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Overview

Subtitle: Models, Sampling Designs and Non/Semiparametric
Estimation

1 discrete data: binary response

2 censored and truncated data : cenoring models
3 endogenously selected samples: selectivity model
4 experimental and quasi-experimental data: evaluation methods

social experiments methods

natural experiment methods

matching methods

instrumental methods

regression discontinuity and regression kink methods

control function methods
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6. Discrete Choice

Binary Response Models

Let yi = 1 if an action is taken (e.g. a person is employed)
yi = 0 otherwise

for an individual or a firm i = 1, 2, ....,N. We will wish to model the
probability that yi = 1 given a kx1 vector of explanatory
characteristics x ′i = (x1i , x2i , ..., xki ). Write this conditional probability
as:

Pr[yi = 1|xi ] = F (x ′i β)

This is a single linear index specification. Semi-parametric if F is
unknown. We need to recover F and β to provide a complete guide
to behaviour.
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Binary Response Models

We often write the response probability as

p(x) = Pr(y = 1|x)
= Pr(y = 1|x1, x2, ..., xk )

for various values of x .

Bernoulli (zero-one) Random Variables
if Pr(y = 1|x) = p(x)
then
Pr(y = 0|x) = 1− p(x)

E (y |x) = p(x)

= 1.p(x) + 0.(1− p(x)

Var(y |x) = p(x)(1− p(x))
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Binary Response Models

The Linear Probability Model

Pr(y = 1|x) = β0 + β1x1 + ...+ βkxk
= β′x

Unless x is severely restricted, the LPM cannot be a coherent model of the
response probability P(y = 1|x), as this could lie outside zero-one.
Note:

E (y |x) = β0 + β1x1 + ...+ βkxk
Var(y |x) = β′x(1− x ′β)

which implies that the OLS estimator is unbiased but ineffi cient. The
ineffi ciency due to the heteroskedasticity.
Homework: Develop a two-step estimator.

Blundell (University College London) ECONG107: Blundell Lecture 1 February-March 2016 5 / 34



Binary Response Models

Typically express binary response models as a latent variable model:

y ∗i = x
′
i β+ ui

where u is some continuously distributed random variable distributed
independently of x , where we typically normalise the variance of u.

I The observation rule for y is given by y = 1(y ∗ > 0).

Pr[y ∗i ≥ 0|xi ] ⇐⇒ Pr[ui ≥ −x ′i β]
= 1− Pr[ui ≤ −x ′i β]
= 1− G (−x ′i β)

where G is the cdf of ui .
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Binary Response Models

In the symmetric distribution case (Probit and Logit)

Pr[y ∗i ≥ 0|xi ] = G (x ′i β)

where G is some (monotone increasing) cdf. (Make sure you can prove
this).

I This specification is the linear single index model.

I Show that for the linear utility and a normal unobserved heterogeneity
implies the single index Probit model
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Binary Response Models

Random sample of observations on yi and xi i = 1, 2, ....N.

Pr[yi = 1|xi ] = F (x ′i β)

where F is some (monotone increasing) cdf. This is the linear single index
model.
Questions?
I How do we find β given a choice of F (.) and a sample of observations
on yi and xi ?
I How do we check that the choice of F (.) is correct?
I Do we have to choose a parametric form for F (.)?
I Do we need a random sample - or can we estimate with good properties
from (endogenously) stratified samples?
I What if the data is not binary - ordered, count, multiple discrete
choices?
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ML Estimation of the Binary Choice Model

Assume we have N independent observations on yi and xi .
The probability density of yi conditional on xi is given by:

F (x ′i β) if yi = 1,
and

1− F (x ′i β) if yi = 0.
Therefore the density of any yi can be written:

f (yi |x ′i β) = F (x ′i β)yi (1− F (x ′i β))1−yi .
The joint probability of this particular sequence of data is given by the
product of these associated probabilities (under independence). Therefore
the joint distribution of the particular sequence we observe in a sample of
N observations is simply:

f (y1, y2, ...., yN ) = ∏N
i=1 F

(
x ′i β
)yi (1− F (x ′i β))1−yi

This depends on a particular β and is also the ‘likelihood ′ of the sequence
y1, y2..., yN ,

L(β; y1, y2, ...., yN ) = ∏N
i=1 F

(
x ′i β
)yi (1− F (x ′i β))1−yi
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ML Estimation of the Binary Choice Model

If the model is correctly specified then the MLE β̂N will be - consistent,
effi cient and asymptotically normal.
logL is an easier expression:

logL(β; y1, y2, ...., yN ) =
N

∑
i=1
[yi log F

(
x ′i β
)
+ (1− yi ) log(1− F

(
x ′i β
)
]

I The derivative of logL with respect to β is given by:

∂ logL
∂β

=
N

∑
i=1
[yi
f (x ′i β)
F (x ′i β)

xi + (1− yi )
f (x ′i β)

1− F (x ′i β)
xi ]

=
N

∑
i=1

yi − F (x ′i β)
F (x ′i β) (1− F (x ′i β))

.f
(
x ′i β
)
.xi
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ML Estimation of the Binary Choice Model

The MLE β̂N refers to any root of the likelihood equation
∂ log L

∂β |N = 0
that corresponds to a local maximum.

If logL is a concave function of β, as in the Probit and Logit cases

(Exercise: prove for the Probit using 1
N

∂2 lnLN (β)
∂β∂β′

), then this is unique.
Otherwise there exists a consistent root.

I We will consider the properties of the average log likelihood 1
N logL,

and assume that is converges to the ‘true’log likelihood and that this is
maximised at the true value of β, given by β0.

I Notice that ∂ log L
∂β is nonlinear in β. In general, no explicit solution can

be found. We have to use ‘iterative’procedures to find the maximum.
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ML Estimation of the Binary Choice Model

Iterative Algorithms:

Choose an initial β(0).

Gradient method:
β(1) = β(0) + ∂ log L

∂β |β(0)
Convergence is slow

Deflected Gradient method:
β(1) = β(0) +H (0) ∂ log L

∂β |β(0)

H (0) =
(
− 1
N

∂2 lnLN (β)
∂β∂β′

|
β(0)

)−1
Newton

H (0) =
(
−E ∂2 lnLN (β)

∂β∂β′
|
β(0)

)−1
Scoring Method

H (0) =
(
E
[

∂ lnLN (β)
∂β

∂ lnLN (β)
∂β′

]
|
β(0)

)−1
BHHH Method
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ML Estimation of the Binary Choice Model

Theorem 1. (Consistency). If
(i) the true parameter value β0 is an interior point of parameter space.
(ii) lnLN (β) is continuous.
(iii) there exists a neighbourhood of β0 such that

1
N lnLN (β) converges to

a constant limit lnL(β) and that lnL(β) has a local maximum at β0.

Then the MLE β̂N is consistent, or there exists a consistent root.

I Note:

1 requires the correct specification of lnLN (β), in particular the
Pr[yi = 1|xi ].

2 Contrast with MLE in the linear model.
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ML Estimation of the Binary Choice Model

Theorem 2. (Asymptotic Normality). If

(i) ∂2 lnLN (β)
∂β∂β′

exists and is continuous

(ii) 1
N

∂2 lnLN (β)
∂β∂β′

evaluated at β̂N converges.

(iii) 1√
N

∂ lnLN (β)
∂β′

∼d N(0,H)
then

√
N(β̂N − βN ) ∼d N(0,H−1).

where

H = lim
N→∞

[
−E 1

N
∂2 lnLN (β)

∂β∂β′
|β0
]
.

I Note:

−E 1
N

∂2 lnLN (β)
∂β∂β′

|β0 = E
1
N

∂ lnLN (β)
∂β

∂ lnLN (β)
∂β′

|β0

and
[
−E 1

N
∂2 lnLN (β)

∂β∂β′
|βo
]−1

is the Cramer-Rao lower bound.
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ML Estimation of the Binary Choice Model

Note that for Probit (and Logit) estimators

−E ∂2 lnLN (β)
∂β∂β′

=
N

∑
i=1

[φ (x ′i β)]
2

Φ (x ′i β) [1−Φ (x ′i β)]
xix ′i

=
N

∑
i=1
dixix ′i

= X ′DX

So that the var(β̂N ) can be approximated by

(X ′DX )−1

I This expression has a similar form to that in the heteroscedastic GLS
model.
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Binary Response Models
The EM Algorithm

In the case of the Probit there is another useful algorithm:

y ∗i = x
′
i β+ ui with ui ∼ N(0, 1) and yi = 1(y ∗i > 0)

now note that

E (y ∗i |yi = 1) = x ′i β+ E (ui |x ′i β+ ui ≥ 0)
= x ′i β+ E (ui |ui ≥ −x ′i β)

= x ′i β+
φ(x ′i β)
Φ(x ′i β)

similarly

E (y ∗i |yi = 0) = x ′i β−
φ(x ′i β)
Φ(x ′i β)
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Binary Response Models
The EM Algorithm

If we now define
mi = E (y ∗i |yi )

then the derivative of the log likelihood can be written

∂ logL
∂β

=
N

∑
i=1
xi (mi − x ′i β)

set this to zero (to solve for β)

N

∑
i=1
ximi =

N

∑
i=1
xix ′i β

as in the OLS normal equations. We do not observe y ∗i but mi is the best
guess given the information we have.
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Binary Response Models
The EM Algorithm

Solving for β we have

β̂ =

(
N

∑
i=1
xix ′i

)−1 N

∑
i=1
ximi .

Notice mi depends on β.

This forms an EM (or Fair) algorithm:
I 1. Choose β(0)
I 2. Form mi (0) and compute β(1), etc.
I This converges, but slower than deflected gradient methods.
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Binary Response Models
Samples and Sampling

Let Pr(y |x ′β) be the population conditional probability of y given x .

Let f (x) be the true marginal distribution of x .

Let π(y |x ′β) be the sample conditional probability.

I Case 1: Random Sampling
π(y , x) = π(y |x ′β)π(x)
but π(x) = f (x) and π(y |x ′β) = Pr(y |x ′β).

I Case 2: Exogenous Stratification
π(y , x) = Pr(y |x ′β)π(x)
Although π(x) 6= f (x) the sample still replicates the conditional
probability of interest in the population which is the only term that
contains β in the log likelihood.
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Binary Response Models
Samples and Sampling

I Case 3: Choice Based Sampling (Manski and Lerman)

Suppose Q is the population proportion that make choice y = 1.
Let P represent the sample fraction.

Then we can adjust the likelihood contribution by:

Q
P
F (x ′i β).

If we know Q then the adjusted MLE is consistent for choice-based
samples.
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Binary Response Models
Semiparametric Estimation in the Linear Index Case

I (i) Semiparametric
E (yi |xi ) = F

(
x ′i β
)

retain finite parameter vector β in the linear index but relax the parametric
form for F .

I (ii) Nonparametric
E (yi |xi ) = F (g(xi ))

both F and g are nonparametric. As you would expect, typically (i) has
been followed in research.
What is the parameter of interest? β alone?

Notice that the function F ∗(a+ bx ′i β) cannot be separately identified from
F (x ′i β). Therefore β is only identified up to location and scale.
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Binary Response Models
Semiparametric Estimation in the Linear Index Case

To motivate, imagine x ′i β ≡ zi was known but F (.) was not.
Seems obvious: run a general nonparametric (kernel say) regression of y on
z .

I (i) How do we find β?

I (ii) How do we guarantee monotonic increasing F ?
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Binary Response Models
Semiparametric Estimation in the Linear Index Case

Semiparametric Estimation of β (single index models)
* Iterated Least Squares and Quasi-Likelihood Estimation (Ichimura
and Klein/Spady)
Note that

E (yi |xi ) = F
(
x ′i β
)

so that
yi = F

(
x ′i β
)
+ εi with E (εi |xi ) = 0.

A semiparametric least squares estimator can be derived. Choose β to
minimise

S(β) =
1
N ∑ π(xi )(yi − F (x ′i β))2

replacing F with a kernel regression Fh at each step with bandwidth h,
simply a function of the scaler x ′i β for some given value of β. π(xi ) is a
trimming function that downweights observations near the boundary of the
support of x ′i β.
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Binary Response Models
Semiparametric Estimation in the Linear Index Case

Typically Fh is estimated using a leave-one-out kernel.

Ichimura (1993) shows that this estimator of β up to scale is√
N−consistent and asymptotically normal.

We have to assume F is differentiable and requires at least one
continuous regressor with a non-zero coeffi cient.

I Extends naturally to some other semi-parametric least squares
cases.

I It is also common to weight the elements in this regression to allow
for heteroskedasticity.
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Binary Response Models
Semiparametric Estimation in the Linear Index Case

Note that the average log-likelihood can be written:

1
N
log LN (β) =

1
N ∑ π(xi ){yi lnF (x ′i β) + (1− yi )yi ln(1− F (x ′i β))

So maximise log LN (β), replacing F (.) by kernel type non-parametric
regression of y on zi = x ′i β at each step.
I Klein and Spady (1993) show asymptotic normality and that the
outer-product of the gradients of the quasi-loglikelihood is a consistent
estimator of the variance-covariance matrix.
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Binary Response Models
Semiparametric Estimation in the Linear Index Case

Maximum Score Estimation (Manski)

Suppose F is unknown
Assume: the conditional median of u given x is zero (note that this is
weaker than independence between u and x)
=⇒

Pr[yi = 1|xi ] > (≤)
1
2
if x ′i β > (≤)0

I Maximum Score Algorithm:
score 1 if yi = 1 and x ′i β > 0, or yi = 0 and x

′
i β ≤ 0.

score 0 otherwise.
Choose β̂ that maximises the score, subject to some normalisation on β.
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Binary Response Models
Semiparametric Estimation in the Linear Index Case

Note that the scoring algorithm can be written: choose β to maximise

SN (β) =
1
N

N

∑
i=1
[2.1(yi = 1)− 1]1(x ′i β ≥ 0).

The complexity of the estimator is due to the discontinuity of the function
SN (β).
Horowitz (1992) suggests a smoothed MSE:

S∗N (β) =
1
N

N

∑
i=1
[2.1(yi = 1)− 1]K (

x ′i β
h
)

where K is some continuous kernel function with bandwidth h.
I No longer discontinuous. Therefore can prove

√
N convergence and

asymptotic distribution properties.

Blundell (University College London) ECONG107: Blundell Lecture 1 February-March 2016 27 / 34



Binary Response Models
Endogenous Variables

Consider the following (triangular) model

y ∗1i = x ′1i β+ γy2i + u1i (1)

y2i = z ′iπ2 + v2i (2)

where y1i = 1(y ∗1i > 0). z
′
i = (x

′
1i , x

′
2i ). The x

′
2i are the excluded

‘instruments’from the equation for y1. The first equation is a the
‘structural’equation of interest and the second equation is the ‘reduced
form’for y2.
I y2 is endogenous if u1 and v2 are correlated. If y1 was fully observed
we could use IV (or 2SLS).

Blundell (University College London) ECONG107: Blundell Lecture 1 February-March 2016 28 / 34



Binary Response Models
Control Function Approach

Use the following othogonal decomposition for u1

u1i = ρv2i + ε1i

where E (ε1i |v2i ) = 0.

I Note that y2 is uncorrelated with u1i conditional on v2. The variable v2
is sometimes known as a control function.

I Under the assumption that u1 and v2 are jointly normally distributed, u2
and ε are uncorrelated by definition and ε also follows a normal
distribution.

Blundell (University College London) ECONG107: Blundell Lecture 1 February-March 2016 29 / 34



Binary Response Models
Control Function Estimator

Use this to define the augmented model

y ∗1i = x ′1i β+ γy2i + ρv2i + ε1i

y2i = z ′iπ2 + v2i

2-step Estimator:
I Step 1: Estimate π2 by OLS and predict v2,

v̂2i = y2i − π̂′2zi

I Step 2: use v̂2i as a ‘control function’in the model for y ∗1 above and
estimate by standard methods.

Blundell (University College London) ECONG107: Blundell Lecture 1 February-March 2016 30 / 34



Binary Response Models
Semi-parametric Estimation with Endogeneity

I Blundell and Powell (REStud, 2004) extend the control function
approach to the semiparametric case.
I Suppose we define x ′i = [x

′
1i , y2i ] and β′0 = [β

′,γ]. Recall that if x is
independent of u1, then

E (y1i | xi ) = G (x ′i β0)

where G is the distribution function for u1. Sometimes also known as the
average structural function, ASF.
I Note that with endogeneity of u1 we can invoke the control function
assumption:

u1 ⊥ x | v2
I This is the conditional independence assumption derived from the
triangularity assumption in the simultaneous equations model, see Blundell
and Matzkin (2013).
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Binary Response Models
Semi-parametric Estimation with Endogeneity

I Using the control function assumption we have

E [y1i |xi , v2i ] = F (x ′i β0, v2i ),
and

G (x ′i β0) =
∫
F (x ′i β0, v2i )dFv2 .

I Blundell and Powell (2003) show β0 and the average structural function

G (x ′i β0) =
∫
F (x ′i β0, v2i )dFv2 are point identified.
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Binary Response Models
Semi-parametric Estimation with Endogeneity

I Blundell and Powell (2004) develop a three step control function
estimator:

1. Generate v̂2 and run a nonparametric regression of y1i on xi and v̂2i .
B This provides a consistent nonparametric estimator of E [y1i |xi , v2i ].

2. Impose the linear index assumption on x ′i β0 in:
E [y1i |xi , v2i ] = F (x ′i β0, v2i ).
B This generates F̂ (x ′i β̂0, v̂2i ).

3. Integrate over the empirical distribution of v̂2 to estimate β̂0 and the
average structural function (ASF), Ĝ (x ′i β̂0).
B This third step is implemented by taking the partial mean over v̂2 in
F̂ (x ′i β̂0, v̂2i ).
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Binary Response Models
Semi-parametric Estimation with Endogeneity

I Able to show
√
n−consistency for β̂0, and the usual non-parametric

rate on ASF.

I Blundell and Matzkin (2013) discuss the ASF and alternative
parameters of interest.
I Chesher and Rosen (2013) develop a new IV estimator in the binary
choice and binary endogenous set-up.
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