{j},w_{j}} \rightarrow [\text{Frisch}] \quad \kappa_{h_{j},v_{j}} \rightarrow [\text{Marshall}] \quad \kappa_{h_{j},v_{-j}} \rightarrow [\text{AWE}]$$

$$\kappa_{c,v_{j}} = (1-\beta) (1-\pi_{i,t}) s_{i,j,t} \frac{\eta_{c,p} \left(1+\eta_{h_{j},w_{j}}\right)}{\eta_{c,p} + (1-\beta) (1-\pi_{i,t}) \overline{\eta_{h,w}}}$$

• Relate shocks to wages to changes in family labour supply (working hours) and consumption behaviour, BPS (2016)

$$\begin{pmatrix} \Delta h_{1,t} \\ \Delta h_{2,t} \\ \Delta c_t \end{pmatrix} \simeq \Theta X + \begin{pmatrix} \kappa_{h_1,u_1} & 0 & \kappa_{h_1,v_1} & \kappa_{h_1,v_2} \\ 0 & \kappa_{h_2,u_2} & \kappa_{h_2,v_1} & \kappa_{h_2,v_2} \\ 0 & 0 & \kappa_{c,v_1} & \kappa_{c,v_2} \end{pmatrix} \begin{pmatrix} \Delta u_{1,t} \\ \Delta u_{2,t} \\ v_{1,t} \\ v_{2,t} \end{pmatrix}$$

$$\kappa_{h_{j},u_{j}} = \eta_{h_{j},w_{j}} \rightarrow [\text{Frisch}] \quad \kappa_{h_{j},v_{j}} \rightarrow [\text{Marshall}] \quad \kappa_{h_{j},v_{-j}} \rightarrow [\text{AWE}]$$

$$\kappa_{c,v_{j}} = (1 - \beta) (1 - \pi_{i,t}) s_{i,j,t} \frac{\eta_{c,p} \left(1 + \eta_{h_{j},w_{j}}\right)}{\eta_{c,p} + (1 - \beta) (1 - \pi_{i,t}) \overline{\eta_{h,w}}}$$

 $\beta \rightarrow$ External insurance (networks, etc.)

CONSUMPTION SMOOTHING

Extent of consumption 'smoothing' w.r.t. j's permanent wage shock:

$$\kappa_{c,v_j} = (1-\beta) \left(1-\pi_{i,t}\right) s_{i,j,t} \frac{\eta_{c,p} \left(1+\eta_{h_j,w_j}\right)}{\eta_{c,p} + (1-\beta) \left(1-\pi_{i,t}\right) \overline{\eta_{h,w}}}$$

- increases with $\pi_{i,t}$ (accumulated assets allow better insurance of shocks)
- increases with β (outside insurance allows more smoothing)
- declines with s_{i,j,t} (j's earnings play heavier weight)
- declines with $\eta_{c,p}$ (consumers more tolerant of intertemporal fluctuations in consumption)
- increases with $\eta_{h_{-i},w_{-i}}$ ("added worker" effect).

24 / 47

CONSUMPTION SMOOTHING

Extent of consumption 'smoothing' w.r.t. j's permanent wage shock:

$$\kappa_{c,v_j} = (1-\beta) \left(1-\pi_{i,t}\right) s_{i,j,t} \frac{\eta_{c,p} \left(1+\eta_{h_j,w_j}\right)}{\eta_{c,p} + (1-\beta) \left(1-\pi_{i,t}\right) \overline{\eta_{h,w}}}$$

- increases with $\pi_{i,t}$ (accumulated assets allow better insurance of shocks)
- increases with β (outside insurance allows more smoothing)
- declines with *s*_{*i,j,t*} (*j*'s earnings play heavier weight)
- declines with $\eta_{c,p}$ (consumers more tolerant of intertemporal fluctuations in consumption)
- increases with $\eta_{h_{-i},w_{-i}}$ ("added worker" effect).

Estimate on couples in the household panel data from the PSID 1998-2014 using a nonlinear moment estimator.

	1998	2000	2002	2004	2006	2008	All years	All years
Sample		All Married						
Consumption								Males
Total	28,447	32,994	36,482	42,873	49,165	44,995	39,257	38,733
Non durable Cons.	6,907	7,870	7,906	8,929	10,002	9,392	8,552	8,490
Food at home	5,489	5,818	5,961	6,307	6,673	6,734	6,165	6,104
Gasoline	1,419	2,052	1,945	2,622	3,328	2,657	2,339	2,318
Services	21,540	25,124	28,576	33,944	39,163	35,603	30,705	30,243
Food out	2,034	2,270	2,377	2,582	5,040	2,601	2,816	2,737
Health ins.	1,011	1,257	1,450	1,720	1,882	2,110	1,572	1,550
Health serv.	894	1,044	1,138	1,433	1,610	1,765	1,317	1,308
Utilities	2,284	2,653	2,705	4,683	5,085	5,632	3,856	3,823
Transportation	3,204	3,786	4,681	3,893	4,026	3,783	3,896	3,826
Education	2,105	2,414	2,592	2,719	2,866	2,802	2,589	2,523
Child care	594	651	687	724	724	917	714	677
Home ins.	429	479	554	619	687	716	581	574
Rent (or rent eq.)	8,984	10,570	12,392	15,571	17,241	15,276	13,366	13,225
Observations	1,717	1,753	1,740	1,727	1,751	1,791	10,479	11,638

Notes: PSID data, 1999-2009 waves. Baseline sample is married couples with working male aged 30-57. SEO sample excluded.

Missing values in consumption sub-categories treated as zeros. Match with NIPA

	1998	2000	2002	2004	2006	2008	All years	All years
Sample		All Married						
Assets (Medians)								Males
Total	177,000	205,000	231,000	271,000	305,000	270,000	240,000	233,000
Handa and DE	[179,100]	140.000	1/5 000	[262,100]	225 000	200.000	170.000	1/5 000
Housing and RE	[127,300]	140,000	165,000	[196 700]	225,000	200,000	170,000	165,000
Financial assets	38,000	40.000	41.000	41,000	45,300	40.000	40,300	40.000
	[33,400]	,,	,	[41,200]	,,	,,	,.	
Total debt	55,000	64,000	78,000	89,000	100,000	107,928	78,500	74,000
	[51,600]			[84,400]				
Mortgage	50,000	59,000	70,000	80,000	90,000	98,000	70,000	66,182
Total net worth	100,000	117,000	125,000	149,000	170,000	121,000	127,000	125,000
Primary earner								
Participation rate	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.95
Earnings Work	55,709	61,927	63,440	67,748	74,233	78,414	67,008	66,068
Hours Work	2,371	2,326	2,322	2,313	2,309	2,176	2,302	2,293
Secondary earner								
Participation rate	0.79	0.80	0.80	0.79	0.80	0.79	0.80	0.79
Earnings Work	26,017	28,447	31,661	34,203	36,723	40,517	32,988	33,485
Hours Work	1,676	1,693	1,707	1,717	1,668	1,667	1,688	1,699
Observations	1,717	1,753	1,740	1,727	1,751	1,791	10,479	11,638

Notes: PSID data, 1999-2009 waves. Baseline sample: married couples with working male aged 30-57. SEO sample excluded. Missing values in assets sub-categories treated as zeros. Values in square brackets are from the SCF (couples sample). Asset statistics use sample weights.

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017

26 / 47

The share of his human wealth by age $s_{i,t} \approx \frac{\text{Human Wealth}_{male,i,t}}{\text{Human Wealth}_{i,t}}$

Notes: PSID couples. Source: Blundell, Pistaferri and Saporta-Eksten (2016)

RICHARD BLUNDELL ()

The distribution of his human wealth by age $s_{i,t} \approx \frac{\text{Human Wealth}_{male,i,t}}{\text{Human Wealth}_{i,t}}$:

Source: Blundell, Pistaferri and Saporta-Eksten (2016)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017 28 / 47

The share of assets to human wealth by age $\pi_{i,t} \approx \frac{\text{Assets}_{i,t}}{\text{Assets}_{i,t} + \text{Human Wealth}_{i,t}}$

Source: Blundell, Pistaferri and Saporta-Eksten (2016)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

The Distribution of assets to human wealth by age $Assets_{i,t}$

 $\pi_{i,t} \approx \frac{1}{\text{Assets}_{i,t} + \text{Human Wealth}_{i,t}}$

WHAT DO WE FIND?

Household consumption responses to an adverse persistent shock to husband's real wages

Notes: Average response. Source: Blundell, Pistaferri and Saporta-Eksten (2016)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017

Household consumption responses to an adverse persistent shock to husband's real wages

Notes: Distribution of responses. Source: Blundell, Pistaferri and Saporta-Eksten (2016)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017

- Suggests that family labor supply is a key mechanism for 'insuring' unexpected shocks,
 - especially for younger families and for those with limited access to assets,
 - leisure time turns out to be a 'Frisch' complement but a 'Marshallian' substitute.

- Suggests that family labor supply is a key mechanism for 'insuring' unexpected shocks,
 - especially for younger families and for those with limited access to assets,
 - leisure time turns out to be a 'Frisch' complement but a 'Marshallian' substitute.
- For lowest income quintile: consumption declines on average by only 2.6%,
 - SNAP (Food Stamps) and EITC dominate with family labor supply responses making up the difference.

- Suggests that family labor supply is a key mechanism for 'insuring' unexpected shocks,
 - especially for younger families and for those with limited access to assets,
 - leisure time turns out to be a 'Frisch' complement but a 'Marshallian' substitute.
- For lowest income quintile: consumption declines on average by only 2.6%,
 - SNAP (Food Stamps) and EITC dominate with family labor supply responses making up the difference.
- Overall, once family labor supply, assets and taxes/benefits are accounted for, there is little evidence for additional insurance.
- But where do these working hours adjustments come from?

IMPLICATIONS FOR FAMILY TIME-USE ALLOCATIONS WITH CHILDREN

• Time-use data (ATUS) allows us to unpack what's going on.

IMPLICATIONS FOR FAMILY TIME-USE ALLOCATIONS WITH CHILDREN

- Time-use data (ATUS) allows us to unpack what's going on.
- A tension between the desire of spouses to spend leisure time with each other, and the specialization in care of children,
 - complementarity in leisure but specialization in childcare,
 - family labor supply flips between being substitutes to being complements as the child ages...

IMPLICATIONS FOR FAMILY TIME-USE ALLOCATIONS WITH CHILDREN

- Time-use data (ATUS) allows us to unpack what's going on.
- A tension between the desire of spouses to spend leisure time with each other, and the specialization in care of children,
 - complementarity in leisure but specialization in childcare,
 - family labor supply flips between being substitutes to being complements as the child ages...
- A neat and simple household production model of time-use works a treat!
 - it is mother's time with children that takes a hit...
 - men do little to take up the slack.
STRATEGY FOR INCORPORATING TIME-USE

- Extend the life-cycle model of family labour supply and consumption to incorporate home production function,
 - inputs of family time-use that depend on the number and ages of children.
- Use data on time use, wage, consumption, income, labour supply and assets,
 - *combining* the PSID, ATUS & CEX to estimate the model.
- Estimate the elasticities of family labour supply and multiple time-use goods w.r.t changes/shocks in parents earnings.
- Oraw implications of presence of young children for family hours elasticities *and* responses wage shocks.
 - Note: the model and estimation details are found in Blundell, Pistaferri and Saporta-Eksten (2017).

	(1)	(2)	(3)	(4)
	mean	p25	median	p75
Non-zero childcare time (head)	0.69			
Non-zero childcare time (wife)	0.91			
childcare annual hours (head) inc. 0s	320	0	195	498
childcare annual hours (wife) inc. 0s	709	260	585	1,023
childcare annual hours (head) exc. 0s	466	182	355	628
childcare annual hours (wife) exc. 0s	778	347	650	1,070

Notes: ATUS data from 2003-2014 for the sample of married couples, wife aged 25-65 with youngest child aged 10 or less.

DESCRIPTIVES OF CONSUMPTION, LEISURE AND WAGES IN THE PSID

	(1)	(2)	(3)	(4)
	mean	p25	median	p75
Total Consumption (exc. durables)	40,997	26,237	35,654	49,307
'Leisure' of husband	2,178	1,664	2,080	2,337
'Leisure' of wife	2,822	2,144	2,520	3,817
Hours of husband	2,011	1,835	2,080	2,500
Hours of wife	1,349	347	1,645	2,016
Hourly wage of husband	31.3	15.2	22.6	34.8
Hourly wage of wife	21.3	11.4	17.3	26.3

Notes: PSID data from 1999-2013 PSID waves, for the sample of married couples, wife aged 25-65 with youngest child aged 10 or

less. Consumption and wages in 2010 prices. Leisure is calculated assuming total hours is 4160 (5*16*52).

DECOMPOSING CONSUMPTION SMOOTHING

- Counterfactual consumption response to a male's permanent wage decline (10%) in three key components:
 - insurance via family labour supply,
 - insurance through taxes and benefits, and
 - insurance through savings.
- Female response to spouse's permanent wage:
 - leisure complementarity,
 - wealth effect,
 - time-use with children.
- We illustrate these channels by decomposing the average simulated counterfactual response to a permanent shock for a young family (male aged 35).

What Does a 10% Permanent Reduction in Husband's Hourly Wage Look Like?

Consumption:	-4.3%	
	Husband	Wife
Earner's average share of pre-tax earnings:	0.67	0.33
Earner's pre-tax earnings response:	-10.4%	+3.0%
Hours	-0.6%	+4.8%
Leisure	+0.7%	-1.4%
Parental time	+0.6%	-5.1%

Notes: ATUS and PSID, for a sample of working husbands and wives, working at least 80 hours per year. Based on the regressions run at age 35 in the model. Source: Blundell, Pistaferri and Saporta-Eksten (2017)

Mother's labor supply response to a persistent adverse shock (10%) to husband's earnings

Notes: ATUS and PSID; Source: Blundell, Pistaferri and Saporta-Eksten (2017)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017 40 / 47

Mother's time with children response to a persistent adverse shock to husband's earnings

Notes: ATUS and PSID; Source: Blundell, Pistaferri and Saporta-Eksten (2017)

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017

41 / 47

GATHERING UP THE RESULTS

- Developed a life-cycle panel data framework to examine some of the key sources of 'consumption smoothing' in response to unexpected changes (shocks) to labour market earnings.
- The results suggest that family labor supply is a key mechanism for 'insuring' unexpected shocks,
 - especially for younger families and for those with limited access to assets,
- The response of time spent with children to permanent wage shocks is important for understanding insurance from labor supply,
 - it is mother's time with children that takes a hit...
 - men do little to take up the slack.
- A natural next step: study the implications for children outcomes and on family structure.

GATHERING UP THE RESULTS

- Developed a life-cycle panel data framework to examine some of the key sources of 'consumption smoothing' in response to unexpected changes (shocks) to labour market earnings.
- The results suggest that family labor supply is a key mechanism for 'insuring' unexpected shocks,
 - especially for younger families and for those with limited access to assets,
- The response of time spent with children to permanent wage shocks is important for understanding insurance from labor supply,
 - it is mother's time with children that takes a hit...
 - men do little to take up the slack.
- A natural next step: study the implications for children outcomes and on family structure.
- End by briefly returning to new work on the impact on co-residency patterns of decline in earnings, especially young low educated men.....

Increasing Co-residence Patterns by Age and Time in UK

Notes: BHPS-USoc. Source: Blundell, Etheridge and Crossley (2017).

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

UNI OF ESSEX, JULY 2017 43 / 47

THE ROLE OF INTERGENERATIONAL CO-RESIDENCE

Younger workers, especially young men, have experienced deteriorating labour market outcomes compared to previous cohorts.

● ⇒ rates of co-residence of young adults with parents have increased.

Preliminary results show this reflects a valuable source of insurance across generations.

44 / 47

Younger workers, especially young men, have experienced deteriorating labour market outcomes compared to previous cohorts.

• \implies rates of co-residence of young adults with parents have increased.

Preliminary results show this reflects a valuable source of insurance across generations.

Estimating the value of this insurance is challenging:

- typically we do not observe direct transfers or measures of well-being,
- need to understand how income is shared, relative to the income earned when not living together (living with your mother).

- In this new work we combine USoc data on financial satisfaction with expenditure data from the FES to estimate:
 - sharing rules,
 - scale economies, and
 - direct well-being.
- The analysis shows that the insurance is driven by both a sizable transfer to children, and moderate economies of scale,
 - see Blundell, Etheridge and Crossley (2017).

45 / 47

WRAPPING-UP

- This research has been driven by two key motivating issues:
 - falling male real earnings, especially low skilled young men,
 - growing earnings inequality.
- The aim is to explore the mechanisms families use to accommodate adverse changes in earnings, to see how successful are tax/welfare systems and to suggest how policies could be better designed.
- The work suggests that family labor supply is an important mechanism for 'insuring' unexpected earnings shocks,
 - especially for younger families and for those with limited assets,
- The response of time spent with children to permanent wage shocks is important for understanding insurance from labor supply,
 - it is mother's time with children that takes a hit...
- Co-residency of young adults with their parents has also become a key insurance mechanism for young singles.

RICHARD BLUNDELL ()

CHILDREN, TIME-USE & CONSUMPTION

That's it for now!

How do Families Deal with Adverse Labour Market Conditions?

Understanding Society Conference 2017 Essex University

Richard Blundell

UCL & IFS

July 2017