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1. Introduction

This paper develops a new approach to the estimation and
prediction of individual consumer demand responses for hetero-
geneous consumers. The objectives are two-fold: First, to utilize
inequality restrictions arriving from revealed preference (RP) the-
ory to improve demand estimation and prediction. Second, to relax
restrictions on unobserved heterogeneity in individual consumer
demand.We propose both unconstrained and RP constrained non-
parametric estimators for individual demand functions with non-
additive unobserved tastes, and derive their asymptotic properties.

Estimation of consumer demandmodels, and of the utility func-
tions generating consumer demand, have attracted attention since
a long time ago (see, for example, Deaton and Muellbauer (1980)
and the references therein). However, within these models, al-
lowing for unobserved taste variation has succeeded only in very
specific cases (e.g. McElroy, 1987). As Brown and Walker (1989)
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and Lewbel (2001) have shown, demand functions generated from
random utility functions are not typically additive in the unob-
served tastes. The identification and estimation of consumer de-
mand models that are consistent with unobserved taste variation
therefore require analyzing demandmodels with nonadditive ran-
dom terms.

An early treatment of identification of semiparametric non-
additive models is Brown (1983) whose results were extended
to nonparametric models in Roehrig (1988). Building on their
work, Matzkin (2003) derives nonparametric identification and
quantile-driven estimation in one equation non-additive models,
and Matzkin (2008) derives nonparametric identification in si-
multaneous equations non-additive models. A number of authors
have addressed identification and estimation in triangular mod-
els. Among these, Chesher (2003, 2007) considers quantile-driven
identification while Chernozhukov et al. (2007a) and Imbens and
Newey (2009) develop quantile-based nonparametric estimators.
Our approach draws on this literature.

Our proposed procedure incorporates nonadditive methods
and inequality restrictions derived from economic theory. If
each consumer is choosing demand by maximizing his or her
preferences, demand of such consumer will satisfy the well known
axioms of RP of Samuelson (1938), Richter (1966), Houthakker
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(1950), Afriat (1967) andVarian (1982). Our analysis followsVarian
(1982), where the inequalities developed in Afriat (1973) are used
to characterize bounds on individual demand responses to new
prices. We extend the RP approach of Afriat and Varian to the
casewhere demand observations are from repeated cross sectional
data. This requires additional restrictions to connect identical
preferences across budgets. First of all, we have to assume that
the unobserved preferences remain stable over time. Under this
assumption, Blundell et al. (2008) connect the average consumer
across incomes and prices, and develop bounds on the demand of
this consumer under new prices.

In the first part of this paper, we provide a general theory for
inference on counterfactual demand bounds using RP inequalities.
We take as starting point the availability of an estimator of the
demand functions at observed prices. We take no stand on the
underlying identification scheme and the precise nature of this
estimator, and only require it to satisfy weak regularity conditions,
including consistency and pointwise asymptotic normality. The
conditions allow for the demand function estimator (and thereby
the bounds) to be nonparametric, semiparametric or parametric
and so should cover all relevant scenarios. Under these high-
level conditions, we show the corresponding estimated bounds are
consistent and derive tools for constructing confidence sets.

In the secondpart of the paper,we consider a particular demand
function estimator based on quantiles of the unobserved com-
ponent entering consumers’ preferences. We connect consumers
across budgets bymapping each of them into a quantile of the het-
erogeneity distribution. Formally, we assume that the demand of
each consumer can be described by a function of income (and po-
tentially other observed characteristics) together with an unob-
served component capturing tastes and other individual-specific
unobserved characteristics. Assuming that the demand function
is invertible w.r.t. unobserved component, a particular point in
the (conditional) distribution of demand corresponds to a unique
value of the unobserved taste. In this setting, our method connects
across budgets consumers with identical unobserved tastes. Other
methods of connecting consumerswith the same unobserved taste
across budgets are, of course, possible.

We then develop specific nonparametric conditional quantile-
type estimators of demand, and show that the general theory of the
first part of the paper applies to these estimators. We focus on the
case of two goods and a scalar unobserved component with the
idea being that when a demand function depends monotonically
on only one unobservable random term, the function can be identi-
fied from the conditional distribution of demand, given prices and
income. This identification and estimation scheme is straightfor-
ward to extend to the case of multiple goods if one maintains the
assumption that demand for each good is a function of a scalar er-
ror component.

Another relevant extension of the proposed quantile estimator
would be to allow formultiple unobservables entering the demand
for each good. However, identification and estimation of demand
functions in this setting requires in general methods for simulta-
neous equations, which are usually more demanding in terms of
assumptions and estimationmethods than the class ofmodels con-
sidered here (see Matzkin, 2008). Assume, as we do in most of
the paper, that the unobservables are distributed independently
of prices and income. When each demand function depends on a
vector of unobservable random terms, the system of demand func-
tions cannot in general be identified, at each of the quantiles of
the marginal distributions of unobservables, from only the condi-
tional distribution of the vector of demands, given prices and in-
come, even when the system of demand functions is invertible in
the vector of unobservables (see Benkard and Berry, 2006) and Ex-
ample 3 in (Matzkin, 2007). Further restrictions are needed. One
could, for example, consider representing the system of demands
as a triangular system of equations, and estimating the equations
sequentially using conditional quantile methods. However, the set
of simultaneous equations that are observationally equivalent to
triangular systems possess very restrictive properties (see Blundell
and Matzkin, forthcoming; Blundell et al., 2013a).

The problem of estimating counterfactual demand using RP in-
equalities falls within the framework of partially identifiedmodels
(see e.g. Manski, 1993). We employ the techniques developed in,
amongst others, Chernozhukov et al. (2007b) to establish the prop-
erties of the demand bounds estimators. Our aim here is to develop
bounds on the quantiles of predicted (counterfactual) demands,
while we do not directly address testing the revealed preference
restrictions. There is a long history of studies that have combined
nonparametric techniques to test restrictions from consumer the-
ory; see Lewbel (1995), Haag et al. (2009) and Blundell, Horowitz
and Parey (2012) and references therein. These methods are not
directly applicable to the revealed preference inequalities in the
quantile demand framework we consider here. More recently,
Hoderlein and Stoye (forthcoming), Hoderlein and Stoye (2013)
and Kitamura and Stoye (2012) have developed an attractive alter-
native approach to testing that employs stochastic revealed prefer-
ence inequalities (McFadden and Richter, 1991; McFadden, 2005).
Their method focuses on the behavior of partitions of observed
budgets that are consistent with the existence of a distribution of
preferences generating the observed distribution of demand. They
thus require weaker conditions on unobserved heterogeneity.

The remainder of the paper is organized as follows: In Section 2,
we set up our framework for modeling heterogeneous consumer
choice. A general theory for estimation of demand function bounds
is developed in Section 3. In Section 4 we propose sieve estimators
for the quantile Engel curves in a two-good economy. In Section 5
we discuss the implementation of the estimator and examine
how to compute confidence sets. We then apply our approach to
household expenditure data and estimate bounds on the quantile
functions of predicted demands for food for a sample of British
households in Section 6. Section 7 concludes and also points
to some relevant extensions. In particular, we discuss how our
estimator can be extended to handle endogeneity of explanatory
variables by using the recent results on nonparametric estimation
of quantile models under endogeneity. We also examine possible
routes to testing for rationality. All proofs and lemmas have been
relegated to Appendices A and B respectively.

2. Heterogeneous consumers and market prices

2.1. Quantile expansion paths

Consumer demand depends on market prices, individual in-
come and individual heterogeneity. Suppose we observe con-
sumers in T ≥ 1 separate markets, where T is finite. In what
follows we will assume these refer to time periods but they could
equally well refer to geographically separated markets. Let p (t) ∈

RL+1
+ be the set of prices for the L + 1, L ≥ 1, goods that all con-

sumers face at time t = 1, . . . , T . At each time point t , we draw
a new random sample of n ≥ 1 consumers. For each consumer,
we observe his or her demands and income level (and potentially
some other individual characteristics such as age, education etc.,
which we suppress in this discussion).

Let qi (t) ∈ RL+1
+ and xi (t) ∈ R+ be consumer i’s (i = 1, . . . , n)

vector of demand and income level at time t (t = 1, . . . , T ).
We stress that the data {p (t) , qi (t) , xi (t)}, for i = 1, . . . , n and
t = 1, . . . , T , is not a panel data set since we do not observe the
same consumer over time. Rather, it is a repeated cross-section
where, for each new price, a new cross section of consumers is
drawn from the population. Individual heterogeneity in observed
and unobserved characteristics implies that, for any given market
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prices p (t) and for consumers with income x, there will be a
distribution of demands. Changes in x map out a distribution of
expansion paths.

The demand q (t) = (q1 (t) , . . . , qL+1 (t))′ for a given con-
sumer is assumed to satisfy
q (t) = d (x (t) , p (t) , ε) ,

for some vector function d (x (t) , p (t) , ε) = (d1 (x (t) , p (t) , ε) ,
. . . , dL (x (t) , p (t) , ε))′ where ε is a time-invariant individual
specific heterogeneity term that reflects unobserved heterogene-
ity in preferences and characteristics.1 In this and the following
section, the dimension of ε is left unrestricted and may even be
infinite-dimensional. When we develop the quantile estimators of
d in Section 4, we will however impose further restrictions. To en-
sure that the budget constraint is met, the demand for good L + 1
must satisfy:
qL+1 (t) = dL+1 (x (t) , p (t) , ε)

:=
x (t) − p1:L (t)′ d1:L (x (t) , p (t) , ε)

pL (t)
, (1)

where p1:L (t) and d1:L are the first L elements of p (t) and d respec-
tively. The demand function d should be thought of as the solution
to an underlying utility maximization problem over the subset of
goods 1 through L + 1.

We consider the situation where the time span T over which
we have observed consumers and prices is small (in the empirical
application T ≤ 8). In this setting, we are not able to identify
the mapping p → d (x, p, ε). On the other hand, as we shall see,
it is possible to identify the function (x, ε) → d (x, p (t) , ε) at
each of the observed prices under suitable regularity conditions.
To emphasize this, we will in the following write
d (x (t) , t, ε) := d (x (t) , p (t) , ε) .

So we have a sequence of T Engel curves, {d (x, t, ε)}Tt=1. One
consequence of this partial identification is that we cannot point
identify demand responses to a new price, say p0 ≠ p (t),
t = 1, . . . , T . Instead we propose to use revealed preference (RP)
constraints involving {d (x, t, ε)}Tt=1 to construct bounds for such
counterfactual demands.

2.2. Bounds on quantile demand functions

Consider a particular consumer characterized by some ε with
associated demand function d (x, p, ε). Suppose that the consumer
faces a given new price p0 at an income level x0. Without full
knowledge of d (x, p, ε), what can we learn about the demand for
this consumer, q0 = d (x0, p0, ε)?

Suppose that for a given sequence of prices {p (t)}Tt=1 we have
observed the consumer’s demand responses {qε (t) = d (x (t) ,
p (t) , ε)}Tt=1, but not the underlying demand function. In this
situation, using results of Afriat (1967), Varian (1982) derived
bounds on the values that the counterfactual demand q0 can take
thereby leading to a support set for q0. These bounds were based
on the assumption that the consumer is rational and so satis-
fies the generalized axiom of preferences (GARP): For any given
chain, qε (t1) , qε (t2) , . . . , qε (tN), for some of N ≥ 1, satisfying
p (tk)′ qε (tk) ≥ p (tk)′ qε (tk+1), k = 1, . . . ,N , it must hold that
p (tN)′ qε (t1) ≥ p (tN)′ qε (tN).

Alternatively, one can employ the Strong Axiom of Revealed
Preference (SARP) developed by Samuelson (1938), Houthakker
(1950) and Richter (1966). SARP is a strengthening of GARP and

1 The demand function could potentially depend on other observable character-
istics besides income, but to keep the notation at a reasonable level we suppress
such dependence in the following. If additionally explanatory variables are present,
all the following assumptions, arguments and statements are implicitly made con-
ditionally on those.
requires that for the same chain defined above, the strict inequality
p (tN)′ qε (t1) > p (tN)′ qε (tN)must hold. SARP characterizes finite
sets of demand data generated by strictly convex and strictly
monotone preferences, c.f. Matzkin and Richter (1991). GARP,
on the other hand, is consistent with demand data generated
by weakly convex preferences, which may generate non-unique
demands. Mas-Colell (1978) established the following connection
between GARP and SARP: Under a boundary condition, if the true
preferences generating demand are strictly convex and monotone
and the resulting demand functions are income Lipschitzian, the
sequence of preferences constructed from a finite number of
observations using GARP will have a unique limit as the data
becomes dense. The limit are the unique preferences consistent
with SARP, which satisfy the RP conditions with strict inequality.
Since, however, the upper-contour sets generated by such RP
conditions are open sets, while the upper contour sets implied by
GARP are closed sets, we use the latter, as Varian, for constructing
support sets.

The support set developed by Varian only uses the information
contained in {p (t) , qε (t)}Tt=1. If we in fact have access to the
sequence of Engel curves {d (x, t, ε)}Tt=1, Varian’s bounds can
be tightened as demonstrated by Blundell et al. (2008): Define
intersection demands as q̄ε (t) = d (x̄ε (t) , t, ε), where x̄ε (t)
solves

p′

0d(x̄ε (t) , t, ε) = x0, t = 1, . . . , T .

A tighter support set that is consistent with observed expansion
paths and utility maximization is then given as

Sp0,x0,ε =

q ∈ Bp0,x0 |p (t)′ q ≥ p (t)′ q̄ε (t) , 1 ≤ t ≤ T


=


q ∈ Bp0,x0 |x̄ε−Pq ≤ 0


, (2)

where

Bp0,x0 =

q ∈ RL+1

+
|p′

0q = x0

. (3)

Here, the second equality in Eq. (2) used that, by definition,
p (t)′ q̄ε (t) = x̄ε (t) and that the T inequality constraints can be
written on matrix form with

P = [p (1) , . . . , p (T )]′ ∈ RT×(L+1)
+ ,

x̄ε = (x̄ε (1) , . . . , x̄ε (T ))′ ∈ RT
+
.

This is the identified set of demand responses for any prices p0, in-
comes x0 and heterogeneity ε. In particular, the support set defines
bounds on possible quantile demand responses.

FromBlundell et al. (2008),we know that the support setSp0,x0,ε
is non-empty and convex. Moreover, in the case of two goods,
Sp0,x0,ε defines bounds on q0 that are sharp given {d (x, t, ε)}Tt=1
and the RP inequalities since it makes maximal use of the hetero-
geneous expansion paths and the basic nonparametric choice the-
ory.2 In otherwords, there do not exist alternative bounds (derived
from the same data) which are tighter. In particular, it will in gen-
eral give tighter bounds compared to Varian’s version. It is impor-
tant to note that the support sets for demand responses are local
to each point in the distribution of income x and unobserved het-
erogeneity ε. This allows for the distribution of demand responses
to vary across the income distribution in a unrestricted way. Some
comments regarding the underlying assumptions used to establish
the above bounds are in order:

First, a key assumption for the above analysis to be valid for
a given consumer is that his unobserved component, ε, is time-
invariant. This allows us to use the repeated cross-sectional data to

2 The bounds described are not necessarily sharp in a general economywithmore
than two goods since they do not utilize all constraints implied by rationality.
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track this consumer across different price regimes. If a given con-
sumer’s ε is not time-varying, this set of demand functions will
provide a full characterization of his behavior across the T price
regimes. This in turn allows us to construct bounds for counter-
factual demands for the consumer. On the other hand, if a con-
sumer’s ε is time varying, say, ε1, . . . , εT , knowledge of d (x, t, ε),
t = 1, . . . , T , does not provide information of this particular con-
sumer’s behavior over time unless we are given information about
the particular sequence of ε’s. In particular, the above bounds are
not valid for this consumer.

Second, the above bounds analysis for counterfactual demand
is motivated by the empirically relevant situation where only little
price variation is available (small T ). A different approach to statis-
tical inference about counterfactual demand in our setting would
be to develop estimators that, as n, T → ∞, allows identification
of demand responses to prices as well, (x, p, ε) → d (x, p, ε). This
would allow one to compute point estimates of d (x, p0, ε) which
would be consistent for any value of p0 as n, T → ∞. Moreover,
the asymptotic distribution of the estimator as n, T → ∞ could
be used to construct confidence bands for the counterfactual de-
mand; in particular, these bandswould take into account the finite-
sample variation of p (t). The outlined approach is an alternative to
ours where we only establish estimators of (x, ε) → d (x, t, ε),
t = 1, . . . , T , and conduct statistical inference for fixed T and
n → ∞. However, for small T , the confidence bands obtained from
the alternative approachwill in general be quite imprecise – in par-
ticular in a nonparametric setting – since they rely on asymptotic
approximations, and so we expect that our procedure provides a
more robust set of confidence bands for counterfactual demands.
Moreover, it is well-known that prices exhibit strong time series
dependence (see Lewbel and Ng, 2005)) which will lead to further
deterioration of nonparametric estimators in finite samples.

Finally, we would like to point out that our analysis focuses
on economic agents whose demand decisions – given ε – are
fully described by their income and the prices they face. In case
of households with cohabiting couples, this assumption may be
violated. While it is outside the scope of this paper to provide an
analysis of collective demand decisions, we conjecture that recent
results on RP of collective consumption as in Cherchye et al. (2011)
could be combined with the methods developed here to construct
bounds for this more general case.

3. Estimation of demand bounds

A central objective of this paper is to develop inferential tools
for the support set Sp0,x0,ε when the demand functions are un-
known to the researcher. In this section, we provide a general
framework for estimation and inference of Sp0,x0,ε given some ini-
tial estimators of the sequence of demand functions {d (x, t, ε)}Tt=1.
In particular, under fairly general regularity conditions on the de-
mand function estimators, {d̂ (x, t, ε)}Tt=1, we provide an asymp-
totic analysis of the corresponding support set estimator. The
analysis will utilize the machinery developed in Chernozhukov
et al. (2007b), henceforth CHT, who develop a general framework
for the analysis of set estimators.

We take as given the availability of a sequence of demand
function estimator, d̂(x, t, ε) for t = 1, . . . , T , whose (L + 1)th
component is restricted to satisfy Eq. (1). The general theory of
this section takes no stand on the identification scheme that has
been used in order to identify d (x, t, ε), and the precise nature of
the estimator d̂ (x, t, ε). We will only require that the estimator
is consistent and pointwise asymptotically normally distributed.
In particular, we allow for both non-, semi- and fully parametric
estimators, and so should cover most relevant scenarios. In the
subsequent sections, we propose a specific nonparametric quantile
estimator of d (x, t, ε) for the case of two goods (L = 1) that
falls within the general setting of this section. But other estimators
could be used.

To illustrate the generality of our results, we here provide some
examples of potential demand estimators that are covered by the
theory below:One could, for example, entertain the additivemodel
of Blundell et al. (2008), where it is assumed that d1:L (x, t, ε) =

d̄1:L (x, t) + Σ (x, t) ε for some functions d̄1:L (x, t) ∈ RL and
Σ (x, t) ∈ RL×L. Assuming that ε ∈ RL satisfies E [ε|x] = 0,
Blundell et al. (2008) estimate d̄1:L (x, t) and Σ (x, t) using non-
parametric kernel regression. Blundell et al. (2007) allow for x to
be endogenous and develop nonparametric sieve IV estimators of
the model under the assumption that E [ε|w] = 0 where w is a
set of instruments. As another example, Imbens and Newey (2009)
consider a class of triangular models where ε is allowed to enter
non-additively but in a restrictedmanner and derive quantile-type
estimators ofd. Finally,Matzkin (2003, 2008) derives identification
results for other classes of non-additivemodels. One could then de-
velop estimators of d based on her identification schemeswhich in
turn could beused to compute estimatedbounds for counterfactual
demand.

We impose the following regularity conditions on the popula-
tion demand and its estimator:

C.1 x (t) → d (x (t) , t, ε) is monotonically increasing and contin-
uously differentiable.

C.2 The estimators d̂1:L(x, 1, ε), . . . , d̂1:L(x, T , ε) are mutually in-
dependent over time, and there exists a sequence of nonsin-
gular matrices Ωn (x, t, ε) ∈ RL×L such that

sup
x∈X

Ω1/2
n (x, t, ε) (d̂1:L(x, t, ε) − d1:L(x, t, ε))


= OP


1/

√
rn


for some sequence rn.

C.3 At the intersection income levels,
√
rnΩ1/2

n (x̄ (t) , t, ε) (d̂1:L(x̄ (t) , t, ε)

− d1:L(x̄ (t) , t, ε))→
d N (0, V (x̄ (t) , t, ε)) ,

for some positive definite matrix V (x (t) , t, ε) ∈ RL×L.
C.4 The estimator is differentiable and satisfies supx∈X ∥∂d̂1:L(x, t,

ε)/ (∂x) − ∂d1:L(x, t, ε)/ (∂x) ∥ = oP (1).
C.5 The matrix P = [p (1) , . . . , p (T )]′ ∈ RT×(L+1)

+ has rank L + 1.

The monotonicity requirement in Condition (C.1) ensures that
the intersection income path {x̄ (t)} is uniquely defined and
is a standard requirement in consumer demand theory. The
differentiability condition in conjunction with (C.4) allow us to
use standard delta method arguments to derive the asymptotic
distribution of the intersection income levels.

Condition (C.2) introduces two sequences, a matrix Ωn (x, t, ε)
and a scalar rn. The condition states that once the demand es-
timator has been normalized by Ω

1/2
n (x, t, ε) it converges with

rate
√
rn. (C.3) is a further strengthening and states that the es-

timator when normalized by
√
rnΩ

1/2
n (x, t, ε) converges towards

a normal distribution. We have formulated (C.2)–(C.3) to cover as
many potential estimators as possible. For parametric estimators,
(C.2)–(C.3)will in general holdwith rn = n andΩn (x, t) = IL.With
nonparametric estimators, one may potentially choose Ωn (x, t, ε)
and rn in (C.2) and (C.3) differently:Most nonparametric estimators
depend on a smoothing parameter (such as a bandwidth or num-
ber of basis functions) that can be chosen differently depending on
whether a rate result is sought (as in (C.2)) or asymptotic distribu-
tional results (as in (C.3)). In particular, for the sieve quantile esti-
mator developed in the subsequent section, to obtain rate results
we will choose Ωn (x, t, ε) = IL and rn = O(kn/

√
n) + O


k−m
n


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where kn is number of sieve terms and m is the degree of smooth-
ness of x → d (x, t, ε); to obtain distributional results, we will
choose Ωn (x, t, ε) as the inverse of the sequence of variance ma-
trices of the estimator and rn = n in which case (C.3) holds under
suitable restrictions on kn.

Condition (C.4)will hold in great generality, while (C.5) requires
that the observed prices have exhibited sufficient variation so we
can distinguish between different demands. For the latter to hold,
it is necessary that T ≥ L+ 1 and that at least L+ 1 of these prices
cannot be expressed as linear combinations of others.

Given an estimator d̂ (x, t, ε), it is natural to estimate the sup-
port set by simply substituting the estimated intersection incomes
for the unknown ones. Defining the estimated intersection income
levels x̂ε = (x̂ε (1) , . . . , x̂ε (T )) as the solutions to

p′

0d̂(x̂ε (t) , t, τ ) = x0, t = 1, . . . , T , (4)

a natural support set estimator would appear to be Ŝp0,x0,τ =
q ∈ Bp0,x0 |x̂τ − Pq ≤ 0


. However, in order to do inference, in

particular obtaining a valid confidence set for Sp0,x0,τ , we need to
modify this estimator. Conditions (C.2)–(C.4) allow the estimators
of the demand functions to exhibit different convergence rates
across time and income levels. As demonstrated in Lemma 4, the
estimated intersection income levels, x̂ε =


x̂ε (t)

T
t=1, inherit this

property,
√
rnW 1/2

n (ε) (x̂ε − x̄ε) →
d N (0, IT ) ,

where IT denotes the T -dimensional identity matrix, andWn (ε) is
a diagonal matrix,

Wn (ε) = diag {wn (1, ε) , . . . , wn (T , ε)} ,

with positive entries wn (t, ε) in the diagonal whose expressions
can be found in Eq. (19). Due to the heterogeneous normaliza-
tions across t = 1, . . . , T , as described by the weighting matrix
Wn (ε), the T inequality constraints that make up the support set
are potentially estimated with different rates. This has to be taken
into account in order to construct valid confidence sets. We there-
fore introduce a sample objective function Qn (q) that contain nor-
malized versions of the estimated demand bounds, Qn,ε (q) =

∥Ŵ 1/2
n (ε)


x̂ε − Pq


∥
2
+
, where ∥x∥+ = ∥max {x, 0}∥ for any

vector x, and Ŵn (ε) = diag

ŵn (1, ε) , . . . , ŵn (T , ε)


is a con-

sistent estimator of Wn (ε). In comparison to the naive estimator
suggested earlier, we nownormalize x̂τ −PqwithW 1/2

n . In the case
where the intersection incomes converge with same rate, this nor-
malizationwould not be required sinceΩ

1/2
n (x, t, ε) can be chosen

as the identity in this case.
Given that x̂ε is a consistent estimator of x̄ε , it is straightforward

to verify that supq∈Bp0,x0
|Qn (q|ε) − Q̄n (q|ε) | →

P 0 (see the proof

of Theorem 1 below), where Q̄n (q|ε) = ∥W 1/2
n [x̄ε − Pq] ∥2

+
is the

non-stochastic version of Qn (q|ε). Note that even though Q̄n (q|ε)
is a sequence of functions (due to the presence ofWn), it still gives
a precise characterization of the support set Sp0,x0,ε for any given
n ≥ 1:

Q̄n (q|ε) = 0 ⇔ W 1/2
n (ε) [x̄ε − Pq] ≤ 0

⇔ x̄ε − Pq ≤ 0 ⇔ q ∈ Sp0,x0,ε,

where the second equivalence follows from the fact that Wn is a
diagonal matrix with positive elements. We then introduce the
following set containing the demand levels that lie within a given
contour level c of the sample objective function Qn (q|ε),

Ŝp0,x0,ε (c) =

q ∈ Bp0,x0 |Qn (q|ε) ≤ c


. (5)

In particular, our support set estimator is Ŝp0,x0,ε (0).
It is worth noting that the above formulation of the support set
and its estimator in terms of Q̄n (q|ε) and Qn (q|ε) is very close to
the general formulation of set estimators defined throughmoment
inequalities used in CHT. However, in their setting the limiting
objective function, in our case Q̄n (q|ε), is not allowed to depend
on n, so we cannot directly apply their results. Their proof strategy
can fortunately be generalized without much additional work to
apply to our case. This is similar to the extension of standard
proofs of consistency and rate results in the point identified case
to allow for a sequence of limiting objective functions. Finally,
note that CHT introduce additional nuisance parameters in the
form of a sequence of slack variables in the definition of their
general estimator. Fortunately, our estimation problem satisfies
the degeneracy property discussed in, for example, CHT, Sections
3.2 and 4.2, and so we can avoid using slack variables in the
estimation. It is alsoworth noting that the estimation problem falls
within the framework of Shi and Shum (2012) who consider plug-
in estimators of identified set, except that our first-stage estimator,
x̂ε , is a nonparametric estimator; see also Kline and Tamer (2013).

We consider convergence of the estimated support set in terms
of the Hausdorff distance,

dH(A1, A2) = max

sup
y∈A1

ρ(y, A2), sup
y∈A2

ρ(y, A1)


,

ρ (y, A) = inf
x∈A

∥x − y∥ ,

for any two sets A1, A2.

Theorem 1. Assume that (C.1)–(C.2) and (C.5) hold, and that
ŵn (t) = wn (t) + oP (1). Then dH(Ŝp0,x0 (0) , Sp0,x0) = OP

(


1/


rnw∗

n


) where w∗

n = mint=1,...,T wn (t).

If furthermore (C.3)–(C.4) hold, then P(Sp0,x0,ε ⊆ Ŝp0,x0,ε(q̂1−α))
→ 1 − α, where q̂1−α is an estimator of (1 − α)th quantile of
Cp0,x0 := supq∈Sp0,x0

∥Z + ξ (q)∥2
+
. Here, Z ∼ N (0, IT ) while

ξ (q) = (ξ1 (q) , . . . , ξT (q))′ is given by

ξt (q) =


−∞, p (t)′ q > x̄ (t)
0, p (t)′ q = x̄ (t) ,

t = 1, . . . , T .

The first part of the theorem shows that the support set esti-
mator inherits the sup-norm convergence rate of the underlying
demand function estimator. The second part shows how a valid
confidence set can be constructed for the demand bounds, and is
akin to the result found in, for example, CHT’s Theorem 5.2. The
critical values are based on quantiles of Cp0,x0 which is the limiting
distribution of supq∈Sp0,x0,ε

n

Qn (q|τ) − Q̄n (q|τ)


. Thus, the con-

fidence set is constructed by inversion of the statistic defining the
set estimator. As can be seen from the theorem, the distribution of
Cp0,x0 depends on T -dimensional vectors Z and ξ (q). The former
is simply the limiting joint distribution of the (appropriately nor-
malized) estimates of the intersection incomes x̄ε (t), t = 1, . . . , T ,
while the latter keeps track of which of the constraints are binding
(in the population) with only the binding ones influencing the dis-
tribution.

In order to employ the second part of the theorem to con-
struct a confidence set, quantiles of the random variable Cp0,x0
defined in the theorem has to be computed. The distribution of
Cp0,x0 is non-standard and cannot be written in closed form. So
its quantiles need to be evaluated using simulations (CHT) or re-
sampling methods ((Bugni, 2010); CHT). Alternatively, given that
our estimator falls within the framework of Shi and Shum (2012),
a plug-in method can be employed: Let CIt (1 − α) ⊆ RL be an
asymptotically valid confidence set for x̄ε given the estimator x̂ε ,
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P (x̄ε ∈ CIt (1 − α)) → 1 − α. This can be constructed using stan-
dard methods. One choice is to rely on an asymptotic approxima-
tion,

CIt (1 − α) =


x̄ε ∈ RT

:

x̄ε − x̂ε

′ r−1
n Ŵ−1

n,t (ε)

×

x̄ε − x̂ε


≤ χ2

T (1 − α)


,

for some estimator Ŵn,t (ε) of Wn,t (ε). Another way of construct-
ing CIt (1 − α) is by using standard bootstrapmethods. It now eas-
ily follows that

S̃p0,x0,ε (1 − α) :=


q ∈ RL

: ∥Ŵ 1/2
n (ε) [xε − Pq] ∥2

+
≤ 0,

x̄ε ∈ CIt (1 − α)


is a consistent confidence set of Sp0,x0,ε , P(Sp0,x0,ε ⊆ S̃p0,x0,ε(1 −

α)) → 1 − α.
Finally, we note that we have here constructed confidence

bounds for the identified support set. One may instead be
interested in constructing confidence bounds for the unidentified
demand point. This can be done by using the results in Section 5 of
CHT.

4. Quantile sieve estimation of demand

The previous section developed a general theory for support set
estimation taking as input some estimator of the demand func-
tions. In this section,wepropose a specific estimator that allows for
unobserved heterogeneity to enter in a fairly unrestricted manner.
This estimator requires us to restrict our attention to the case of
two goods (L = 1) and assume that ε is univariate or, more gener-
ally, to assume that ε = (ε1, . . . , εL)

′ and dl (x, ε) = dl (x, εl) only
depends on εl, l = 1, . . . , L. Since the proposed estimation theory
for L > 1 is a straightforward generalization of the case L = 1, we
assume in the following that L = 1.

In order for d (x, t, ε) = (d1 (x, t, ε) , d2 (x, t, ε))′ to be non-
parametrically identified, additional constraints have to be im-
posed on the function and the random variables (x, ε). First, the
distribution of unobserved heterogeneity ε is in general not iden-
tified from data, and so will be to assumed (or normalized) to be
univariate and to follow a uniform distribution, ε ∼ U [0, 1]. This
in particular implies that the distribution of ε cannot change over
time. We will furthermore assume ε to be independent of x (t).3

Next, we assume that d1 is invertible in ε. Sufficient conditions
for this to hold in demand models can be found in Matzkin (2003)
and Beckert and Blundell (2008). This combined with the above
restrictions on ε implies that d1 (x, t, τ ), τ ∈ [0, 1], is identified
as the τ th quantile of q1 (t) |x (t) = x (Matzkin, 2003; Imbens and
Newey, 2009), d1 (x, t, τ ) = F−1

q1(t)|x(t)=x (τ ), τ ∈ [0, 1]. These are
the quantile expansion paths that describe theway demand changes
with income x for any given market t and for any given consumer
ε, that is, quantile representations of Engel curves. Based on the
above characterization of d1, we will in the following develop
nonparametric quantile estimators of the function.

The assumptions of a univariate anduniformly distributed ε and
invertibility of d1 are restrictive, but it is not possible to weaken
those in our general settingwithout loosing identification of d1 and
thereby consistency of our quantile demand function estimator.
Consistent estimators of marginal effects and average derivatives
of non-additive models that are robust to deviations from the
above assumptions are provided in Hoderlein andMammen (2007,
2009). However, this would not permit the application of the

3 The independence assumption can be relaxed as discussed in Section 7.
methods developed in this paper as demands relating to individual
consumers are not directly identified. Importantly, Hoderlein and
Stoye (2013) argue that in a two-good setting the assumption of ε
being a scalar is vacuous for the computation of demand bounds.

Given the above identification result, we proceed to develop a
sieve quantile estimator of d1. As a starting point, we assume that
for all t = 1, . . . , T and all τ ∈ [0, 1], the function x → d1 (x, t, τ )
is situated in some known function space D1 which is equipped
with some (pseudo-)norm ∥·∥.4 We specify the precise form of D1
and∥·∥below.Given the function spaceD1, we choose sieve spaces
Dn,1 that are finite-dimensional subsets ofD . In particular, wewill
assume that for any function d1 ∈ D1, there exists a sequence
πnd1 ∈ Dn,1 such that ∥πnd1 − d1∥ → 0 as n → ∞. Assuming
thatD1 is spanned by a set of known (basis) functions {Bk}k∈K (see
Chen (2007), Section 2.3 for examples), we focus on linear sieves,

Dn,1 =


dn,1 : dn,1 (x, t, τ ) =


k∈Kn

πk (t, τ ) Bk (x) ,

π (t, τ ) ∈ R|Kn|


, (6)

for some sequence of (finite-dimensional) sets Kn ⊆ K . Finally,
we define the space of vector functions, D = {d : d1 ∈ D1, d2 =

(x − p1d1)/p2}, with the corresponding sieve space Dn obtained
by replacing D1 by Dn,1 in the definition of D .

Given that d1 (x, t, τ ) is identified as a conditional quantile for
any given value of x, we may employ standard quantile regression
techniques to obtain the estimator: Let ρτ (z) = (τ − I {z < 0}) z,
τ ∈ [0, 1], be the standard check function used in quantile estima-
tion (see Koenker and Bassett, 1978). We then propose the follow-
ing estimator:

d̂ (·, t, τ ) = arg min
dn∈Dn

1
n

n
i=1

ρτ


q1,i (t) − dn,1 (xi (t) , t, τ )


,

t = 1, . . . , T , (7)

In practice, given that the sieve is linear, this estimator takes the
form of a linear quantile regression.

The above estimator does not utilize that, if indeed the con-
sumers are rational, the demand function has to satisfy RP re-
strictions. Since the unconstrained estimator is consistent, it will
asymptotically satisfy the RP restrictions. However, in finite sam-
ples, there is no reason why the estimator should satisfy these
restrictions and so imposing these restrictions is expected to re-
duce estimation errors. Consider a given consumer characterized
by τ ∈ [0, 1], and construct the following particular income ex-
pansion path


x̃τ (t)


recursively by

x̃τ (t) = p (t)′ d

x̃τ (t + 1) , t + 1, τ


,

where we initialize the sequence at a given ‘‘termination’’ income
level xτ (T ) ∈ R+. The weak axiom of RP imply the following set of
inequality constraints:

x̃τ (t) ≤ p (t)′ d

x̃ (s) , s, τ


, s < t, t = 1, . . . , T . (8)

If the demand functions d (x, t, τ ), t = 1, . . . , T , satisfy these in-
equalities for any given income level xτ (T ), we say that ‘‘d (·, ·, τ )
satisfies RP ’’. Note that these constraints are invariant to the partic-
ular ordering of prices; any arbitrary ordering of prices will impose
the same constraints on the overall set of demand functions.

4 The function space could without problems be allowed to change over time,
t = 1, . . . , T . For notational simplicity, we maintain that the function space is the
same across time.
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A RP-restricted sieve estimator is now easily obtained in princi-
ple: First observe that the unrestricted estimator of {d (·, t, τ )}Tt=1
developed above can be thought of as the solution to a joint esti-
mation problem over the function space DT

n = ⊗
T
t=1 Dn with Dn

defined above. Since there are no restrictions across the T time pe-
riods, the joint estimation problem can be decomposed into T sep-
arate estimation problems as given in Eq. (7). In order to impose
the RP restrictions, we define the constrained function set for the
T demand functions as

DT
C := DT

∩ {d (·, ·, τ ) satisfies RP} , (9)

and similarly the constrained sieve as DT
C,n := DT

n ∩ {dn (·, ·, τ )
satisfies RP}. The constrained estimator is then defined as

{d̂C (·, t, τ )}Tt=1 = arg min
{dn(·,t)}Tt=1∈DT

C,n

1
n

T
t=1

n
i=1

ρτ

×

q1,i (t) − dn,1 (t, xi (t))


. (10)

Note that since the RP inequalities impose restrictions across time
(t = 1, . . . , T ), the above estimation problem can no longer be
split into individual subproblems as in the unconstrained case.
The above estimator, however, requires solving a quantile regres-
sion problemwith nonlinear constraints which is not easily imple-
mented in standard software packages (in particular, the objective
function is non-differentiable which makes standard search algo-
rithms unreliable). So a computationally attractive alternative is
to update (‘‘rearrange’’) the initial unconstrained estimator using
least-squares:

{d̃C (·, t, τ )}Tt=1 = arg min
dn(·,·)∈DT

C,n

1
n

×

T
t=1

n
i=1


d̂1 (t, xi (t)) − dn,1 (t, xi (t))

2
. (11)

In particular, {d̃C (·, t, τ )}Tt=1 can be computed using standard
numerical optimization algorithms. At the same time, under con-
ditions discussed below, the two estimators, d̂C and d̃C , are asymp-
totically equivalent, and so we will in the following use d̂C to
denote either of the two.

As explained in Section 2.3, by the results in Mas-Colell (1978,
Theorem 4), if we are willing to assume that the demand func-
tion satisfies a boundary condition and is income-Lipschitzian, the
RP constraints will be satisfied with strict inequality in the limit.
Hence, as argued below, the shape constraints will not be bind-
ing and so the asymptotic properties of the constrained estima-
tor will be the same as that for the unconstrained. On the other
hand, if the constraints are binding, the constrained estimator d̂C
is expected to have a non-standard asymptotic distribution; see,
for example, Wright (1981), Andrews (1999), Anevski and Hössjer
(2006) who give results for inequality-constrained parametric and
nonparametric problems respectively. Ideally, wewould like to an-
alyze the properties of d̂C also in the case of binding constraints
using similar techniques, but this proves technically very demand-
ing. This is due to the fact that the RP constraints are global and
cannot, as in the case of monotonicity or positivity constraints, be
formulated as simple, pointwise inequality constraints.

Instead, in order to be robust towards binding constraints, we
adapt an idea used elsewhere in the literature on nonparametric
estimation under shape constraints where we remove the binding
constraints through the introduction of a certain level of slack, see
e.g. Birke andDette (2007),Mammen (1991),Mukerjee (1988). This
is done here by introducing the following generalized version of
RP: We say that ‘‘d satisfies RP(e)’’ for some constant e ≥ 0 if for
any income expansion path,

ex̃τ (t) ≤ p (t)′ d

x̃τ (s) , s, τ


, s < t , t = 2, . . . , T .
The definition of RP(e) is akin to Afriat (1973) who suggests
a similar modification of (GA)RP to allow for waste (‘‘partial
efficiency’’). We can interpret e as Afriat’s ‘‘efficiency parameter’’:
With e = 1, nowaste is allowed for; as e decreases, themorewaste
we allow for; with e = 0, any sequence of demand functions is
rationalizable.

With this generalized version of GARP, we then define the
corresponding constrained function space and its associated sieve
asDT

C (e) = DT
∩{d (·, ·, τ ) satisfies RP (e)} andDT

C,n (e) = DT
n ∩

{dn (·, ·, τ ) satisfies RP (e)}. We note that the constrained function
space DT

C as defined in Eq. (9) satisfies DT
C = DT

C (1). Moreover, it
should be clear thatDT

C (e) ⊆ DT
C (e) for 0 ≤ e ≤ e ≤ 1 since RP(e)

imposesweaker restrictions on the demand functions compared to
RP(e). One could in principle make the waste parameter e = en →

1 at a suitable rate. This would however complicate the analysis
and so we treat e as a fixed, user-chosen constant in the following.

We now re-define our RP constrained estimators to solve the
same optimization problem as before, but now the optimization
takes place over DC,n (e) for some given choice of e. Let d̂e

C denote
this estimator, and note that d̂1

C = d̂C , where d̂C is given in
Eq. (10). Suppose that {d (·, t, τ )}Tt=1 ∈ DT

C (ē) for some ē ≤ 1; this
implies that the unconstrained estimator satisfies {d̂ (·, t, τ )}Tt=1 ∈

DT
C,n (e) w.p.a.1, for any e < ē. Since d̂e

C is a constrained version of
d̂, this implies that d̂e

C = d̂w.p.a.1.Wemay therefore conclude that
d̂e
C is asymptotically equivalent d̂, and all the asymptotic properties

of d̂ are inherited by d̂e
C .

Suppose the results of Mas-Colell (1978, Theorem 4) apply,
such that no constraints are binding for the population demand
functions. If the support of x (t) is compact, it then holds that
{d (·, t, τ )}Tt=1 ∈ DT

C (ē) for some ē > 1. In this case, the above
arguments go through with e = 1 < ē, and so the constrained
estimator d̂C = d̂1

C will be asymptotically equivalent to d̂.
Additional constraints could be imposed on the estimator to

further improve its finite-sample performance. For example, we
could use the quantile-rearrangement method of Chernozhukov
et al. (2009) to ensure that no crossing is taking place across the
quantile range.

To analyze the two quantile sieve estimators, we restrict our
attention to the case where B-splines are used to construct the
sieve space Dn,1. For an introduction to these, we refer to Chen
(2007, Section 2.3). All of the following results goes through
for other linear sieve spaces after suitable modifications of the
conditions. We introduce the following L2- and sup-norms which
will be used to state our convergence rate results, ∥d (·, t, τ ) ∥2 =
E


∥d (x, t, τ )∥2 and ∥d (·, t, τ ) ∥∞ = supx∈X ∥d (x, t, τ )∥. The

following assumptions are then imposed on the model:

A.1 Income x (t) has bounded support, x (t) ∈ X = [a, b] for
−∞ < a < b < +∞, and is independent of ε ∼ U [0, 1],
1 ≤ t ≤ T .

A.2 The demand function d1 (x, t, ε) is strictly increasing in ε, 1 ≤

t ≤ T .
A.3 The function d1 (·, t, τ ) ∈ D1, where D1 = Wm

2 ([a, b]) and
Wm

2 ([a, b]) is the Sobolev space of all functions on [a, b] with
L2-integrable derivatives up to orderm ≥ 0, 1 ≤ t ≤ T .

The assumption of bounded support is fairly standard in the
literature on sieve estimation. It should be possible to weaken
the restriction of bounded support, but the cost would be more
complicated assumptions and proofs so we maintain (A.1) for
simplicity (see e.g. Chen, Blundell and Kristensen, 2007 for results
with unbounded support). The independence assumption rules
out endogenous income; in Section 7, we explain how this can
be allowed for by adopting nonparametric IV or control function
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approaches. We refer to Matzkin (2003), Beckert (2007), and
Beckert and Blundell (2008) formore primitive conditions in terms
of the underlying utility-maximization problem for (A.2) to hold.

Finally, to state the asymptotic distribution, we need some
additional notation: Define the sequence of covariance matrices

Vn (τ ) = τ (1 − τ)H−1
n (t, τ ) Ωn (t, τ )H−1

n (t, τ ) , (12)

Ωn (t, τ ) = E

Bkn (x (t)) Bkn (x (t))′


,

Hn (t, τ ) = E

f (0|t, x (t) , τ ) Bkn (x (t)) Bkn (x (t))′


.

(13)

Here, f (0|t, x, τ )denotes the conditional distribution ofκ (t, τ ) :=

q1 (t) − d1 (x (t) , t, τ ) given x (t) = x; this is given by

f (e|t, x, τ ) = fq1(t)|x(t) (κ + d1 (x, t, τ ) |x) , (14)

where fq1(t)|x(t) (·|x) is the conditional density of q1 (t) given x (t).

Theorem 2. Assume that (A.1)–(A.3) hold. Then the unconstrained
estimator satisfies the following: for any 1 ≤ t ≤ T and τ ∈ [0, 1]:

∥d̂ (·, t, τ ) − d (·, t, τ ) ∥2 = OP(

kn/n) + OP


k−m
n


,

while

∥d̂ (·, t, τ ) − d (·, t, τ ) ∥∞ = OP(kn/
√
n) + OP


k−m
n


.

If, in addition, the eigenvalues of E

Bkn (x) Bkn (x)′


are bounded and

bounded away from zero, k4n/n = O (1), nk−3m+1/2
n = O (1) and

nk−2m−1
n = o (1), then

√
nΣ−1/2

n (x, τ )

 d̂1 (x (1) , 1, τ ) − d1 (x (1) , 1, τ )
...

d̂1 (x (T ) , T , τ ) − d1 (x (T ) , T , τ )


→

d N (0, IT ) ,

where IT ∈ RT×T denotes the identity matrix, and Σn (x, τ ) =

diag

{Σn (x (1) , 1, τ )}Tt=1


∈ RT×T with Σn (x (t) , t, τ ) = Bkn

(x (t))′ Vn (t, τ ) Bkn (x (t)).
Suppose that d ∈ DT

C (e) for some e > 0. Then the constrained
estimator d̂e

C (·, t, τ ) with 0 ≤ e < e has the same asymptotic
properties as d̂. In particular, if the results of Mas-Colell (1978) apply,
then d̂C = d̂1

C is asymptotically equivalent to d̂.

We here state results both in the L2- and sup-norm, and note
that while we obtain optimal rates in the L2-norm this is not the
case in the sup-norm. This is a general problem for sieve esti-
mators; see e.g. Newey (1997, Theorem 1) and Chen et al. (2010,
Lemma 2.1. and Remark 2.1). The asymptotic independence of the
estimators across time is due to the fact that a new sample of con-
sumers are drawn at each time period. The above weak conver-
gence result is only stated in a pointwise version. As discussed in
the following sections, uniform weak convergence results would
be useful if the goal is to analyze demand bounds across a contin-
uum of consumers (that is, for τ in some interval of [0, 1]). These
can be obtained from the general results in Belloni et al. (2011),
and so could potentially be used to examine uniform convergence
of the resulting bounds.

A consistent estimator of the covariance matrix Σn (x, τ ) can
be obtained by replacing expectations with sample averages in
the definition of Ωn (t, τ ) and Hn (t, τ ) in Eq. (13) and f (0|t, x, τ )

by f̂q1(t)|x(t)(d̂1 (x, t, τ ) |x) with f̂q1(t)|x(t)(q|x) being, for example, a
kernel estimator of the conditional density.

The first-order asymptotic properties of the constrained es-
timator are identical to those of the unconstrained one. This is
similar to other results in the literature on constrained nonpara-
metric estimation. For example, Kiefer (1982) establishes opti-
mal nonparametric rates in the case of constrained densities and
regression functions respectively when the constraints are not
binding. In both cases, the optimal rate is the same as for the un-
constrained one. We conjecture that the constrained estimator is
higher-order efficient relative to the unconstrained one, so that in
finite samples it provides a more precise estimate. Simulation re-
sults reported in the working paper version of this paper (Blundell
et al., 2011) support this conjecture. However, a formal proof of it
seems very daunting,5 and so the verification of this is left for fu-
ture research.

Finally, we note that the proof technique used to obtain the
above theorem is not specific to our particular quantile sieve
estimator. One can by inspection easily see that the arguments
employed in our proof can be adapted to show that for any
unconstrained demand function estimator, the corresponding RP-
constrained estimator will be asymptotically equivalent when
allowing for waste.

Given the results in Theorem 2, we can now verify the general
conditions (C.1)–(C.4) to obtain the following results for the
estimated bounds based on the proposed sieve quantile estimator:

Theorem 3. Suppose that (A.1)–(A.3) hold, x → d1 (x, t, ε) is
strictly increasing, and ∥Ŵn − Wn∥ →

P 0. Then (C.1)–(C.4) hold for
the quantile estimators. In particular,

dH(Ŝp0,x0,τ (0) , Sp0,x0,τ ) = OP(kn
√
n) + OP


k−m
n


.

If furthermore, the eigenvalues of E

Bkn (x (t)) Bkn (x (t))′


, t =

1, . . . , T , are bounded and bounded away from zero; k4n/n = O (1),
nk−3m+1/2

n = O (1) and nk−2m−1
n = o (1), then P(Sp0,x0,τ ⊆

Ŝp0,x0,τ

q̂1−α


) → 1−α where q̂1−α is an estimator of the (1 − α)th

quantile of Cp0,x0 defined in Theorem 1.

Note that instead of using Ŝp0,x0,τ

q̂1−α


as a confidence set,

one could alternatively use the plug-in version discussed after
Theorem 1.

5. Computation of estimators

The implementation of the estimated demand functions and
bounds may be computationally challenging. We here propose
relative simple numerical algorithms for their computation that
are not too demanding in the sense thatwewere able to implement
them in Matlab on a standard desktop.

In the computation of the constrained demand function esti-
mator, we have to check whether the RP constraints are satisfied
for a given candidate estimator. However, it is not numerically fea-
sible to check that a given candidate satisfies the RP constraints
across all potential income expansion paths of which there exists a
continuum. Instead, we only check the RP constraints on a discrete
grid as follows: First, choose (a large number of) M ≥ 1 income
‘‘termination’’ values, x̃i (T ), i = 1, . . . ,M . The latter will be used
to generated income paths. By choosing M sufficiently large, we
hope to cover most of the possible income paths. For a givenmem-
ber of the unconstrained sieve, say {dn(x, t)}Tt=1, where dn,1(x, t) =

π (t)′ Bkn (x), we then checkwhether it satisfies RP across this grid:
ComputeM SMP paths


x̃i (t)


, x̃i (t) = p (t)′ dn(x̃i (t + 1) , t + 1)

for i = 1, . . . ,M . For each of these paths, which implicitly depends
on the sieve coefficients to be estimated, π = {π (t)}Tt=1, we check
whether Eq. (8) holds. By defining

ai (s, t, π) =


p2 (t)
p2 (s)

p1 (s) − p1 (t)

Bkn


x̃i (s)

′
∈ Rkn , (15)

bi (s, t, π) =
p2 (t)
p2 (s)

x̃i (s) − x̃i (t) ∈ R,

5 For example, Chernozhukov et al. (2009) have to spend considerable effort to
show such results for a much simpler constrained estimator.
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for s < t , the RP constraints can be written more conveniently in
matrix form as AM (π) π ≤ bM (π), where,

AM (π) =

O1×(s−1)kn , ai (s, t, π) ,O1×(T−s)kn ,


i=1,...,M,s<t ,

bM (π) = [bi (s, t, π)]i=1,...,M,s<t ,

and Op×q denotes the (p × q)-dimensional matrix of zeros. This
highlights that the constraints are nonlinear in π ; if the con-
straints instead were linear, the constrained estimator could sim-
ply be implemented as discussed in Koenker and Ng (2005). Our
original least-squares problem in Eq. (11) should then be well-
approximated by

π̂C = argmin
π

1
n

T
t=1

n
i=1


d̂1 (t, xi (t)) − π (t)′ Bkn (xi (t))

2

s.t. AM (π) π ≤ bM (π) . (16)

For a fixed grid sizeM , the above implementation will only deliver
an approximate version of the Eq. (11) with the approximate es-
timator being less precise relative to the exact, but infeasible one.
However, as the grid size increases, the approximation errors will
vanish. In the empirical analysis, we tried out different grid sizes
and found little sensitivity of the estimator to the choice of this for
M = 50 − 100. In the reported results, we choose the grid as the
empirical 1–99 percentiles of x so thatM = 99.

For moderate/large values of T , solving the above optimization
problem is still quite a formidable task. For example, with a sieve
of dimension kn = 8 and T = 8 (as is the case in our empirical
application), we have a total of 64 parameters to solve for.
Fortunately, this numerical issue can to some extent be bypassed
by running the following iterative procedure: To initialize the
procedure, note that for T = 1 the constrained estimator is equal
to the unconstrained one, since in this case no RP constraints exist.
Now, given an estimator for T periods worth of constraints, we
can solve the constrained estimator for T + 1 periods by starting
the numerical algorithm at the estimates obtained for T periods
together with the unconstrained estimator for period t = T +1. In
our experience, this procedure is quite robust and allowsnumerical
solutions to the constrained estimation problem with relatively
large number of sieve terms and time periods.

Once an estimator ofd, either constrained or unconstrained, has
been obtained, the computation of bounds proceeds in two steps:
For a given set of prices, p0, and income level, x0, we first solve
Eq. (4) w.r.t. x̂ε (t) using a numerical equation solver for t =

1, . . . , T . Next, approximate estimators of the bounds are found
as solution to a linear programming problems: Given some cut-off
level ĉn ≥ 0, we define Â = ŴnP ∈ RT×2, b̂ = ĉn + Ŵnx̂ ∈ RT , and
then compute:

q̃up,1 = arg
q∈R2

max q1 s.t. Âq ≤ b̂ and p0q = x0,

q̃low,1 = arg
q∈R2

min q1 s.t. Âq ≤ b̂ and p0q = x0.

This yields approximate estimates of the upper and lower bounds
for demand for good 1. The final estimates are then obtained by
solving the following two optimization problems numerically:

q̃up,1 = arg
q∈Bp0,x0

max q1 s.t. nQn (q) ≤ ĉn,

q̃low,1 = arg
q∈Bp0,x0

min q1 s.t. nQn (q) ≤ ĉn,

where the optimization algorithm is started at q̃up,1 and q̃low,1
respectively. Note that the theory allows us to set ĉn = 0, but in
practice we found that the linear programming solver was unable
to find a solution with ĉn = 0. To resolve this issue, we then
gradually increased ĉn until the solver found a solution. In general,
this procedure worked well, but some numerical irregularities
were found as discussed below in the presentation of the empirical
results.

Confidence regions for these demand bounds can be obtained
by choosing the cut-off level ĉn as ĉn = q̂1−α , where q̂1−α is
an estimator of the (1 − α)th quantile of Cp0,x0,τ defined in The-
orem 1. This can be computed by simulations. We first rewrite
Cp0,x0,τ : Letting T̄b = maxq∈Sp0,x0,τ

T
t=1 ξτ (t, q), ξt (t, q) :=

I

x̄τ (t) = p (t)′ q


, denote the maximum number of binding con-

straints across all points in Sp0,x0,τ , we can write Cp0,x0,τ =
T̄b

t=1
max {Z (t) , 0}2, where {Z (t)}Tt=1 ∼ N (0, IT ). Given a consis-
tent estimator T̂b = maxq∈Ŝp0,x0,τ

T
t=1 ξ̂τ (t, q), ξ̂τ (t, q) =

I

x̂τ (t) ≥ p (t)′ q − an


with an ∝

√
log (n) /n, we propose to

compute approximate quantiles by simulating from Ĉp0,x0,τ =T̂b
t=1 max {Z (t) , 0}2.
In theworking paper version (Blundell et al., 2011),weprovided

a simulation study showing that at observed prices, our demand
estimators perform well for the random coefficient Cobb–Douglas
modelswith small biases and variances.Moreover, as expected, the
constrained estimator dominates the unconstrained one in terms
of MSE. Finally, estimated bounds on (predicted) demands at new
prices are somewhat more biased, but still perform satisfactorily.

6. Empirical application

In our application we apply the methodology for constructing
quantile demand bounds under RP inequality restrictions to data
from the British Family Expenditure Survey (FES) which is a
repeated cross-section survey consisting of around 7000 British
households in each year containing expenditure data and prices.
The same data set was used in Blundell et al. (2008) to construct
demand bounds under the assumption that the demand function
was additive, dl (x, εl) = dl (x) + εl. This restriction implies
that unobserved heterogeneity only affects demands in terms of
location shifts. Here, we allow demand to be non-additive in x
and ε and thereby for richer interaction between the two, thereby
providing new insights into price responsiveness of demand across
the distribution of unobserved tastes.

6.1. Data

We select as data the subsample of couples with children who
own a car providing us with between 1421 and 1906 observations
per year. In our application, we focus on FES data for the eight
year period 1983–1990. We use total spending on nondurables
to define our total expenditure, x, defined as total expenditure
on non-durables and services. As a guide to the variation in the
expenditure data, the basic distribution of the Engel curve data for
the year 1985 are described in Fig. 5.1. Similar distributions are
found for the other years in the data set.

6.2. The sieve estimates of quantile expansion paths

In the estimation, we implement the sieve estimator along the
lines described in Section 5. We use a 3rd order polynomial spline
(qn = 3) with rn = 5 knots. Each household is defined by a point
in the distribution of log income and unobserved heterogeneity ε.
As an example, for the year t = 1983, the unconstrained expan-
sion paths estimates as a function of x for each of three quantiles
(τ = 0.1, 0.5 and 0.90) of the distribution of unobserved hetero-
geneity are given in the left panel of Fig. 5.2 together with 95%
confidence intervals that have been computed using the asymp-
totically normal approximation of Theorem 2.
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Fig. 5.1. Engel curve distribution and distribution of total expenditure, 1985.
Fig. 5.2. Unconstrained and constrained demand function estimates, 1983.
The value of τ in these figures can be interpreted as the taste
for food relative to other goods, with a higher value of τ reflecting
stronger preferences for food. We see that the demand functions
for the three different types of consumers are similar, but the shape
does change as we move across the distribution of unobserved
heterogeneity τ . This supports the use of the non-additive demand
models that allow for richer interactions between log x and τ .

Next, we re-estimate the quantile expansion paths (Engel
curves) under the RP and monotonicity restrictions with e = 0.99
thereby allowing for 1% waste. The constrained quantile Engel
curve estimates for t = 1983 can be found in right panel of Fig. 5.2.
Comparing the constrained with the unconstrained estimates, im-
posing monotonicity and RP restrictions tend to remove some of
the wiggles found in the unrestricted estimates. The impact of the
constraints vary across the different quantiles; for τ = 0.90, the
constrained and unconstrained estimators are very close, while
substantial shifts in the demand functions happen at τ = 0.50 and
τ = 0.10. In particular, the decreases in demand observed at the
lower quantiles of the unconstrained estimator are removed. How-
ever, the overall shapes remain quite similar. The 95% confidence
intervals are also here computed using the asymptotically normal
approximation of Theorem 2 assuming that the RP constraints are
non-binding. If in fact the constraints are binding, the confidence
intervals will in general be distorted and so should be interpreted
with care.
6.3. Estimated demand bounds and confidence sets

A key parameter of interest in this study is the distribution of
predicted consumer responses for some new relative price p0 and
income x0. For any x0, this will allow us to describe the demand
curve for a sequence of relative prices. For anypricep0, we estimate
bounds (support set) for each quantile demand curve at income x0
using the RP inequalities. In our FES data we consider bounds on
the demand curve at new prices of food while keeping the price of
remaining goods fixed at p0,2 = 1.

We first investigate how precisely the bounds are estimated.
In Fig. 5.3, we report the estimated bounds together with the 95%
confidence interval across a range of prices for food for a median
income consumer. While the estimated bounds are quite narrow,
the corresponding confidence intervals are somewhat larger thus
taking into account the sampling uncertainty.We also note that the
bounds are relatively more narrow within the range of observed
prices (0.94 ≤ p1,t ≤ 1.01) in our sample, while for prices far
away from observed prices the bounds widen and become less
informative. The kinks in the bounds appear at observed prices
since these impose additional restrictions on the demand. Note,
however, that the plotted bounds are smooth and do not take
the form of step functions. This appears to be a side effect of our
implementation of the bound estimators as presented in Section 6
where a positive cut-off point in the computation of the bounds,
ĉn > 0, functions as a type of smoothing.
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Fig. 5.3. Estimated demand bounds and 95% confidence sets at median income,
τ = 0.5, T = 8.

Next, we examine how demand responds to changes across
the two dimensions of individual heterogeneity—income and un-
observed heterogeneity. For a given income we can look at de-
mand bounds for consumers with stronger or weaker preferences
for food. Each figure contains three sets of bound estimates cor-
responding to using price information for T = 4, 6 and 8 time
periods. To avoid too cluttered figures, we only report confidence
sets for the bounds for T = 8, the dotted bounds; the confidence
sets for T = 4 and 6 are qualitatively the same. The top-left panel
of Fig. 5.4 shows the estimated confidence sets for the bounds on
the quantile demand function at the median income for the 10th
percentile (τ = 0.1) of the unobserved taste distribution. Notice
that where the relative prices are quite dense the bounds are cor-
respondingly narrow. The top-right panel of Fig. 5.4 contrasts this
for a consumer at the 50% (τ = 0.5) percentile of the heterogeneity
distribution—a consumer with stronger taste for food. At all points
demands are higher and the price response is somewhat steeper.
The lower-left panel of Fig. 5.4 considers a consumer with an even
stronger taste for food—at the 90th percentile (τ = 0.9) of the taste
distribution. Demand shifts further up at all points. The bounds re-
main quite narrow where the relative prices are dense. At a few
price levels and chosen values of τ , the demandbounds growwider
as we increase T ; for example, compare the demand bounds for
T = 6 and 8 in the top-left panel when price of food is between
1 and 1.02. This was caused by the aforementioned problems with
a finding a solution to the linear programming problem for larger
values of T which lead to us having to increase the cut-off point ĉn.

Finally, we can examine how changes in the total outlay level,
x0, affects the demand bounds. We focus on the median consumer
with τ = 0.5. Consider Fig. 5.5, which presents the demand
bounds at median total outlay, as the baseline case. We now
decrease the consumers total outlay to the 25th percentile level
in the sample; the resulting bounds are shown in the left panel
Fig. 5.4. Bounds at median income for τ = 0.1, 0.5 and 0.9.
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Fig. 5.5. Bounds at τ = 0.5 and 25th and 75th percentile income.
of Fig. 5.5. As expected, predicted demand drops uniformly across
prices compared to the ones reported for the higher income level
(note here that the scale of the y-axis is slightly different from the
earlier figures). The sets for the median consumer with outlay x0
at the 75th percentile of the sample are found in the right panel of
Fig. 5.5. Comparing the two plots, we see that the overall shape
remains the same, but that demand bounds are compressed as
income levels are decreased.

7. Conclusions and extensions

This paper has developed a new approach to the estimation
of consumer demand models with non-separable unobserved het-
erogeneity. For general non-additive stochastic demand functions,
we have demonstrated how RP inequality restrictions can be uti-
lized to improve on the nonparametric estimation of demand re-
sponses. We have shown how bounds on demand responses to
price changes can be estimated, and derive their asymptotic prop-
erties using results on the estimation of parameters characterized
by moment inequalities.

An empirical application using individual consumer data
from the British Family Expenditure Survey has illustrated the
usefulness of the methods. New insights have been provided
about the price responsiveness of demand across the distribution
of unobserved tastes and different percentiles of the income
distribution.

It would be natural to extend our results to allow for endogene-
ity of the total expenditure variable such that the independence
assumption made in (A.2) can be weakened. In recent years, non-
parametric estimationmethods for additive regressionmodels un-
der endogeneity have been proposed; see, for example, Newey
et al. (1999), Newey and Powell (2003) and Hall and Horowitz
(2005). These have been applied in the empirical analysis of En-
gel curves with additive errors (Blundell et al., 1998, 2007). These
nonparametric techniques have recently been generalized to the
case of quantile models; see, e.g., Chernozhukov et al. (2007a), Im-
bens and Newey (2009) and Chen and Pouzo (2012). With the as-
sumptions and results of either of these three papers replacing our
assumptions (A.1)–(A.3) and our Theorem 2, the general results for
estimated bounds as given in Theorem 1 will still go through.

The specific estimators developed in the paper assumes that
the demand function for good l takes the form dl (x, εl) where εl
is a scalar. When the number of goods L > 2, this is a rather re-
strictive assumption which ideally should be weakened to allow
for multiple unobserved components entering each demand func-
tion. Building on Matzkin (2008), Blundell et al. (2013b) provide
new identification and estimation methods for consumer demand
models that can be used to estimate nonparametric systems of de-
mand functions where each function is nonadditive on a vector of
unobservable random terms.

Finally, it would also of interest to test whether the consumers
in the data set indeed do satisfy these restrictions: First, from an
economic point of view it is highly relevant to test the axioms
underlying standard choice theory. Second, from an econometric
point of view, wewish to test whether the imposed constraints are
actually satisfied in data. A natural way of testing the rationality
hypothesis would be to compare the unrestricted and restricted
demand function estimates, and rejecting if they are ‘‘too different’’
from each other. Unfortunately, since we have only been able to
develop the asymptotic properties of the constrained estimator
under the hypothesis that none of the inequalities are binding,
the unrestricted and restricted estimators are asymptotically
equivalent under the null. Thus, any reasonable test comparing
the two estimates would have a degenerate distribution under
the null. Instead, we could take the same approach as in Blundell
et al. (2008) and develop a minimum-distance statistic based
on the unrestricted estimator alone. The hypothesis involves
inequality constraints, and so the testing of it falls within the
non-standard setting analyzed in, amongst others, Self and Liang
(1987) and Wolak (1991). An attractive alternative approach is to
work directly with the revealed preference inequalities, avoiding
estimating quantile demands and relaxing the restrictions on
unobserved heterogeneity see, in particular, the recent work of
Hoderlein and Stoye (forthcoming, 2013) and Kitamura and Stoye
(2012). We leave the extension of these results to nonparametric
quantile estimation for future research.
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Appendix A. Proofs

Proof of Theorem 1. Since ε is kept fixed throughout,we suppress
any dependence on this in the following.We follow the same proof
strategy as in CHT and first verify that slightly modified versions
of their Conditions C.1–C.3 are satisfied with our definitions of
Q̄n (q) and Qn (q). For convenience, definemn (q|ε) := x̂ − Pq and
m̄ (q) := x̄ − Pq. We then have uniformly in q ∈ Bp0,x0 ,

Qn (q) =

Ŵ 1/2
n {mn (q) − m̄n (q)} + Ŵ 1/2

n m̄ (q)

2

+

=

Ŵ 1/2
n


x̂ − x̄


+ Ŵ 1/2

n m̄ (q)

2

+

,

=

Ŵ 1/2
n m̄ (q)

2

+

+ OP (1/rn)

= Q̄n (q) + OP (1/rn) ,

since Ŵ 1/2
n


x̂ − x̄


= OP


1/

√
rn


by Lemma 4. Moreover,

rnQn (q) =

√
rnŴ 1/2

n {mn (q) − m̄n (q)} +
√
rnŴ 1/2

n m̄ (q)

2

+

=

√
rnŴ 1/2

n


x̂ − x̄


+

√
rnŴ 1/2

n m̄ (q)

2

+

=

√
rnŴ

1/2
n


x̂ − x̄


+

√
rnŴ

1/2
n m̄ (q)

2

+√
rnŴ

1/2
n m̄ (q)

2

+

×

√
rnŴ 1/2

n m̄ (q)

2

+

,

where
√

rnŴ
1/2
n m̄ (q)

2

+

≥ rnw∗
nC

2ρ2

q, Sp0,x0


by Lemma 5.

By the same arguments as in CHT, Proof of Theorem 4.2 (Step 1),
it now follows that rnQn (q) ≥ rnw∗

nC
2ρ2


q, Sp0,x0


/2 w.p.a 1.

This shows that Condition C.1–C.2 of CHT hold in our case as well,
except that the limiting objective function Q̄n (q) and the constant
κ = κn = w∗

nC
2 in their Condition C.2 both depend on n. Finally,

the verification that their Condition C.3 is satisfied follows by the
same arguments as in Shi and Shum (2012). We now proceed as in
CHT, Proof of Theorem 3.2 to obtain the claimed rate result.

To show the validity of the proposed confidence set, we verify
CHT’s Condition C.4: We first note that for any given q,

Ŵ 1/2
n mn (q) =

√
rnŴ 1/2

n


x̂ − x̄


+ Ŵ 1/2

n m̄ (q)

= Zn + W 1/2
n m̄ (q) + oP (1) ,

where Zn →
d Z and Z is defined in the theorem.Next, for anyq1, q2,Ŵ 1/2

n mn (q1) − Ŵ 1/2
n m (q2)

 =

Ŵ 1/2
n P {q1 − q2}


≤ cn ∥q1 − q2∥ ,
where cn →
P c < ∞. This proves that the stochastic process q →

Ŵ 1/2
n mn (q) − W 1/2

n m̄ (q)

weakly converges on the compact set

Bp0,x0 towards Z , c.f. Van der Vaart and Wellner (1996, Example
1.5.10). In particular, Ŵ 1/2

n mn (q) = Zn + W 1/2
n m̄ (q) + oP (1)

uniformly in q, which in turn implies that, by Slutsky’s theorem,

rnQn (q) =

√
rnŴ 1/2

n


x̂ − x̄


+

√
rnŴ 1/2

n m̄ (q)

2

+

=
Zn +

√
rnW 1/2

n m̄ (q)
2

+
+ oP (1) ,

uniformly in q. The random variable Cn := supq∈Sp0,x0
rnQn (q)

therefore satisfies

Cn = sup
q∈Sp0,x0

Zn +
√
rnW 1/2

n m̄ (q)
2

+
+ oP (1) ,

where
√
rnwn (t)m̄t (q) = 0 for all n if m̄t (q) = 0 and

√
rnwn (t)

m̄t (q) → −∞ if m̄t (q) < 0, t = 1, . . . , T . Thus,

lim
n→∞

sup
q∈Sp0,x0

Zn +
√
rnŴ 1/2

n m̄ (q)

2

+

d
= sup

q∈Sp0,x0

∥Z + ξ (q)∥2
+

,

with ξ (q) defined in the theorem. This proves the second
claim. �

Proof of Theorem 2. First consider the unconstrained estimator:
We write the first demand equation as a quantile regression,
q1 (t) = d1 (x, t, τ ) + e (t, τ ), where e (t, τ ) := d1 (x, t, ε) −

d1 (x, t, τ ). This formulation of the model for corresponds to the
quantile regression considered in Chen (2007, Section 3.2.2). We
then verify the conditions stated there. First, we note that the
distribution of e (τ ) |x is described by the density f (e|x, t, τ ) given
in Eq. (14). We claim that

0 < inf
x∈X

f (0|x, t, τ ) ≤ sup
x∈X

f (0|x, t, τ ) < ∞, (17)

sup
x∈X

|f (e|x, t, τ ) − f (0|x, t, τ )| → 0, |e| → 0. (18)

From the definition of expression it is easily seen that Eq. (17) holds
since d1 (x, t, ε) and its derivative w.r.t. ε are continuous in x and
X is compact. Eq. (18) clearly holds pointwise due to the continuity
of ε → d1 (x, t, ε). This can be extended to uniform convergence
since supx∈X,e∈[0,1] f (e|x, t, τ ) < ∞. Combining the above results
with the arguments given in the Proof of Chen (2007, Proposition
3.4), we now conclude that Chen (2007, Theorem 3.2) applies such
that

∥d̂ (·, t, τ ) − d (·, t, τ ) ∥2

= OP (max {δn, ∥πnd1 (·, t, τ ) − d1 (·, t, τ )∥2})

where

δn = arg inf
δ∈(0,1)


1

√
nδ2

 δ

bδ2


H[] (w, Fn, ∥·∥)dw ≤ const.


,

and πnd1 is an element in Dn,1. Here, H[] (w, Fn (δ) , ∥·∥2) =

log

N[] (w, Fn (δ) , ∥·∥2)


denotes the log of the L2-covering

numbers with bracketing of the function class Fn (δ), see Van der
Vaart and Wellner (1996) for the precise definitions. To complete
the proof, we note that in the case of splines δn = O(

√
kn/n) andπnd1,0 (·, t, τ ) − d1 (·, t, τ )


2 = O


k−m
n


. The convergence rate

result in the sup-norm is a direct consequence of Lemma 2.1 and
Remark 2.1 in Chen et al. (2010).

To derive the asymptotic distribution of {d̂1 (x (t) , t, τ )}Tt=1,
first note that since data is independent over the time, it is
sufficient to derive the marginal distributions. We do this by
verifying Conditions 6.1–6.2 of Chen et al. (2010, Corollary 6.1).
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Their Condition 6.1 is shown to hold above, while their Condition
6.2(i) holds since

|f (e1|x, t, τ ) − f (e2|x, t, τ )|

≤ C

∂d−1
1 (x, t, e1 + d1 (x, τ ))

∂e
−

∂d−1
1 (x, t, e2 + d1 (x, τ ))

∂e


≤ C |e1 − e2| ,

where we have used that d1 is continuously differentiable, while
Condition 6.2(iii) holds by assumption. To verify their Conditions
6.2(ii) and (iv), first note that, since we are using splines, ξ0 (kn) :=

supx∈X

Bkn (x)
 ≤ c

√
kn. Thus, their Condition 6.2(iv) becomes

ξ 2
0 (kn) k3n/n ≃ k4n/n = O (1) and ξ0 (kn) k−3m

n n = k−3m+1/2
n n =

O (1). Finally, the condition, (ii) of their Corollary 6.1 becomes
nk−2m−1

n = O (1).
Next, consider the constrained estimator: Let rn = kn/

√
n+k−m

n
denote the uniform rate of the unrestricted estimator, x̃τ (t) be a
given income expansion path generated from d, and̃xτ (t) be the
one generated from theunconstrained estimator.We first note that
the expansion path based on the unconstrained demand function
satisfies̃xτ (T − 1) − x̃τ (T − 1)

= p (T − 1)′

d̂ (xτ (T ) , T , τ ) − d (xτ (T ) , T , τ )


= OP (rn) .

By recursion,we easily extend this tomaxt=1,...,T

̃xτ (t) − x̃τ (t)
 =

OP (rn). It therefore follows that̃xτ (t) − p (t)′ d̂(̃xτ (s) , s, τ )


−

x̃τ (t) − p (t)′ d


x̃τ (s) , s, τ


=

̃xτ (t) − x̃τ (t)


+ p (t)′

d̂(̃xτ (s) , s, τ ) − d(̃xτ (s) , s, τ )


+ p (t)′


d(̃xτ (s) , s, τ ) − d


x̃τ (s) , s, τ


= OP (rn) .

Thus, since x̃τ (t) ≤ p (t)′ d

x̃τ (s) , s, τ


, we have e̃xτ (t) ≤ p (t)′

d̂(̃xτ (s) , s, τ ) with probability approaching one (w.p.a.1) as rn →

0. This proves that d̂ ∈ DT
C,n (e) w.p.a.1 such that d̂e

C = d̂ w.p.a.1
as rn → 0. Since the restricted and unrestricted estimators are
asymptotically equivalent, they must share convergence rates and
asymptotic distributions. �

Appendix B. Lemmas

Lemma 4. Assume that (C.1)–(C.2) hold. Thenx̂ε (t) − x̄ε (t)
 = OP


1/


∥rnΩn (x̄ (t) , t)∥


.

If in addition (C.3)–(C.4) hold then,
rnwn (t, ε)


x̂ε (t) − x̄ε (t)


→

d N (0, 1) ,

where

wn (t, ε) :=



p′

0
∂d(x̄ (t) , t, ε)

∂x

−1 
p0,1:L −

p0,L+1

pL (t)
p1:L (t)

′

× Ω−1/2
n (x̄ (t) , t, ε) V 1/2 (x̄ (t) , t, ε)


−2

> 0. (19)
Proof. Since ε is kept fixed throughout, we suppress any depen-
dence on this in the following. We treat the estimation of x̄ (t) as a
GMM estimation problem: Define

Ĝ (x, t) = p′

0d̂(x, t) − x0

=


p0,1:L −

p0,L+1

pL (t)
p1:L (t)

′

d̂1:L(x, t) +
p0,L+1

pL (t)
x − x0

and

G (x, t) = p′

0d(x, t) − x0

=


p0,1:L −

p0,L+1

pL (t)
p1:L (t)

′

d1:L(x, t) +
p0,L+1

pL (t)
x − x0.

Wethenhave that the estimated and true intersection incomes sat-
isfy x̂ (t) = argminx∈X Ĝ2 (x, t) and x̄ (t) = argminx∈X G2 (x, t)
respectively. Given the requirement in (C.1) that the demand func-
tion ismonotonically increasing, x̄ (t) is unique. Furthermore, since
the demand function is continuous, so is G (x, t). Finally, we note
that

sup
x∈X

Ĝ (x, t) − G (x, t)
 = sup

x∈X

p0,1:L −
p0,L+1

pL (t)
p1:L (t)

′

×


d̂1:L(x, t) − d1:L(x, t)

 
≤

p0,1:L −
p0,L+1

pL (t)
p1:L (t)


× sup

x∈X

d̂1:L(x, t) − d1:L(x, t)


= oP (1) ,

where the last equality follows from (C.2). It now follows from
standard consistency results for extremum estimators that x̂ (t)
→

P x̄ (t). To obtain the rate result, we utilize that d1:L(x, t) is con-
tinuously differentiable, c.f. (C.1), which implies that for any x in a
sufficiently small neighborhood of x̄ (t),

G (x, t) − G (x̄ (t) , t) =
∂G


x̃ (t) , t


∂x

[x − x̄ (t)]

where x̃ (t) ∈ [x, x̄ (t)] satisfies p′

0∂d(x̃ (t) , t)/ (∂x) ≠ 0. Thus,
there exists κ > 0 such that

|G (x, t)| = |G (x, t) − G (x̄ (t) , t)| ≥ κ |x − x̄ (t)| .

Given consistency, we therefore havex̂ (t) − x̄ (t)
 ≤ κ

G 
x̂ (t) , t

 (w.p.a. 1)

≤ κ
G 

x̂ (t) , t

− Ĝ


x̂ (t) , t


+

Ĝ (x (t) , t) − G (x (t) , t)


= OP


1/


∥rnΩn (x̄ (t) , t)∥


.

Next, by a first-order Taylor expansion,

0 = Ĝ

x̂ (t) , t


= Ĝ (x̄ (t) , t) +

∂Ĝ

x̃ (t) , t


∂x


x̂ (t) − x̄ (t)


,

where x̃ (t) ∈

x̂ (t) , x̄ (t)


; in particular, x̃ (t) →

P x̄ (t). This to-
gether with (C.4) implies

∂Ĝ

x̃ (t) , t


∂x

→
P ∂G (x̄ (t) , t)

∂x
= p′

0
∂d(x̄ (t) , t)

∂x
> 0. (20)
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Moreover, with ∆n (t) := d̂1:L(x̄ (t) , t) − d1:L(x̄ (t) , t),
p′

0
∂d(x̄ (t) , t)

∂x

−1

Ĝ (x̄ (t) , t)

=


p′

0
∂d(x̄ (t) , t)

∂x

−1 
p0,1:L −

p0,L+1

pL (t)
p1:L (t)

′

∆n (t)

=


p′

0
∂d(x̄ (t) , t)

∂x

−1 
p0,1:L −

p0,L+1

pL (t)
p1:L (t)

′

× Ω−1/2
n (x̄ (t) , t) V 1/2 

V−1/2Ω1/2
n (x̄ (t) , t) ∆n (t)


=: an (t)′


V−1/2Ω1/2

n (x̄ (t) , t) ∆n (t)

,

where V−1/2√rnΩ
1/2
n (x̄ (t) , t) ∆n (t) →

d N (0, IL) by (C.3). Next,
observe that wn (t) = wn (t, ε) defined in the lemma satisfies
wn (t) = ∥an (t)∥−2. Thus,
rnwn (t)


x̂ (t) − x̄ (t)


= −

an (t)′ (1 + oP (1))
∥an (t)∥

×

V−1/2√rnΩ1/2

n (x̄ (t) , t) ∆n (t)

→

d N (0, 1) . �

Lemma 5. Under (C.5),
W 1/2

n m̄ (q)

2

+

≥ w∗
nC

2ρ

q, Sp0,x0


for

some constant C < ∞ and w∗
n = mint=1,...,T wn (t).

Proof. The inequality is trivial for q ∈ Sp0,x0 . Consider any q ∈

Bp0,x0 \ Sp0,x0 : Let q
∗

= argminq′∈Sp0,x0
∥q − q′

∥ be the unique
point inSp0,x0 which hasminimumdistance toq. Let δ∗

= q∗
−q be

the difference such that ∥δ∗∥ = ρ

q, Sp0,x0


. We can decompose

the rows of (P, x̄) into binding and non-binding constraints
respectively of q∗. Let


P(1), x̄(1)


and


P(2), x̄(2)


, with P(1) =

p(1) (1) , . . . , p(1) (T1)
′

∈ RT1×(L+1) and x̄(1) = (x(1) (1) , . . . ,

x(1) (T1))′ ∈ RT1 for some T1 ≤ L+ 1, denote the set of rows which
contain the binding and non-binding constraints respectively. That
is, m̄(1) (q∗) := x̄(1)−P(1)q∗

= 0while m̄(2) (q∗) := x̄(2)−P(2)q∗ <
0. The (T1×T1)-matrix P(1)P(1)′ must necessarily have rank T1 with
its eigenvalues bounded above away from zero. Thus, for some
c1 > 0,

c1
δ∗

 ≤
P(1)δ∗

 ≤ T1 max
t=1,...,T1

|p(1) (t)′ δ∗
|.

Moreover, p(1) (t)′ δ∗
≥ 0 for all t ∈ {1, . . . , T1}. As a consequence,

with C = c1/T , there exists at least one t0 ∈ {1, . . . , T1} such that
C ∥δ∗∥ ≤ p(1) (t0)′ δ∗. We then obtainW 1/2

n m̄ (q)
2

+
=

T
t=1

wn (t)
x̄ (t) − p (t)′ q

2
+

≥ wn (t0)
x̄(1) (t0) − p(1) (t0)′ q

2
+

= wn (t0)
p(1) (t0)′ δ∗

2
+

≥ w∗

nC
2
δ∗

2

= w∗

nC
2ρ2 

q, Sp0,x0

. �
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