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INTRODUCTION 
• This talk is about nonparametric estimation of a 

demand function that is not additively separable. 

• We illustrate the methods with an application to the 
demand for gasoline in the U.S. 

• Economic theory does not provide a finite-dimensional 
parametric model of demand. 

• Additive separability occurs only under restrictive 
assumptions about preferences. 
  



MOTIVATION 
• This motivates use of nonparametric methods and a 

non-separable specification to estimate dependence of 
demand on price and income. 

• But a nonparametric estimate of the demand function 
is noisy due to random sampling errors. 

• The estimated function is wiggly and non-
monotonic. 

• Some estimates of deadweight losses have 
incorrect signs and are, therefore, nonsensical. 

  



POSSIBLE REMEDY 
• Impose a parametric or semiparametric structure on 

the demand function. 

• But there is no guarantee that such a structure is 
consistent with economic theory or otherwise 
correct or approximately correct. 

• Demand estimation using a misspecified model can 
give seriously misleading results. 

  



AN ALTERNATIVE APPROACH 
• We impose structure by using a shape restriction from 

economic theory. 

• Specifically, we impose the Slutsky restriction ofr 
consumer theory on an otherwise fully nonparametric 
estimate of the demand function. 

• This yields will-behaved estimates of the demand 
function and deadweight losses. 

  



ADVANTAGES OF THE APPROACH 
• Maintains flexibility of nonparametric estimation. 

• Is consistent with the theory of the consumer. 

• Avoids using arbitrary and possibly incorrect 
parametric or semiparametric restrictions to stabilize 
estimates. 

• Slutsky constrained nonparametric estimates reveal 
features of the demand function that are not present in 
simple parametric models. 
  



RELATED WORK 
• Hausman and Newey (1995) estimate the conditional 

mean of gasoline demand nonparametrically 

• Their estimate is non-monotonic in price 

• Blundell, Horowitz, and Parey (2012) estimate the 
conditional mean of gasoline demand under the Slutsky 
condtion. 

• Conditional mean demand may not satisfy the 
Slutsky condition if unobserved heterogeneity enters 
individual demand in a non-separable way. 

• Imposing Slutsky may lead to a misspecified model.  



MORE RELATED WORK 
• Hausman and Newey (2013) show that the demand 

function is not identified if unobserved heterogeneity 
is multi-dimensional. 

• Hoderlein and Vanhems (2011) allow endogenous 
regressors in a control function approach. 

• Schmalensee and Stoker (1999) estimate an Engel 
curve for gasoline nonparametrically but do not have 
price data. 

• Yatchew and No (2001) estimate a partially linear 
model of gasoline demand. 



OUTLINE 
• Description of data 

• Fully nonparametric estimates of demand function. 

• Nonparametric estimation subject to Slutsky restriction. 

• Possible endogeneity of price 

• Deadweight loss of a tax 

• Conclusions 
  



DATA 
• Data are from the 2001 National Household Travel 

Survey (NHTS). 

• This is a household-level survey complemented by 
travel diaries and odometer readings. 

• The nonparametric estimates condition on: 

• Income for the three quartiles of the income 
distribution. 

• Demographic and locational variables. 

• The resulting sample contains 3,640 observations. 



THE NONPARAMETRIC MODEL 
• Notation 

• Q = Quantity demanded 

• P = Price 

• Y = Household income 

• U = Unobserved heterogeneity 

• The demand function is 

( , , )Y g P Y Q=  
  



ASSUMPTIONS 
• To ensure identification, we assume that 

• U  is statistically independent of ( , )P Y . 

• ( , , )g P Y U  is monotone increasing in U  

• Given these assumptions, we assume without further 
loss of generality that ~ [0,1]U U  

• Later, I consider the possibility that P  is endogenous, 
so U  is not independent of P . 
  



NONPARAMETRIC MODEL (2) 
• Under the assumptions, the α  quantile of Q conditional 

on ( , , )P Y X  is 

( , , )

( , ).

Q g P Y

G P Y

α

α

α=

≡
 

• Therefore, for a random variable Vα  we have 

( , ) ; ( 0 | , )Q G P Y V P V P Yα α α α= + ≤ =  
  



ESTIMATION 
• Estimation is based on a truncated series approximation 

to Gα  with a B-spline basis, { }jψ . 

• The approximation is 

1 1
( , ) ( ) ( )

n nJ K

jk j k
j k

G P Y c P Yα ψ ψ
= =

≈∑∑  

• The jkc ’s are constants (Fourier coefficients). 

• nJ  and nK  are truncation points chosen by cross-
validation. 



ESTIMATION (2) 
• The jkc ’s are estimated by minimizing 

1 1 1
( ) ( ) ( )

n nJ Kn

n i jk j i k i
i j k

S c Q c P Yρ ψ ψ
= = =

 
= − 

  
∑ ∑∑  

• ρ = check function 

• { , , : 1,..., }i i iQ P Y i n= = data 
  



ESTIMATION UNDER SLUTSKY 
CONDITION 

• The Slutsky condition is 

( , ) ( , )( , ) 0G P Y G P YG P Y
P Y

α α
α

∂ ∂
+ ≤

∂ ∂
 

• Estimation consists of minimizing ( )nS c  subject to this 
constraint 

• There is a continuum of constraints 

• We replace the continuum with a discrete grid of 
values of ( , )P Y    



RELATION TO CONDITIONAL MEAN 
• The conditional mean of demand is 

  ( | , ) ( , ) ( , , ) ( )UE Q P Y m P Y g P Y u f u du≡ = ∫  

• If  

  ( , , ) ( , ) ; ( | , ) 0g P Y U m P Y U E U P Y= + = , 

then imposing Slutsky on ( , )m P Y  is equivalent to 
imposing it on ( , , )g P Y U  at 0U = . 

• Otherwise, ( , )m P Y  may not satisfy Slutsky, even if 
( , , )g P Y U  does at each U  (Lewbel 2001).  



MORE ON RELATION TO 
CONDITIONAL MEAN 

• The conditional mean model imposes the Slutsky 
condition at only one value of U . 

• The conditional quantile model imposes Slutsky at all 
values of U  and, therefore, on all individuals. 
  



Figure 1: Quantile regression estimates: constrained versus unconstrained estimates

a) upper income group
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b) middle income group
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c) lower income group
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Note: Figure shows unconstrained nonparametric quantile demand estimates (filled dots) and constrained

nonparametric demand estimates (filled dots) at different points in the income distribution for the median

(α = 0.5), together with simultaneous confidence intervals. Income groups correspond to $72,500, $57,500,

and $42,500. Confidence intervals shown refer to bootstrapped symmetrical, simultaneous confidence

intervals with a confidence level of 90%, based on 4,999 replications. See text for details.
20



COMMENTS ON ESTIMATION 
RESULTS 

• The nonparametric estimates are wiggly, do not satisfy 
the Slutsky condition, and are inconsistent with 
consumer theory. 

• Assuming demand satisfies the Slutsky condition, 
wiggliness is an artifact of random sampling errors. 

• The Slutsky constrained estimates are 

• Downward sloping and not wiggly. 

• Contained in 90% confidence band around 
unconstrained estimates 



COMMENTS (2) 
• The middle income group is more sensitive to price 

than are the outer two groups. 

• This feature of the demand function is not revealed 
by conventional parametric models (e.g., log-linear, 
log-quadratic) 

• Slutsky constrained conditional mean estimates are 
similar to the quantile estimates. 
  



Figure 2: Quantile regression estimates: constrained versus unconstrained estimates (mid-
dle income group)

a) upper quartile (α = 0.75)
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b) middle quartile (α = 0.50)
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c) lower quartile (α = 0.25)
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Note: Figure shows unconstrained nonparametric quantile demand estimates (filled markers) and con-

strained nonparametric demand estimates (filled markers) at the quartiles for the middle income group

($57,500), together with simultaneous confidence intervals. Confidence intervals shown refer to boot-

strapped symmetrical, simultaneous confidence intervals with a confidence level of 90%, based on 4,999

replications. See text for details. 24



COMPARISON ACROSS QUANTILES 
• The constrained estimates are similar in shape and 

approximately parallel to one another. 

• This is consistent with additive separability and 
homoscedasticity 

• Conditional mean estimates show shapes similar to 
those of the conditional quantile functions. 

  



PRICE ENDOGENEITY 
• In this model, ( , )Q G P Y Vα α= + , but ( 0 | , )P V P Yα ≤  is 

an unknown function of P . 

• Gα  is identified by using an instrument Z  for P  
(distance from the Gulf of Mexico. 

• The resulting model is 

( , ) ; ( 0 | , )Q G P Y V P V Z Yα α α α= + ≤ =  
  



PRICE ENDOGENEITY (2) 
• Estimate Gα  by solving with or without the Slutsky 

constraint 
2minimize : ( , , )

n
n

G
Q G z y dzdy

α
α

∈ ∫
 

where n  is space of spline approximations and 

 

1

1

( , , )

{ [ ( , ) 0] } ( ; )

n

n

i i i i i
i

Q G z y

n I Q G P Y I Z z Y y

α

α α−

=

=

− ≤ − ≤ ≤∑

  



Figure 6: Quantile regression estimates under the shape restriction: IV estimates versus
estimates assuming exogeneity

a) upper income group
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b) middle income group
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c) lower income group
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Note: Figure shows constrained nonparametric IV quantile demand estimates (filled markers) and con-

strained quantile demand estimates under exogeneity (open markers) at different points in the income

distribution for the median (α = 0.5), together with simultaneous confidence intervals. Income groups

correspond to $72,500, $57,500, and $42,500. Confidence intervals shown correspond to the unconstrained

quantile estimates under exogeneity as in Figure 1. See text for details.
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DEADWEIGHT LOSS 
• Estimate deadweight loss of a tax by integrating 

demand function to obtain expenditure function. 

• Assumed tax changes price from 5th to 95th percentile of 
price in sample. 

• Some estimates of deadweight losses using 
unconstrained demand function are negative. 

• This is unsurprising given non-monotonicity of 
unconstrained estimated demand function. 

• Constrained estimates have correct signs and show 
that middle income group has the largest loss.  



CONCLUSIONS 
• Nonparametric estimates of demand functions eliminate 

risk of specification error but can be poorly behaved 
due to random sampling errors. 

• Constraining nonparametric estimates to satisfy the 
Slutsky condition overcomes this problem without need 
for arbitrary parametric or semiparametric restrictions. 

• In a non-separable model of gasoline demand 
• Fully nonparametric estimates are non-monotonic 
• Constrained estimates are monotonic and reveal 

features not easily found with parametric models. 




