Stochastic Demand and Revealed Preference

Richard Blundell Dennis Kristensen Rosa Matzkin

UCL & IFS, Columbia and UCLA

November 2010

Blundell, Kristensen and Matzkin ()

Stochastic Demand

• This presentation investigates the role of restrictions from economic theory in the microeconometric estimation of nonparametric models of consumer behaviour.

- This presentation investigates the role of restrictions from economic theory in the microeconometric estimation of nonparametric models of consumer behaviour.
- Objective is to uncover demand responses from consumer expenditure survey data.

- This presentation investigates the role of restrictions from economic theory in the microeconometric estimation of nonparametric models of consumer behaviour.
- Objective is to uncover demand responses from consumer expenditure survey data.
- Inequality restrictions from revealed preference are used to improve the performance of nonparametric estimates of demand responses.

- This presentation investigates the role of restrictions from economic theory in the microeconometric estimation of nonparametric models of consumer behaviour.
- Objective is to uncover demand responses from consumer expenditure survey data.
- Inequality restrictions from revealed preference are used to improve the performance of nonparametric estimates of demand responses.
- Particular attention is given to nonseparable unobserved heterogeneity and endogeneity.

• New insights are provided about the price responsiveness of demand

- New insights are provided about the price responsiveness of demand
 - especially across different income groups and across unobserved heterogeneity.

- New insights are provided about the price responsiveness of demand
 - especially across different income groups and across unobserved heterogeneity.
- Derive welfare costs of relative price and tax changes.

$$\mathbf{q}=\mathbf{d}(x,\mathbf{p},\mathbf{h},oldsymbol{arepsilon})$$
,

$$\mathbf{q}=\mathbf{d}(x,\mathbf{p},\mathbf{h},oldsymbol{arepsilon})$$
,

where demand functions $\mathbf{d}(x, \mathbf{p}, \mathbf{h}, \varepsilon) : \mathbb{R}_{++}^{K} \to \mathbb{R}_{++}^{J}$ satisfy adding-up: $\mathbf{p'q} = x$ for all prices and total outlays $x \in \mathbb{R}$.

• $\varepsilon \in \mathbb{R}^{J-1}$, J-1 vector of (non-separable) unobservable heterogeneity.

$$\mathbf{q}=\mathbf{d}(x,\mathbf{p},\mathbf{h},oldsymbol{arepsilon})$$
,

- $arepsilon \in \mathbb{R}^{J-1}$, J-1 vector of (non-separable) unobservable heterogeneity.
- Assume $\boldsymbol{\varepsilon} \perp (x, \mathbf{h})$ for now.

$$\mathbf{q}=\mathbf{d}(x,\mathbf{p},\mathbf{h},oldsymbol{arepsilon})$$
,

- $\varepsilon \in \mathbb{R}^{J-1}$, J-1 vector of (non-separable) unobservable heterogeneity.
- Assume $\boldsymbol{\varepsilon} \perp (x, \mathbf{h})$ for now.
- The environment is described by a continuous distribution of **q**, x and ε, for discrete types **h**.

$$\mathbf{q}=\mathbf{d}(x,\mathbf{p},\mathbf{h},oldsymbol{arepsilon})$$
,

- $arepsilon \in \mathbb{R}^{J-1}$, J-1 vector of (non-separable) unobservable heterogeneity.
- Assume $\boldsymbol{\varepsilon} \perp (x, \mathbf{h})$ for now.
- The environment is described by a continuous distribution of \mathbf{q} , x and ε , for discrete types \mathbf{h} .
- Will typically suppress observable heterogeneity h in what follows.

Non-Separable Demand

For demands $\mathbf{q} = \mathbf{d}(x, \mathbf{p}, \boldsymbol{\varepsilon})$:

• One key drawback has been the (additive) separability of ε assumed in empirical specifications.

For **demands** $\mathbf{q} = \mathbf{d}(x, \mathbf{p}, \boldsymbol{\varepsilon})$:

- One key drawback has been the (additive) separability of ε assumed in empirical specifications.
- We will consider the **non-separable case** and impose conditions on preferences that ensure **invertibility** in ε (which corresponds to monotonicity for J = 2 which is our leading case). Assume unique inverse structural demand functions exists **Fig 1a.**

For **demands** $\mathbf{q} = \mathbf{d}(x, \mathbf{p}, \boldsymbol{\varepsilon})$:

- One key drawback has been the (additive) separability of ε assumed in empirical specifications.
- We will consider the **non-separable case** and impose conditions on preferences that ensure **invertibility** in ε (which corresponds to monotonicity for J = 2 which is our leading case). Assume unique inverse structural demand functions exists **Fig 1a**.
- Here we consider the case of a small number of price regimes and use revealed preference inequalities applied to d(x, p, ε) to improve demand predictions

For **demands** $\mathbf{q} = \mathbf{d}(x, \mathbf{p}, \boldsymbol{\varepsilon})$:

- One key drawback has been the (additive) separability of ε assumed in empirical specifications.
- We will consider the **non-separable case** and impose conditions on preferences that ensure **invertibility** in ε (which corresponds to monotonicity for J = 2 which is our leading case). Assume unique inverse structural demand functions exists **Fig 1a**.
- Here we consider the case of a small number of price regimes and use revealed preference inequalities applied to d(x, p, ε) to improve demand predictions
- In other related work **Slutsky inequality** conditions have been shown to help in 'smoothing' demands for 'dense' or continuously distributed prices

Related Literature

• Nonparametric Demand Estimation: Blundell, Browning and Crawford (2003, 2007, 2008); Blundell, Chen and Kristensen (2007); Chen and Pouzo (2009).

Related Literature

- Nonparametric Demand Estimation: Blundell, Browning and Crawford (2003, 2007, 2008); Blundell, Chen and Kristensen (2007); Chen and Pouzo (2009).
- Nonseparable models: Chernozhukov, Imbens and Newey (2007); Imbens and Newey (2009); Matzkin (2003, 2007, 2008), Chen and Laio (2010).

- Nonparametric Demand Estimation: Blundell, Browning and Crawford (2003, 2007, 2008); Blundell, Chen and Kristensen (2007); Chen and Pouzo (2009).
- Nonseparable models: Chernozhukov, Imbens and Newey (2007); Imbens and Newey (2009); Matzkin (2003, 2007, 2008), Chen and Laio (2010).
- Restricted Nonparametric Estimation: Blundell, Horowitz and Parey (2010); Haag, Hoderlein and Pendakur (2009), Kiefer (1982), Mammen, Marron, Turlach and Wand (2001); Mammen and Thomas-Agnan (1999); Wright (1981,1984)

- Nonparametric Demand Estimation: Blundell, Browning and Crawford (2003, 2007, 2008); Blundell, Chen and Kristensen (2007); Chen and Pouzo (2009).
- Nonseparable models: Chernozhukov, Imbens and Newey (2007); Imbens and Newey (2009); Matzkin (2003, 2007, 2008), Chen and Laio (2010).
- Restricted Nonparametric Estimation: Blundell, Horowitz and Parey (2010); Haag, Hoderlein and Pendakur (2009), Kiefer (1982), Mammen, Marron, Turlach and Wand (2001); Mammen and Thomas-Agnan (1999); Wright (1981,1984)
- Inequality constraints and set identification: Andrews (1999, 2001); Andrews and Guggenberger (2007), Andrews and Soares (2009); Bugni (2009); Chernozhukov, Hong and Tamer (2007)....

• Observe choices of **large** number of consumers for a small (finite) set of prices - e.g. limited number of markets/time periods

- Observe choices of **large** number of consumers for a small (finite) set of prices e.g. limited number of markets/time periods
- Market defined by time and/or location.

- Observe choices of **large** number of consumers for a small (finite) set of prices e.g. limited number of markets/time periods
- Market defined by time and/or location.
- Questions to address here:

- Observe choices of **large** number of consumers for a small (finite) set of prices e.g. limited number of markets/time periods
- Market defined by time and/or location.
- Questions to address here:
 - How do we devise a powerful test of RP conditions in this environment?

- Observe choices of **large** number of consumers for a small (finite) set of prices e.g. limited number of markets/time periods
- Market defined by time and/or location.
- Questions to address here:
 - How do we devise a powerful test of RP conditions in this environment?
 - How do we estimate demands for some new price point p₀?

- Observe choices of **large** number of consumers for a small (finite) set of prices e.g. limited number of markets/time periods
- Market defined by time and/or location.
- Questions to address here:
 - How do we devise a powerful test of RP conditions in this environment?
 - How do we estimate demands for some new price point p₀?
- In this case **Revealed Preference** conditions, in general, only allow **set identification** of demands.

• How do we devise a powerful test of RP?

- How do we devise a powerful test of RP?
- Afriat's Theorem

- How do we devise a powerful test of RP?
- Afriat's Theorem
- Data $(\mathbf{p}^t, \mathbf{q}^t)$ satisfy **GARP** if $\mathbf{q}^t R \mathbf{q}^s$ implies $\mathbf{p}^s \mathbf{q}^s \le \mathbf{p}^s \mathbf{q}^t$

- How do we devise a powerful test of RP?
- Afriat's Theorem
- Data $(\mathbf{p}^t, \mathbf{q}^t)$ satisfy **GARP** if $\mathbf{q}^t R \mathbf{q}^s$ implies $\mathbf{p}^s \mathbf{q}^s \le \mathbf{p}^s \mathbf{q}^t$
- \equiv if \mathbf{q}^t is indirectly revealed preferred to \mathbf{q}^s then \mathbf{q}^s is not strictly preferred to \mathbf{q}^t

- How do we devise a powerful test of RP?
- Afriat's Theorem
- Data $(\mathbf{p}^t, \mathbf{q}^t)$ satisfy **GARP** if $\mathbf{q}^t R \mathbf{q}^s$ implies $\mathbf{p}^s \mathbf{q}^s \le \mathbf{p}^s \mathbf{q}^t$
- \equiv if \mathbf{q}^t is indirectly revealed preferred to \mathbf{q}^s then \mathbf{q}^s is not strictly preferred to \mathbf{q}^t
- \exists a well behaved concave utility function \equiv the data satisfy GARP

• Data: Observational or Experimental - Is there a best design for experimental data?

- Data: Observational or Experimental Is there a best design for experimental data?
- Blundell, Browning and Crawford (Ecta, 2003) develop a method for choosing a sequence of total expenditures that maximise the power of tests of RP (GARP).

- Data: Observational or Experimental Is there a best design for experimental data?
- Blundell, Browning and Crawford (Ecta, 2003) develop a method for choosing a sequence of total expenditures that maximise the power of tests of RP (GARP).
- Define sequential maximum power (SMP) path

$$\{\tilde{x}_s, \tilde{x}_t, \tilde{x}_u, ... \tilde{x}_v, x_w\} = \{\mathbf{p}_s' \mathbf{q}_t(\tilde{x}_t), \mathbf{p}_t' \mathbf{q}_u(\tilde{x}_u), \mathbf{p}_v' \mathbf{q}_w(\tilde{x}_w), x_w\}$$

- Data: Observational or Experimental Is there a best design for experimental data?
- Blundell, Browning and Crawford (Ecta, 2003) develop a method for choosing a sequence of total expenditures that maximise the power of tests of RP (GARP).
- Define sequential maximum power (SMP) path

$$\{\tilde{x}_s, \tilde{x}_t, \tilde{x}_u, ... \tilde{x}_v, x_w\} = \{\mathbf{p}_s' \mathbf{q}_t(\tilde{x}_t), \mathbf{p}_t' \mathbf{q}_u(\tilde{x}_u), \mathbf{p}_v' \mathbf{q}_w(\tilde{x}_w), x_w\}$$

• Proposition (BBC, 2003) Suppose that the sequence

$$\left\{\mathbf{q}_{s}\left(x_{s}
ight),\mathbf{q}_{t}\left(x_{t}
ight),\mathbf{q}_{u}\left(x_{u}
ight)...,\mathbf{q}_{v}\left(x_{v}
ight),\mathbf{q}_{w}\left(x_{w}
ight)
ight\}$$

rejects RP. Then SMP path also rejects RP. (Also define Revealed Worse and Revealed Best sets.)
- great for experimental design but we have Observational Data
 - continuous micro-data on incomes and expenditures

- great for experimental design but we have Observational Data
 - continuous micro-data on incomes and expenditures
 - finite set of observed price and/or tax regimes (across time and markets)

- great for experimental design but we have Observational Data
 - continuous micro-data on incomes and expenditures
 - finite set of observed price and/or tax regimes (across time and markets)
 - discrete demographic differences across households

- great for experimental design but we have Observational Data
 - continuous micro-data on incomes and expenditures
 - finite set of observed price and/or tax regimes (across time and markets)
 - discrete demographic differences across households
 - use this information alone, together with revealed preference theory to assess consumer rationality and to place 'tight' bounds on demand responses and welfare measures.

• So, is there a best design for observational data?

- So, is there a best design for observational data?
- Suppose we have a discrete price distribution, $\{\mathbf{p}(1), \mathbf{p}(2), ... \mathbf{p}(T)\}.$

- So, is there a best design for observational data?
- Suppose we have a discrete price distribution, $\{\mathbf{p}(1), \mathbf{p}(2), ... \mathbf{p}(T)\}.$
- Observe choices of **large** number of consumers for a small (finite) set of prices - e.g. limited number of markets/time periods. Market defined by time and/or location.

- So, is there a best design for observational data?
- Suppose we have a discrete price distribution, $\{\mathbf{p}(1), \mathbf{p}(2), ... \mathbf{p}(T)\}.$
- Observe choices of **large** number of consumers for a small (finite) set of prices - e.g. limited number of markets/time periods. Market defined by time and/or location.
- Given t, q_t (x; ε) = d(x, p(t), ε) is the (quantile) expansion path of consumer type ε facing prices p(t).

- So, is there a best design for observational data?
- Suppose we have a discrete price distribution, $\{\mathbf{p}(1), \mathbf{p}(2), ... \mathbf{p}(T)\}.$
- Observe choices of **large** number of consumers for a small (finite) set of prices - e.g. limited number of markets/time periods. Market defined by time and/or location.
- Given t, q_t (x; ε) = d(x, p(t), ε) is the (quantile) expansion path of consumer type ε facing prices p(t).

• Fig 1b

Suppose we observe a set of demands {q₁, q₂, ...q_T} which record the choices made by a particular consumer (ε) when faced by the set of prices {p₁, p₂, ...p_T}.

- Suppose we observe a set of demands {q₁, q₂, ...q_T} which record the choices made by a particular consumer (ε) when faced by the set of prices {p₁, p₂, ...p_T}.
- What is the support set for a new price vector p₀ with new total outlay x₀?

- Suppose we observe a set of demands {q₁, q₂, ...q_T} which record the choices made by a particular consumer (ε) when faced by the set of prices {p₁, p₂, ...p_T}.
- What is the support set for a new price vector p₀ with new total outlay x₀?
- Varian support set for $\mathbf{d}(\mathbf{p}_0, x_0, \boldsymbol{\varepsilon})$ is given by:

$$S^{V}\left(\mathbf{p}_{0}, x_{0}, \varepsilon\right) = \left\{ \mathbf{q}_{0}: \begin{array}{l} \mathbf{p}_{0}^{\prime} \mathbf{q}_{0} = x_{0}, \ \mathbf{q}_{0} \geq \mathbf{0} \text{ and} \\ \left\{\mathbf{p}_{t}, \mathbf{q}_{t}\right\}_{t=0...T} \text{ satisfies RP} \end{array} \right\}.$$

- Suppose we observe a set of demands {q₁, q₂, ...q_T} which record the choices made by a particular consumer (ε) when faced by the set of prices {p₁, p₂, ...p_T}.
- What is the support set for a new price vector p₀ with new total outlay x₀?
- Varian support set for $\mathbf{d}(\mathbf{p}_0, x_0, \varepsilon)$ is given by:

$$S^{V}\left(\mathbf{p}_{0}, x_{0}, \varepsilon\right) = \left\{ \mathbf{q}_{0}: \begin{array}{l} \mathbf{p}_{0}^{\prime}\mathbf{q}_{0} = x_{0}, \ \mathbf{q}_{0} \geq \mathbf{0} \text{ and} \\ \left\{\mathbf{p}_{t}, \mathbf{q}_{t}\right\}_{t=0...T} \text{ satisfies RP} \end{array} \right\}.$$

In general, support set will only deliver set identification of d(x, p₀, ε).

- Suppose we observe a set of demands {q₁, q₂, ...q_T} which record the choices made by a particular consumer (ε) when faced by the set of prices {p₁, p₂, ...p_T}.
- What is the support set for a new price vector p₀ with new total outlay x₀?
- Varian support set for $\mathbf{d}(\mathbf{p}_0, x_0, \varepsilon)$ is given by:

$$S^{V}\left(\mathbf{p}_{0}, x_{0}, \varepsilon\right) = \left\{ \mathbf{q}_{0}: \begin{array}{l} \mathbf{p}_{0}^{\prime}\mathbf{q}_{0} = x_{0}, \ \mathbf{q}_{0} \geq \mathbf{0} \text{ and} \\ \left\{\mathbf{p}_{t}, \mathbf{q}_{t}\right\}_{t=0...T} \text{ satisfies RP} \end{array} \right\}.$$

In general, support set will only deliver set identification of d(x, p₀, ε).

Figure 2(a) - generating a support set: S^V (p₀, x₀, ε) for consumer of type ε

• Can we improve upon $S^{V}(\mathbf{p}_{0}, x_{0}, \varepsilon)$?

- Can we improve upon $S^{V}(\mathbf{p}_{0}, x_{0}, \varepsilon)$?
- Yes! We can do better if we know the expansion paths $\{\mathbf{p}_t, \mathbf{q}_t (x, \varepsilon)\}_{t=1,..T}$.

- Can we improve upon $S^{V}(\mathbf{p}_{0}, x_{0}, \varepsilon)$?
- Yes! We can do better if we know the expansion paths $\{\mathbf{p}_t, \mathbf{q}_t (x, \varepsilon)\}_{t=1,..T}$.
- For consumer $\boldsymbol{\varepsilon}$: Define intersection demands $\widetilde{\mathbf{q}}_t(\varepsilon) = \mathbf{q}_t(\tilde{x}_t, \varepsilon)$ by $\mathbf{p}_0'\mathbf{q}_t(\tilde{x}_t, \varepsilon) = \mathbf{x}_0$

- Can we improve upon $S^{V}(\mathbf{p}_{0}, x_{0}, \varepsilon)$?
- Yes! We can do better if we know the expansion paths $\{\mathbf{p}_t, \mathbf{q}_t (x, \varepsilon)\}_{t=1,..T}$.
- For consumer $\boldsymbol{\varepsilon}$: Define intersection demands $\widetilde{\mathbf{q}}_t(\varepsilon) = \mathbf{q}_t(\widetilde{x}_t, \varepsilon)$ by $\mathbf{p}_0'\mathbf{q}_t(\widetilde{x}_t, \varepsilon) = \mathbf{x}_0$
- Blundell, Browning and Crawford (2008): The set of points that are consistent with observed expansion paths *and* revealed preference is given by the *support set*:

$$S\left(\mathbf{p}_{0}, x_{0}, \varepsilon\right) = \left\{ \mathbf{q}_{0}: \begin{array}{l} \mathbf{q}_{0} \geq \mathbf{0}, \ \mathbf{p}_{0}^{\prime} \mathbf{q}_{0} = \mathbf{x}_{0} \\ \left\{ \mathbf{p}_{0}, \mathbf{p}_{t}; \mathbf{q}_{0}, \widetilde{\mathbf{q}}_{t}\left(\varepsilon\right) \right\}_{t=1,...,T} \text{ satisfy RP } \end{array} \right\}$$

- Can we improve upon $S^{V}(\mathbf{p}_{0}, x_{0}, \varepsilon)$?
- Yes! We can do better if we know the expansion paths $\{\mathbf{p}_t, \mathbf{q}_t (x, \varepsilon)\}_{t=1,..T}$.
- For consumer $\boldsymbol{\varepsilon}$: Define *intersection demands* $\widetilde{\mathbf{q}}_t(\boldsymbol{\varepsilon}) = \mathbf{q}_t(\tilde{x}_t, \boldsymbol{\varepsilon})$ by $\mathbf{p}_0'\mathbf{q}_t(\tilde{x}_t, \boldsymbol{\varepsilon}) = \mathbf{x}_0$
- Blundell, Browning and Crawford (2008): The set of points that are consistent with observed expansion paths *and* revealed preference is given by the *support set*:

$$S\left(\mathbf{p}_{0}, x_{0}, \varepsilon\right) = \left\{\mathbf{q}_{0}: \begin{array}{l} \mathbf{q}_{0} \geq \mathbf{0}, \mathbf{p}_{0}^{\prime} \mathbf{q}_{0} = \mathbf{x}_{0} \\ \left\{\mathbf{p}_{0}, \mathbf{p}_{t}; \mathbf{q}_{0}, \widetilde{\mathbf{q}}_{t}\left(\varepsilon\right)\right\}_{t=1,...,T} \text{ satisfy RP} \end{array}\right\}$$

 By utilizing the information in intersection demands, S (p₀, x₀, ε) yields tighter bounds on demands. These are sharp in the case of 2 goods. (BBC, 2003, for RW bounds for the many goods case).

- Can we improve upon $S^{V}(\mathbf{p}_{0}, x_{0}, \varepsilon)$?
- Yes! We can do better if we know the expansion paths $\{\mathbf{p}_t, \mathbf{q}_t (x, \varepsilon)\}_{t=1,..T}$.
- For consumer $\boldsymbol{\varepsilon}$: Define *intersection demands* $\widetilde{\mathbf{q}}_t(\boldsymbol{\varepsilon}) = \mathbf{q}_t(\tilde{x}_t, \boldsymbol{\varepsilon})$ by $\mathbf{p}_0'\mathbf{q}_t(\tilde{x}_t, \boldsymbol{\varepsilon}) = \mathbf{x}_0$
- Blundell, Browning and Crawford (2008): The set of points that are consistent with observed expansion paths *and* revealed preference is given by the *support set*:

$$S\left(\mathbf{p}_{0}, x_{0}, \varepsilon\right) = \left\{ \mathbf{q}_{0}: \begin{array}{l} \mathbf{q}_{0} \geq \mathbf{0}, \ \mathbf{p}_{0}^{\prime} \mathbf{q}_{0} = \mathbf{x}_{0} \\ \left\{ \mathbf{p}_{0}, \mathbf{p}_{t}; \mathbf{q}_{0}, \widetilde{\mathbf{q}}_{t}\left(\varepsilon\right) \right\}_{t=1,...,\mathcal{T}} \text{ satisfy RP} \end{array} \right\}$$

By utilizing the information in intersection demands, S (**p**₀, x₀, ε) yields tighter bounds on demands.
 These are sharp in the case of 2 goods. (BBC, 2003, for RW bounds for the many goods case).

• Figure 2b, c - $S(\mathbf{p}_0, x_0, \varepsilon)$ the identified set of demand responses for $\mathbf{p}_0, x_0, \varepsilon$ given t = 1, ..., T.

• Observational setting: At time t (t = 1, ..., T), we observe a random sample of n consumers facing prices **p**(t).

- Observational setting: At time t (t = 1, ..., T), we observe a random sample of n consumers facing prices **p**(t).
- *Observed variables* (ignoring other observed characteristics of consumers):
 - $\begin{array}{lll} \mathbf{p}\left(t\right) &=& \mbox{prices that all consumers face,} \\ \mathbf{q}_{i}\left(t\right) &=& \left(q_{1,i}\left(t\right), q_{2,i}\left(t\right)\right) = \mbox{consumer }i\mbox{'s demand,} \end{array}$
 - $x_i(t) = \text{consumer } i$'s income (total budget)

• We first wish to recover demands for each of the observed price regimes *t*,

$$\mathbf{q}(t) = \mathbf{d}(\mathbf{x}(t), t, \boldsymbol{\varepsilon}), \quad t = 1, ..., T,$$

where **d** is the demand function in price regime $\mathbf{p}(t)$.

• We first wish to recover demands for each of the observed price regimes *t*,

$$\mathbf{q}(t) = \mathbf{d}(\mathbf{x}(t), t, \varepsilon), \quad t = 1, ..., T,$$

where **d** is the demand function in price regime $\mathbf{p}(t)$.

• We will here only discuss the case of 2 goods with 1-dimensional error:

 $\varepsilon \in \mathbb{R}$,

 $\mathbf{d}(\mathbf{x}(t), t, \varepsilon) = (d_1(\mathbf{x}(t), t, \varepsilon), d_2(\mathbf{x}(t), t, \varepsilon)).$

• We first wish to recover demands for each of the observed price regimes *t*,

$$\mathbf{q}(t) = \mathbf{d}(\mathbf{x}(t), t, \varepsilon), \quad t = 1, ..., T,$$

where **d** is the demand function in price regime $\mathbf{p}(t)$.

• We will here only discuss the case of 2 goods with 1-dimensional error:

 $\varepsilon \in \mathbb{R}$,

$$\mathbf{d}(x(t), t, \varepsilon) = (d_1(x(t), t, \varepsilon), d_2(x(t), t, \varepsilon)).$$

Given t, d₁(x(t), t, ε) is exactly the quantile expansion path (Engel curve) for good 1 at prices p (t).

• Assumption A.1: The variable x(t) has bounded support, $x(t) \in \mathcal{X} = [a, b]$ for $-\infty < a < b < +\infty$, and is independent of $\varepsilon \sim U[0, 1]$.

- Assumption A.1: The variable x(t) has bounded support, $x(t) \in \mathcal{X} = [a, b]$ for $-\infty < a < b < +\infty$, and is independent of $\varepsilon \sim U[0, 1]$.
- Assumption A.2: The demand function d₁ (x, t, ε) is invertible in ε and is continuously differentiable in (x, ε).

- Assumption A.1: The variable x(t) has bounded support, $x(t) \in \mathcal{X} = [a, b]$ for $-\infty < a < b < +\infty$, and is independent of $\varepsilon \sim U[0, 1]$.
- Assumption A.2: The demand function d₁ (x, t, ε) is invertible in ε and is continuously differentiable in (x, ε).
- Identification Result: $d_1(x, t, \tau)$ is identified as the τ th quantile of $q_1|x(t)$:

$$d_1(x, t, \tau) = F_{q_1(t)|x(t)}^{-1}(\tau|x).$$

- Assumption A.1: The variable x(t) has bounded support, $x(t) \in \mathcal{X} = [a, b]$ for $-\infty < a < b < +\infty$, and is independent of $\varepsilon \sim U[0, 1]$.
- Assumption A.2: The demand function d₁ (x, t, ε) is invertible in ε and is continuously differentiable in (x, ε).
- Identification Result: $d_1(x, t, \tau)$ is identified as the τ th quantile of $q_1|x(t)$:

$$d_1(x, t, \tau) = F_{q_1(t)|x(t)}^{-1}(\tau|x).$$

• Thus, we can employ standard nonparametric quantile regression techniques to estimate *d*₁.

• We propose to estimate **d** using sieve methods.

• We propose to estimate **d** using sieve methods.

Let

$$ho_{ au}\left(y
ight)=\left(\mathbb{I}\left\{y<0
ight\}- au
ight)y,\ \ au\in\left[0,1
ight],$$

be the check function used in quantile estimation.

- We propose to estimate **d** using sieve methods.
- Let

$$ho_{ au}\left(y
ight)=\left(\mathbb{I}\left\{y<0
ight\}- au
ight)y$$
, $au\in\left[0,1
ight]$,

be the check function used in quantile estimation.

• The budget constraint defines the path for d_2 . We let \mathcal{D} be the set of feasible demand functions,

$$\mathcal{D} = \left\{ \mathbf{d} \geq 0 : d_1 \in \mathcal{D}_1, \ d_2\left(x, t, \tau\right) = \frac{x - p_1\left(t\right) d_1\left(x, t, \varepsilon\left(t\right)\right)}{p_2\left(t\right)} \right\}.$$

• Let $(\mathbf{q}_{i}(t), x_{i}(t)), i = 1, ..., n, t = 1, ..., T$, be i.i.d. observations from a demand system, $\mathbf{q}_{i}(t) = (q_{1i}(t), q_{2i}(t))'$.

- Let $(\mathbf{q}_{i}(t), x_{i}(t)), i = 1, ..., n, t = 1, ..., T$, be i.i.d. observations from a demand system, $\mathbf{q}_{i}(t) = (q_{1i}(t), q_{2i}(t))'$.
- We then estimate $\mathbf{d}(t, \cdot, \tau)$ by

$$\mathbf{\hat{a}}\left(\cdot,t, au
ight)=rgmin_{d_{n}\in\mathcal{D}_{n}}rac{1}{n}\sum_{i=1}^{n}
ho_{ au}\left(q_{1i}\left(t
ight)-d_{1n}\left(x_{i}\left(t
ight)
ight)
ight),\quad t=1,...,T,$$

where \mathcal{D}_n is a sieve space $(\mathcal{D}_n \to \mathcal{D} \text{ as } n \to \infty)$.

- Let $(\mathbf{q}_{i}(t), x_{i}(t)), i = 1, ..., n, t = 1, ..., T$, be i.i.d. observations from a demand system, $\mathbf{q}_{i}(t) = (q_{1i}(t), q_{2i}(t))'$.
- We then estimate $\mathbf{d}(t,\cdot,\tau)$ by

$$\mathbf{\hat{a}}\left(\cdot,t, au
ight)=rgmin_{d_{n}\in\mathcal{D}_{n}}rac{1}{n}\sum_{i=1}^{n}
ho_{ au}\left(q_{1i}\left(t
ight)-d_{1n}\left(x_{i}\left(t
ight)
ight)
ight),\quad t=1,...,T,$$

where \mathcal{D}_n is a sieve space $(\mathcal{D}_n \to \mathcal{D} \text{ as } n \to \infty)$.

• Let $\mathbf{B}_{i}(t) = (B_{k}(x_{i}(t)) : k \in \mathcal{K}_{n}) \in \mathbb{R}^{|\mathcal{K}_{n}|}$ denote basis functions spanning the sieve \mathcal{D}_{n} .

- Let $(\mathbf{q}_{i}(t), x_{i}(t)), i = 1, ..., n, t = 1, ..., T$, be i.i.d. observations from a demand system, $\mathbf{q}_{i}(t) = (q_{1i}(t), q_{2i}(t))'$.
- We then estimate $\mathbf{d}(t,\cdot, au)$ by

$$\mathbf{\hat{d}}\left(\cdot,t,\tau\right) = \arg\min_{d_{n}\in\mathcal{D}_{n}}\frac{1}{n}\sum_{i=1}^{n}\rho_{\tau}\left(q_{1i}\left(t\right) - d_{1n}\left(x_{i}\left(t\right)\right)\right), \quad t = 1, ..., T,$$

where \mathcal{D}_n is a sieve space $(\mathcal{D}_n \to \mathcal{D} \text{ as } n \to \infty)$.

- Let $\mathbf{B}_i(t) = (B_k(x_i(t)) : k \in \mathcal{K}_n) \in \mathbb{R}^{|\mathcal{K}_n|}$ denote basis functions spanning the sieve \mathcal{D}_n .
- Then $\hat{d}_1(x, t, \tau) = \sum_{k \in \mathcal{K}_n} \hat{\pi}_k(t, \tau) B_k(x)$, where $\hat{\pi}_k(t, \tau)$ is a standard linear quantile regression estimator:

$$\hat{\pi}\left(t, au
ight) = rgmin_{\pi\in\mathbb{R}^{\left|\mathcal{K}_{n}
ight|}}rac{1}{n}\sum_{i=1}^{n}
ho_{ au}\left(q_{1i}\left(t
ight) - \pi'\mathbf{B}_{i}\left(t
ight)
ight), \quad t=1,...,T.$$
• Adapt results in Belloni, Chen, Chernozhukov and Liao (2010) for rates and asymptotic distribution of the linear sieve estimator:

$$||\mathbf{\hat{d}}(\cdot, t, \tau) - \mathbf{d}(\cdot, t, \tau)||_2 = O_P\left(n^{-m/(2m+1)}\right),$$

$$\sqrt{n}\Sigma_{n}^{-1/2}(x,\tau)\left(\hat{d}_{1}(x,t,\tau)-d_{1}(x,t,\tau)\right)\rightarrow^{d}N\left(0,1\right),$$

where $\Sigma_n(x, \tau) \rightarrow \infty$ is an appropriate chosen weighting matrix.

• No reason why *estimated* expansion paths for a sequence of prices t = 1, ..., T should satisfy RP.

- No reason why *estimated* expansion paths for a sequence of prices t = 1, ..., T should satisfy RP.
- In order to impose the RP restrictions, we simply define the constrained sieve as: D^T_{C,n} = D^T_n ∩ {d_n(·, ·, τ) satisfies RP}.

- No reason why *estimated* expansion paths for a sequence of prices t = 1, ..., T should satisfy RP.
- In order to impose the RP restrictions, we simply define the constrained sieve as: D^T_C _n = D^T_n ∩ {d_n(·, ·, τ) satisfies RP}.
- We define the constrained estimator by:

$$\boldsymbol{\hat{d}}_{\mathcal{C}}\left(\cdot,\cdot,\tau\right) = \arg\min_{\boldsymbol{d}_{n}\left(\cdot,\cdot,\tau\right)\in\mathcal{D}_{\mathcal{C},n}^{T}}\frac{1}{n}\sum_{t=1}^{T}\sum_{i=1}^{n}\rho_{\tau}\left(q_{1,i}\left(t\right)-d_{1,n}\left(t,x_{i}\left(t\right)\right)\right).$$

- No reason why *estimated* expansion paths for a sequence of prices t = 1, ..., T should satisfy RP.
- In order to impose the RP restrictions, we simply define the constrained sieve as: D^T_{C,n} = D^T_n ∩ {d_n(·, ·, τ) satisfies RP}.
- We define the constrained estimator by:

$$\mathbf{\hat{d}}_{\mathcal{C}}\left(\cdot,\cdot,\tau\right) = \arg\min_{\mathbf{d}_{n}\left(\cdot,\cdot,\tau\right)\in\mathcal{D}_{\mathcal{C},n}^{T}} \frac{1}{n} \sum_{t=1}^{T} \sum_{i=1}^{n} \rho_{\tau}\left(q_{1,i}\left(t\right) - d_{1,n}\left(t,x_{i}\left(t\right)\right)\right).$$

• Since RP imposes restrictions across *t*, the above estimation problem can no longer be split up into *T* individual sub problems as the unconstrained case.

RP-restricted Demand Estimation

• Theoretical properties of restricted estimator: In general, the RP restrictions will be binding. This means that $\hat{\mathbf{d}}_C$ will be on the boundary of $\mathcal{D}_{C,n}^T$. So the estimator will in general have non-standard distribution (estimation when parameter is on the boundary).

RP-restricted Demand Estimation

- Theoretical properties of restricted estimator: In general, the RP restrictions will be binding. This means that $\hat{\mathbf{d}}_{C}$ will be on the boundary of $\mathcal{D}_{C,n}^{T}$. So the estimator will in general have non-standard distribution (estimation when parameter is on the boundary).
- Too hard a problem for us....

RP-restricted Demand Estimation

- Theoretical properties of restricted estimator: In general, the RP restrictions will be binding. This means that $\hat{\mathbf{d}}_{C}$ will be on the boundary of $\mathcal{D}_{C,n}^{T}$. So the estimator will in general have non-standard distribution (estimation when parameter is on the boundary).
- Too hard a problem for us....
- Instead: We introduce $\mathcal{D}_{C,n}^{T}(\varepsilon)$ as the set of demand functions satisfying

 $x\left(t
ight) \leq \mathbf{p}\left(t
ight)' \mathbf{d}\left(x\left(s
ight), s, au
ight) + \epsilon, \quad s < t, \quad t = 2, ..., T,$

for some ("small") $\epsilon \geq 0$.

- Theoretical properties of restricted estimator: In general, the RP restrictions will be binding. This means that $\hat{\mathbf{d}}_C$ will be on the boundary of $\mathcal{D}_{C,n}^T$. So the estimator will in general have non-standard distribution (estimation when parameter is on the boundary).
- Too hard a problem for us....
- Instead: We introduce $\mathcal{D}_{C,n}^{T}(\varepsilon)$ as the set of demand functions satisfying

$$x(t) \leq \mathbf{p}(t)' \mathbf{d}(x(s), s, \tau) + \epsilon, \quad s < t, \quad t = 2, ..., T,$$

for some ("small") $\epsilon \geq 0$.

• Redefine the constrained estimator to be the optimizer over $\mathcal{D}_{C,n}^{T}(\varepsilon) \supset \mathcal{D}_{C,n}^{T}$.

• Under assumptions A1-A3 and that $\mathbf{d}_0 \in \mathcal{D}_C^T$, then for any $\epsilon > 0$:

$$||\mathbf{\hat{d}}_{C}^{\varepsilon}(\cdot, t, \tau) - \mathbf{d}_{0}(\cdot, t, \tau)||_{\infty} = O_{P}(k_{n}/\sqrt{n}) + O_{P}(k_{n}^{-m}),$$

for t = 1, ..., T. Moreover, the restricted estimator has the same asymptotic distribution as the unrestricted estimator.

• Under assumptions A1-A3 and that $\mathbf{d}_0 \in \mathcal{D}_C^T$, then for any $\epsilon > 0$:

$$||\hat{\mathbf{d}}_{C}^{\epsilon}(\cdot, t, \tau) - \mathbf{d}_{0}(\cdot, t, \tau)||_{\infty} = O_{P}(k_{n}/\sqrt{n}) + O_{P}(k_{n}^{-m}),$$

for t = 1, ..., T. Moreover, the restricted estimator has the same asymptotic distribution as the unrestricted estimator.

 Also derive convergence rates and valid confidence sets for the support sets. • Under assumptions A1-A3 and that $\mathbf{d}_0 \in \mathcal{D}_C^T$, then for any $\epsilon > 0$:

$$||\hat{\mathbf{d}}_{C}^{\epsilon}(\cdot, t, \tau) - \mathbf{d}_{0}(\cdot, t, \tau)||_{\infty} = O_{P}(k_{n}/\sqrt{n}) + O_{P}(k_{n}^{-m}),$$

for t = 1, ..., T. Moreover, the restricted estimator has the same asymptotic distribution as the unrestricted estimator.

- Also derive convergence rates and valid confidence sets for the support sets.
- In practice, use simulation methods or the modified bootstrap procedures developed in Bugni (2009, 2010) and Andrews and Soares (2010); alternatively, the subsampling procedure of CHT.

Demand Bounds Estimation

• Simulation Study: Cobb-Douglas demand function.

Figure: Performance of demand bound estimator.

Blundell, Kristensen and Matzkin ()

Demand Bounds Estimation

- Simulation Study: Cobb-Douglas demand function.
- 95% confidence bands of demand bounds.

Figure: Performance of demand bound estimator.

Blundell, Kristensen and Matzkin ()

• Constrained demand and bounds estimators rely on the fundamental assumption that consumers are rational.

- Constrained demand and bounds estimators rely on the fundamental assumption that consumers are rational.
- We wish to test the null of consumer rationality.

- Constrained demand and bounds estimators rely on the fundamental assumption that consumers are rational.
- We wish to test the null of consumer rationality.
- Let $S_{\mathbf{p}_0, x_0}$ denote the set of demand sequences that are rational given prices and income:

$$S_{\mathbf{p}_{0},x_{0}} = \left\{ \mathbf{q} \in \mathcal{B}_{\mathbf{p}_{0},x_{0}}^{\mathcal{T}}: \begin{array}{c} \exists V > 0, \lambda \geq 1: \\ V(t) - V(s) \geq \lambda(t) \mathbf{p}(t)'(\mathbf{q}(s) - \mathbf{q}(t)) \end{array} \right\}.$$

Testing for Rationality

• Test statistic: Given the vector of *unrestricted* estimated intersection demands, $\hat{\mathbf{q}}$, we compute its distance from $S_{\mathbf{p}_0, x_0}$:

$$\rho_{n}\left(\widehat{\mathbf{q}}, \mathbb{S}_{\mathbf{p}_{0}, \mathbf{x}_{0}}\right) := \inf_{\mathbf{q} \in \mathbb{S}_{\mathbf{p}_{0}, \mathbf{x}_{0}}} \left\|\widehat{\mathbf{q}} - \mathbf{q}\right\|_{\hat{W}_{n}^{\text{test}}}^{2},$$

where $\|\cdot\|_{\hat{W}_{a}^{\text{test}}}$ is a weighted Euclidean norm,

$$\left\|\widehat{\mathbf{q}}-\mathbf{q}\right\|_{\widehat{W}_{n}^{\text{test}}}^{2}=\sum_{t=1}^{T}\left(\widehat{\mathbf{q}}\left(t\right)-\mathbf{q}\left(t\right)\right)'\widehat{W}_{n}^{\text{test}}\left(t\right)\left(\widehat{\mathbf{q}}\left(t\right)-\mathbf{q}\left(t\right)\right).$$

Testing for Rationality

 Test statistic: Given the vector of *unrestricted* estimated intersection demands, q
 , we compute its distance from S_{p0,x0}:

$${{
ho}_{n}}\left({\widehat{\mathbf{q}}},{{\mathbb{S}}_{{{\mathbf{p}}_{0}},{{x}_{0}}}}
ight):= \mathop {\inf }\limits_{{\mathbf{q}} \in {{\mathbb{S}}_{{{\mathbf{p}}_{0}},{{x}_{0}}}}} {\left\| {\widehat{\mathbf{q}}} - {\mathbf{q}}
ight\|_{{{\hat{W}}_{n}}^{ ext{test}}}^2$$
 ,

where $\|\cdot\|_{\hat{W}_{n}^{\text{test}}}$ is a weighted Euclidean norm,

$$\left\|\widehat{\mathbf{q}}-\mathbf{q}\right\|_{\hat{W}_{n}^{\text{test}}}^{2}=\sum_{t=1}^{T}\left(\widehat{\mathbf{q}}\left(t\right)-\mathbf{q}\left(t\right)\right)'\hat{W}_{n}^{\text{test}}\left(t\right)\left(\widehat{\mathbf{q}}\left(t\right)-\mathbf{q}\left(t\right)\right).$$

• Distribution under null: Using Andrews (1999,2001),

$$\rho_n\left(\widehat{\mathbf{q}}, \mathbb{S}_{\mathbf{p}_0, x_0}\right) \to^d \rho\left(Z, \Lambda_{\mathbf{p}_0, x_0}\right) := \inf_{\lambda \in \Lambda_{\mathbf{p}_0, x_0}} \|\lambda - Z\|^2,$$

where $\Lambda_{\mathbf{p}_{0},x_{0}}$ is a cone that locally approximates $\mathbb{S}_{\mathbf{p}_{0},x_{0}}$ and $Z \sim N(0, I_{T})$.

For each household defined by (x, ε), the parameter of interest is the consumer response at some new relative price p₀ and income x or at some sequence of relative prices. The later defines the demand curve for (x, ε).

- For each household defined by (x, ε), the parameter of interest is the consumer response at some new relative price p₀ and income x or at some sequence of relative prices. The later defines the demand curve for (x, ε).
- A typical sequence of relative prices in the UK:

- For each household defined by (x, ε), the parameter of interest is the consumer response at some new relative price p₀ and income x or at some sequence of relative prices. The later defines the demand curve for (x, ε).
- A typical sequence of relative prices in the UK:
 - Figure 4: Relative prices in the UK and a 'typical' relative price path p_0 .

- For each household defined by (x, ε), the parameter of interest is the consumer response at some new relative price p₀ and income x or at some sequence of relative prices. The later defines the demand curve for (x, ε).
- A typical sequence of relative prices in the UK:
 - Figure 4: Relative prices in the UK and a 'typical' relative price path p_0 .
 - Figure 5: Engel Curve Share Distribution

- For each household defined by (x, ε), the parameter of interest is the consumer response at some new relative price p₀ and income x or at some sequence of relative prices. The later defines the demand curve for (x, ε).
- A typical sequence of relative prices in the UK:
 - Figure 4: Relative prices in the UK and a 'typical' relative price path p_0 .
 - Figure 5: Engel Curve Share Distribution
 - Figure 6: Density of Log Expenditure.

• In the estimation, we use log-transforms and polynomial splines

$$\log d_{1,n}(\log x, t, \tau) = \sum_{j=0}^{q_n} \pi_j (t, \tau) (\log x)^j + \sum_{k=1}^{r_n} \pi_{q_n+k} (t, \tau) (\log x - \nu_k (t))_+^{q_n},$$

where $q_n \ge 1$ is the order of the polynomial and ν_k , $k = 1, ..., r_n$, are the knots.

In the estimation, we use log-transforms and polynomial splines

$$\log d_{1,n}(\log x, t, \tau) = \sum_{j=0}^{q_n} \pi_j (t, \tau) (\log x)^j + \sum_{k=1}^{r_n} \pi_{q_n+k} (t, \tau) (\log x - \nu_k (t))^{q_n}_+,$$

where $q_n \ge 1$ is the order of the polynomial and ν_k , $k = 1, ..., r_n$, are the knots.

• In the implementation of the quantile sieve estimator with a small penalization term was added to the objective function, as in BCK (2007).

Unrestricted Engel Curves

Figure: Unconstrained demand function estimates, t = 1983.

RP Restricted Engel Curves

Figure: Constrained demand function estimates, t = 1983

Blundell, Kristensen and Matzkin ()

Stochastic Demand

November 2010 29 / 3

• conditional quantile splines - 3rd order pol. spline with 5 knots

Image: Image:

э

- conditional quantile splines 3rd order pol. spline with 5 knots
 - RP restrictions imposed at 100 x-points over the empirical support x.

- conditional quantile splines 3rd order pol. spline with 5 knots
 - RP restrictions imposed at 100 x-points over the empirical support x.
 - 1983-1990 (T=8).

- conditional quantile splines 3rd order pol. spline with 5 knots
 - RP restrictions imposed at 100 x-points over the empirical support x.
 - 1983-1990 (T=8).
 - Figures 9-11: Estimated e-Bounds on Demand Curve

- conditional quantile splines 3rd order pol. spline with 5 knots
 - RP restrictions imposed at 100 x-points over the empirical support x.
 - 1983-1990 (T=8).
 - Figures 9-11: Estimated e-Bounds on Demand Curve
- Demand (e-)bounds (support sets) are defined at the quantiles of x and ε

- conditional quantile splines 3rd order pol. spline with 5 knots
 - RP restrictions imposed at 100 x-points over the empirical support x.
 - 1983-1990 (T=8).
 - Figures 9-11: Estimated e-Bounds on Demand Curve
- Demand (e-)bounds (support sets) are defined at the quantiles of x and ε
 - tightest bounds given information and RP.

- conditional quantile splines 3rd order pol. spline with 5 knots
 - RP restrictions imposed at 100 x-points over the empirical support x.
 - 1983-1990 (T=8).
 - Figures 9-11: Estimated e-Bounds on Demand Curve
- Demand (e-)bounds (support sets) are defined at the quantiles of x and ε
 - tightest bounds given information and RP.
 - varies with income and heterogeneity

Demand Bounds Estimation

Figure: Demand bounds at median income, $\tau = 0.1$.

Figure: Demand bounds at median income, $\tau = 0.5$.

Figure: Demand bounds at median income, $\tau = 0.9$.

Figure: Demand bounds at 25th percentile income, $\tau = 0.5$.

Figure: Demand bounds at 75th percentile income, $\tau = 0.5$.

• To account for the endogeneity of x we can utilize **IV quantile** estimators developed in Chen and Pouzo (2009) and Chernozhukov, Imbens and Newey (2007).

- To account for the endogeneity of x we can utilize **IV quantile** estimators developed in Chen and Pouzo (2009) and Chernozhukov, Imbens and Newey (2007).
- Chen and Pouzo (2009) apply to exactly this data using the same instrument as in BBC (2008).

- To account for the endogeneity of x we can utilize **IV quantile** estimators developed in Chen and Pouzo (2009) and Chernozhukov, Imbens and Newey (2007).
- Chen and Pouzo (2009) apply to exactly this data using the same instrument as in BBC (2008).
- Our basic results remain valid except that the convergence rate stated there has to be replaced by that obtained in Chen and Pouzo (2009) or Chernozhukov, Imbens and Newey (2007).

- To account for the endogeneity of x we can utilize **IV quantile** estimators developed in Chen and Pouzo (2009) and Chernozhukov, Imbens and Newey (2007).
- Chen and Pouzo (2009) apply to exactly this data using the same instrument as in BBC (2008).
- Our basic results remain valid except that the convergence rate stated there has to be replaced by that obtained in Chen and Pouzo (2009) or Chernozhukov, Imbens and Newey (2007).
- Alternatively, the **control function** approach taken in Imbens and Newey (2009) can be used. Again they estimate using the exact same data and instrument. Specify

$$\ln x = \pi(\mathbf{z}, \mathbf{v})$$

where π is monotonic in v, z are a set of instrumental variables.

Image: A matrix of the second seco

• Objective to elicit demand responses from consumer expenditure survey data.

___ ▶

- Objective to elicit demand responses from consumer expenditure survey data.
- Inequality restrictions from revealed preference used to produce tight bounds on demand responses.

- Objective to elicit demand responses from consumer expenditure survey data.
- Inequality restrictions from revealed preference used to produce tight bounds on demand responses.
- Derive a powerful test of RP conditions.

- Objective to elicit demand responses from consumer expenditure survey data.
- Inequality restrictions from revealed preference used to produce tight bounds on demand responses.
- Derive a powerful test of RP conditions.
- Particular attention given to nonseparable unobserved heterogeneity and endogeneity.

- Objective to elicit demand responses from consumer expenditure survey data.
- Inequality restrictions from revealed preference used to produce tight bounds on demand responses.
- Derive a powerful test of RP conditions.
- Particular attention given to nonseparable unobserved heterogeneity and endogeneity.
- New (empirical) insights provided about the price responsiveness of demand, especially across different income groups.

- Objective to elicit demand responses from consumer expenditure survey data.
- Inequality restrictions from revealed preference used to produce tight bounds on demand responses.
- Derive a powerful test of RP conditions.
- Particular attention given to nonseparable unobserved heterogeneity and endogeneity.
- New (empirical) insights provided about the price responsiveness of demand, especially across different income groups.
- Derive welfare costs of relative price and tax changes across the distribution of demands by income and taste heterogeneity.