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The Selectivity Model

Generalises the censored regression model by specifying mixture of discrete
and continuous processes.
I Extends the ‘corner solution’model to cover models with fixed costs.
I Extends to cover the case of the heterogeneous treatment effect models.
Write the latent process for the variable of interest as

y ∗1i = x
′
1i β1 + u1i

with E (u1|x1) = 0. The observation rule for y1 is given by

y1i =
{
y ∗1i if y ∗2i > 0
0 otherwise

where
y ∗2i = x

′
2i β2 + u2i

and

y2i =
{
1 if y ∗2i > 0
0 otherwise

as in the Probit model.
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Consider the selected sample with y ∗2i > 0, OLS is biased as we know

E (u1i |y ∗2i > 0) = E (u1i |x ′2i β2 + u2i )
= E (u1i |u2i > −x ′2i β2)
6= 0, if u1 and u2 are correlated.

I Suppose to begin with we assume(u1, u2) are jointly normally
distributed with mean zero and constant covariance matrix,(

u1
u2

)
v N

((
0
0

)
,

(
σ11 σ12
σ21 1

))
.

I We can write the orthogonal decomposition of u1 given u2 as

u1i = σ12u2i + ε1i

where ε1 is distributed independently of u2 and has a marginal normal
distribution.
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Substituting we have

E (u1i |y ∗2i > 0) = E (σ12u2i + ε1i |u2i > −x ′2i β2)
= σ12E (u2i |u2i > −x ′2i β2) + E (ε1i |u2i > −x ′2i β2)
= σ12E (u2i |u2i > −x ′2i β2)

I From last lecture we have the conditional mean for the truncated normal

E (w |w > c) =
∫ ∞

c
wf (w |w > c)dw

=
σ

1−Φ
( c

σ

) [−φ
(w

σ

)]∞

c
= σ

φ
( c

σ

)
1−Φ

( c
σ

)
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Noting that σ22 ≡ 1, we have

E (u1i |y ∗2i > 0) = σ12E (u2i |u2i > −x ′2i β2)

= σ12
φ (−x ′2i β2)

1−Φ (−x ′2i β2)

= σ12
φ (x ′2i β2)
Φ (x ′2i β2)

= σ12λ
(
x ′2i β2

)
.

I In general provided we have this linear index specification

E (u1i |y ∗2i > 0) = g
(
x ′2i β2

)
.

I Implying that selection is simply a function of the single index in the
selection equation x ′2i β2, even when joint normality can not be assumed.
However, note the restrictiveness of the single linear index specification.
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I Given this result for the joint normal linear index selection model we can
easily derive the familiar Heckman and Maximum Likelihood estimators.
The selection model can now be rewritten:

y ∗1i = x
′
1i β1 + σ12λ

(
x ′2i β2

)
+ ε1i

with E (ε1|x1, x2) = 0 and E (ε21|x1, x2) = ω11.
The observation rule for y1 is given by

y1i =
{
y ∗1i if y ∗2i > 0
0 otherwise

where
y ∗2i = x

′
2i β2 + u2i

as before.
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I We can write the log-likelihood to mirror this conditional specification
as and the loglikelihood contribution for observation i is

ln li (β1, β2,ω11, σ12) =

{
Di ln

(
1√
2πω11

exp
(
− (y1i−x

′
1i β1−σ12λ(x ′2i β2))

2

2ω11

))
+

Di lnΦ (x ′2i β2) + (1−Di ) ln [1−Φ (x ′2i β2)]

}

lnLN (β1, β2,ω11, σ12) =
N

∑
i=1

{
Di ln

(
− (y1i−x

′
1i β1−σ12λ(x ′2i β2))

2

ω11

)
+

Di lnΦ (x ′2i β2) + (1−Di ) ln [1−Φ (x ′2i β2)]

}

Notice that β1,ω11, σ12 do not occur in the second part of this
expression so there is a natural partition of the loglikelihood into the
binary model for selection that estimates β2 and the conditional
model on the selected sample.

Thus we have the Heckman selectivity estimator or Heckit.

Blundell (University College London) ECONG107: Blundell Lecture 3 February-March 2016 7 / 19



I The Heckit estimator is the first round of a full MLE estimation which
produces consistent but not fully effi cient estimators.

First estimate β2 by Probit.

Then, condition on β2, estimate β1,ω11, σ12 from the least squares
estimation of the conditional model on the selected sample.

Can clearly go on to produce the MLE estimators. Stata allows either
option.

I Note that the LM or Score test can be constructed directly by including
λ (x ′2i β2) in the selected regression and testing the coeffi cient.

This is a one degree of freedom score test so that a t-test can be used.
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I Advantages of the Normal Selection Model:
(i) avoids the Tobit assumption.
(ii) 2-step Heckit estimator is straightforward.
(iii) t-test of the null hypothesis H0 : σ12 = 0, i.e. no selectivity bias, can
be constructed easily.

I Disadvantages:
(i) assumes joint normality
(ii) need to allow for the estimated β2 in λ (x ′2i β2) . Typically easiest to
compute full MLE and use the usual formula for correct standard errors.
Note that the t-test of selectivity bias can be carried out without this extra
computation because the test statistic is valid under the null hypothesis
H0.
(iii) need λ (x ′2i β2) to vary independently of x

′
1i β1.
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I The requirement that λ (x ′2i β2) varies independently of x
′
1i β1 is strictly

one of nonparametric identification since, in the parametric joint normal
case for example, λ is a nonlinear function given by φ(x ′2i β2)

Φ(x ′2i β2)
and is not

perfectly collinear with x ′1i β1 even if exactly the same variables are in x1
and x2.
I However, even in the joint normal case φ(x ′2i β2)

Φ(x ′2i β2)
can be approximately

linear over large ranges of x ′2i β2. In general, identification requires an
exclusion restriction just as in the standard endogenous regressor case.

This is really a triangular structure for a simultaneous model.

Di is a single endogenous variable in the structural model for y1.

The order condition requires that at least one exogenous variable is
excluded for each included rhs endogenous variable.
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When we are unwilling to assume a parametric distribution for u1 and u2
then the identification arguments becomes even more clear.
I As we noted above, given the linear index structure, the selection model
can still be written:

y1i = x ′1i β1 + g
(
x ′2i β2

)
+ ε1i

for y1i observed and with E (ε1|x1, x2) = 0 and (maybe)
E (ε21|x1, x2) = ω11.
I But if we do not know the form of g , perfect collinearity can occur if
there is no exclusion restriction.
Indeed, in general we will need to exclude a continuous ‘instrumental’
variable.
I Often this lines up well with the economic problem being addressed.

For example, wages and employment. In this case the excluded
instrument is nonlabour income. This determines employment but not
wages, at least in the static competitive model.
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Think of other cases: prices firms set across different markets, the
instrument maybe local costs; occupational choice and earnings?

Notice the Tobit structure did not need such an exclusion restriction
even when nonlinearity was relaxed.

Does selection matter? Empirical examples include Blundell, Reed
and Stoker, AER 2003.

Try the Mroz data?

Does relaxing joint normality matter? Some evidence it does......see
the Newey, Powell and Walker AER (1990) and references therein.
But need relatively large sample sizes to provide precision in
semiparametric extensions.
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Semiparametric Methods:

y1i = x ′1i β1 + g
(
x ′2i β2

)
+ ε1i

for y1i observed.

two-step methods (analogous to the Heckit estimator)

Quasi-maximum likelihood estimators (analogous to Klien-Spady)
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Semiparametric Methods:

(i) Two-Step methods?
1. Estimate β2, say by maximum score.
2. Estimate β1, given β̂2.
At the second stage there are also a number of possibilities. One attractive
approach is simply to use a series approximation to g (x ′2i β2)

y1i = x ′1i β1 +
J

∑
j=1

ηjρj

(
x ′2i β̂2

)
+ ε1i

where
ρj

(
x ′2i β̂2

)
= λ

(
x ′2i β2

)
.
(
x ′2i β2

)j−1
e.g. for J = 3, estimate on the selected sample only:

y1i = x ′1i β1 + η1λ
(
x ′2i β̂2

)
+ η2λ

(
x ′2i β̂2

)
.x ′2i β̂2

+η2λ
(
x ′2i β̂2

)
.
(
x ′2i β̂2

)2
+ ε1i .
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Semiparametric Methods:

An alternative is to use Kernel regression.
Note that for the selected observations we have a partially (or semi) linear
structure:

y1i = β′1x1i + g
(
x ′2i β2

)
+ ε1i

so that
E (y1i |x ′2i β2) = β′1E (x1i |x ′2i β2) + g

(
x ′2i β2

)
now subtract the latter expression from the former

y1i − E (y1i |x ′2i β2) = β′1(x1i − E (x1i |x ′2i β2)) + ε1i

which no longer depends on g at all!
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Semiparametric Methods:

Suggests an estimator.
Starting with:

y1i − E (y1i |x ′2i β2) = β′1(x1i − E (x1i |x ′2i β2)) + ε1i

I Replace E (y1i |x ′2i β2) and E (x1i |x ′2i β2) by their Kernel regression
counterparts, then estimate β1. Note that x2 must contain some excluded
continuous instrument otherwise x1i − E (x1i |x ′2i β2) will be null.
I Newey, Powell and Walker (1990) show that√
N(β̂1 − β1) ∼a N(0,Ω).

I They present some results for the Mroz data.
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Semiparametric Methods:

Ahn and Powell (1993) present another similar and very intuitive
’differencing’or ‘matching’style estimator.
They note that

y1i = x ′1i β1 + g
(
x ′2i β2

)
+ ε1i

and consider two observations i and j with x ′2i β2 ‘close’:

y1i − y1j = (x1i − x1j )′ β1 + g
(
x ′2i β2

)
− g

(
x ′2jβ2

)
+ ε1i − ε1j

or
y1i − y1j = (x1i − x1j )′ β1 + (gi − gj ) + ε1ij

they suggest finding j observations as close to i as is possible and then
eliminate g by regression. They use a Kernel estimator to define
observations that are ‘close’.
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Semiparametric Methods:

Key structure for this estimator is:

y1i − y1j = (x1i − x1j )′ β1 + g
(
x ′2i β2

)
− g

(
x ′2jβ2

)
+ ε1i − ε1j

I Note that we can effectively use x ′2i β2 in place of gi or any other
monotonic function of x ′2i β2.
I Note also that there is no requirement to have a single(linear) index for
the selection rule. Could replace this purely with a ‘propensity score’. That
is some selection or assignment equation as a general function of the x2
variables.
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Alternative Bivariate Models for Selected Samples

1 Double-Hurdle models
2 Infrequency of purchase models
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