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SEMI-NONPARAMETRIC IV ESTIMATION OF SHAPE-INVARIANT 
ENGEL CURVES 

BY RICHARD BLUNDELL, XIAOHONG CHEN, AND DENNIS KRISTENSEN1 

This paper studies a shape-invariant Engel curve system with endogenous total ex- 
penditure, in which the shape-invariant specification involves a common shift parame- 
ter for each demographic group in a pooled system of nonparametric Engel curves. We 
focus on the identification and estimation of both the nonparametric shapes of the En- 
gel curves and the parametric specification of the demographic scaling parameters. The 
identification condition relates to the bounded completeness and the estimation proce- 
dure applies the sieve minimum distance estimation of conditional moment restrictions, 
allowing for endogeneity. We establish a new root mean squared convergence rate for 
the nonparametric instrumental variable regression when the endogenous regressor 
could have unbounded support. Root-n asymptotic normality and semiparametric effi- 
ciency of the parametric components are also given under a set of "low-level" sufficient 
conditions. Our empirical application using the U.K. Family Expenditure Survey shows 
the importance of adjusting for endogeneity in terms of both the nonparametric curva- 
tures and the demographic parameters of systems of Engel curves. 

KEYWORDS: Consumer demands, nonparametric IV, bounded completeness, sieve 
minimum distance, sieve measure of ill-posedness, nonparametric convergence rate, 
root-n semiparametric efficiency. 

1. INTRODUCTION 

THE EMPIRICAL ANALYSIS of consumer behavior represents an important area 
for the application of semiparametric and nonparametric methods in eco- 
nomics. The Engel curve relationship, which describes the expansion path for 
commodity demands as the household's budget increases, is a key example of 
this and one that lies at the heart of the study of consumer behavior. Histori- 
cally parametric specifications have been based on the Working-Leser (Work- 
ing (1943), Leser (1963)) form for the Engel curve in which the budget share 
is linear in the logarithm of the total budget. This shape underpins the pop- 
ular almost ideal and translog models of consumer behavior developed by 
Deaton and Muellbauer (1980) and Jorgenson, Lau, and Stoker (1982), re- 
spectively. More recent empirical studies have suggested that further nonlin- 
earities in the total budget variable are required to capture observed behav- 
ior at the microeconomic level (see, for example, Hausman, Newey, Ichimura, 

'We thank a co-editor, several (at least three) anonymous referees, C. Ai, D. Andrews, V. Cher- 
nozhukov, I. Crawford, J. Hahn, J. Hausman, B. Honore, J. Horowitz, A. Lewbel, J. Powell, and 
J. Robin for helpful comments. The first version was presented at the 2001 North American Win- 
ter Meetings of the Econometric Society in New Orleans, and seminars at CREST, Stanford, 
Toulouse, UPenn, Harvard/MIT, UCLA, Virginia, Yale, and Columbia. This study is part of the 
program of research of the ESRC Centre for the Microeconomic Analysis of Public Policy at IFS. 
The authors gratefully acknowledge financial supports from ESRC/UK (Blundell and Chen) and 
NSF/USA (Chen). The usual disclaimer applies. 
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and Powell (1991), Lewbel (1991), Banks, Blundell, and Lewbel (1997)) and 
nonparametric methods are now commonly used in application (see Haus- 
man and Newey (1995), Deaton (1997)). Blundell, Browning, and Crawford 
(2003, 2004) showed how to use nonparametric Engel curves together with the 
Afriat-Varian analysis of revealed preference to identify consumer responses 
to relative price changes across the income distribution. 

The motivation for the instrumental variable (IV) estimator developed in 
this paper derives from the endogeneity of the total budget variable in the 
analysis of consumer Engel curves. This variable is the total expenditure allo- 
cated by the consumer to the subgroup of commodities under study, for ex- 
ample, nondurables and services. As such it is also a choice variable in the 
consumer's allocation of income across consumption goods and savings. Con- 
sequently, it is very likely to be jointly determined with individual demands 
and an endogenous regressor in the estimation of consumer expansion paths. 
If total expenditure is endogenous for individual commodity demands, then 
the conditional mean estimated by nonparametric least squares (LS) regres- 
sion does not identify the economically meaningful "structural" Engel curve 
relationship. The "statistical" Engel curve does not recover the correct shape 
necessary for the analysis of expansion paths or revealed preference. However, 
the allocation model of income to individual consumption goods and to savings 
does suggest exogenous sources of income that will provide suitable instrumen- 
tal variables for total expenditure in the Engel curve regression. 

Our focus on semi-nonparametric IV estimation is due to the need to pool 
nonparametric Engel curves across households of different demographic types 
while allowing for the endogeneity of total expenditure. The Engel curve rela- 
tionship is well known to differ by demographic type (see, for example, Blun- 
dell (1988)). This variation is often used to estimate equivalence scales (see, 
for example, Pendakur (1998)). To capture a wide range of income variation 
in consumer expansion paths and also to estimate equivalence scales, it is typ- 
ical to pool Engel curves across different demographic types of households. 
Recently Blundell, Browning, and Crawford (2003) have shown that, in a non- 
parametric budget share specification, demographics cannot enter additively 
into each Engel curve equation while retaining consistency with consumer op- 
timization theory; they must also enter so as to scale the total expenditure vari- 
able inside the nonparametric Engel curve for each commodity. A partially 
linear semiparametric formulation (Robinson (1988)) is therefore ruled out. 
An attractive alternative semiparametric formulation, which is also consistent 
with consumer theory, is one that is based on the shape-invariant specification 
(see Hirdle and Marron (1990), Pinkse and Robinson (1995), Blundell, Dun- 
can, and Pendakur (1998)) in which demographics simply shift and scale each 
demand function without altering its overall shape. The aim of the present 
paper is to extend the existing work on shape-invariant Engel curves to al- 
low for an endogenous total expenditure regressor. Our attention is on semi- 
nonparametric estimation, that is, on both the nonparametric estimation of 
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the Engel curve shape and the estimation of the parametric specification of 
the demographic variables. In a semi-nonparametric regression framework of 
the type adopted here, there are two alternative approaches to estimation un- 
der endogeneity-the IV and the control function (CF) approaches. Here we 
develop the IV approach for this semi-nonparametric Engel curve case.2 

The IV approach has been investigated by Newey and Powell (2003), 
Darolles, Florens, and Renault (2006), and Hall and Horowitz (2005) for the 
purely nonparametric regression model. Ai and Chen (2003) have consid- 
ered the IV approach in the context of semiparametric efficient estimation 
of models with conditional moment restrictions that contain unknown func- 
tions. In this paper, we apply the sieve IV estimation method of Newey and 
Powell (2003) and Ai and Chen (2003). Existing papers on Engel curve models 
typically consider kernel based methods, assuming exogenous total expendi- 
ture. In this paper, given the endogeneity of total expenditure and the shape- 
invariant semi-nonparametric specification, we argue that the sieve method 
offers an attractive alternative to the kernel based methods. This is because 
the sieve method is not only easier to implement numerically, but also capable 
of achieving optimal convergence rates simultaneously for both nonparametric 
and parametric components of the model specification. Moreover, this semi- 
nonparametric form is common in economic applications. 

A nonparametric IV regression is a difficult ill-posed inverse problem and 
has not, to our knowledge, been implemented in empirical research prior to the 
study reported in this paper. Although this paper applies the general sieve IV 
estimation method of Newey and Powell (2003) and Ai and Chen (2003), our 
theoretical justification is nontrivial. While Newey and Powell (2003) provided 
consistency of the sieve nonparametric IV estimators, and Ai and Chen (2003) 
obtained root-n asymptotic normality and semiparametric efficiency of esti- 
mators of the parametric components, their results are established under sets 
of relatively "high-level" sufficient conditions since they aim at very general 
models of conditional moment restrictions that contain unknown functions. 
Moreover, neither of these two papers provides convergence rates of the sieve 
nonparametric IV estimator under a root mean squared metric, nor discusses 
details of implementation and empirical application. 

In our analysis of the semi-nonparametric shape-invariant Engel curve 
model, we first provide identification under a "bounded completeness" con- 
dition, which is natural since Engel curves are all bounded between zero and 
one, and which is also much weaker than the "completeness" condition stated 
by Newey and Powell (2003) and Darolles, Florens, and Renault (2006). More- 
over, we are able to provide a set of "low-level" sufficient conditions for con- 

2See Newey, Powell, and Vella (1999) for a nonparametric CF approach and also the reviews by 
Blundell and Powell (2003), Florens (2003), and Florens, Heckman, Meghir, and Vytlacil (2002). 
Blundell, Duncan, and Pendakur (1998) allowed for endogeneity of total expenditure using a 
parametric additive CF approach within the context of a kernel regression framework. 
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sistency of the sieve IV estimator of Engel curves, and for the root-n as- 
ymptotic normality and efficiency of the estimator of the parametric demo- 
graphic effects. In addition, we obtain the nonparametric convergence rate in 
a root mean squared metric when the endogenous log total expenditure has 
unbounded support, which is new even in the literature on ill-posed inverse 
problems. The only other results on convergence rates of nonparametric IV 
regression are those given by Darolles, Florens, and Renault (2006) and Hall 
and Horowitz (2005).3 Their estimation procedures and the sufficient condi- 
tions for convergence rates they derive are different from ours. In particular, 
they assume that the endogenous regressor has bounded support, while we al- 
low the endogenous regressor to have unbounded support, which is natural 
in the semiparametric shape-invariant Engel curve case with endogenous log 
total expenditure. 

In our convergence rate analysis, we introduce a "sieve measure of ill- 
posedness," which directly affects the variance part and hence the mean 
squared convergence rate of the sieve nonparametric IV estimator. The sieve 
measure of ill-posedness is identically one for the sieve nonparametric LS re- 
gression, but for the sieve nonparametric IV regression, it is always greater 
than one and increases with the complexity of the sieve space as well as the 
smoothness of the conditional expectation operator. The greater is the sieve 
measure of ill-posedness, the bigger is the variance and the slower is the mean 
squared convergence rate of the sieve IV estimator. 

Two Monte Carlo studies are included to assess the performance of the sieve 
nonparametric IV estimator. The first simulation is designed to mimic the sub- 
sample of households without children from the British Family Expenditure 
Survey (FES), which is the data set used in our empirical application. The es- 
timated sieve measure of ill-posedness is relatively large for the subsample of 
couples without children, which translates into a slow mean squared conver- 
gence rate of the sieve IV estimator given a typical sample size and given a fi- 
nite smoothness of the true unknown Engel curve function. The second Monte 
Carlo design is similar to the first except that we draw the endogenous regres- 
sor and the instrumental variable jointly from a bivariate Gaussian density. 
This leads to a severely ill-posed inverse problem and the sieve measure of ill- 
posedness goes to infinity exponentially fast, which translates into a logarithmic 
mean squared convergence rate of the sieve IV estimator. Nevertheless, the 
Monte Carlo results indicate that the slow convergence rates are mainly due to 

3In the mathematics and statistics literature, there are many results on convergence rates for 
linear ill-posed inverse problems of the form Th = g, where T is a known compact operator and 
g is known up to a small additive perturbation 6. See, for example, Kress (1999), Korostelev and 
Tsybakov (1993), Donoho (1995), Engl, Hanke, and Neubauer (1996), Cavalier, Golubev, Picard, 
and Tsybakov (2002), and Cohen, Hoffmann, and Reiss (2004). However, the nonparametric IV 
regression in econometrics corresponds to an ill-posed inverse problem in which both the condi- 
tional expectation operator T and the g are unknown; see Carrasco, Florens, and Renault (2007) 
for a recent review. 
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the large variances and not due to the biases. In contrast, the inconsistent sieve 
LS estimator has a small variance but large bias. We find that there are choices 
of smoothing parameters that reduce the variances and hence make the mean 
squared errors of the sieve IV estimators small, while there is no choice of 
smoothing parameters that can reduce the large bias of the inconsistent sieve 
LS estimator in both simulations. These findings are consistent with our theo- 
retical result on the convergence rate of sieve IV estimator. The Monte Carlo 
simulations also shed light on the choice of sieve bases and smoothing parame- 
ters, and demonstrate that the sieve IV estimator performs well even for the 
severely ill-posed inverse problem. 

The application of the sieve IV system estimator is to the estimation of a 
system of Engel curves that describe the allocation of total nondurable con- 
sumption expenditure across eight groups of nondurables and services for a 
sample of families with and without children in the Family Expenditure Survey. 
These data record detailed information on expenditures, incomes, and family 
composition, and have been a central data source for many investigations of 
consumer behavior. In the application, we select only working age families in 
which the head is in employment. Total expenditure is allowed to be endoge- 
nous and we use the gross earnings of the household head as an instrument for 
total expenditure. We find the estimated curves and demographic parameters 
to be plausible, and we document a significant impact of accounting for the en- 
dogeneity of total expenditure. Adjusting for endogeneity increases the com- 
mon demographic shift parameter and produces a much more interpretable 
estimate of the income equivalence scale. 

The structure of the remaining paper is as follows. Section 2 specifies the 
semi-/nonparametric Engel curve model with endogenous total expenditure 
and provides sufficient conditions for identification. Section 3 presents the 
sieve minimum distance (SMD) procedure. Section 4 establishes root mean 
squared convergence rates of the sieve IV estimators of the nonparametric 
Engel curves. Section 5 obtains root-n asymptotic normality and efficiency of 
the estimators of the parametric parts in the system of shape-invariant Engel 
curves. Section 6 discusses the implementation of the SMD estimation of the 
system of shape-invariant Engel curves, and presents two Monte Carlo studies 
to assess the performance of the sieve nonparametric IV estimator. Section 7 
presents the empirical application using the FES data and Section 8 briefly 
concludes. All proofs are collected into the Appendix. 

2. MODEL SPECIFICATION AND IDENTIFICATION 

2.1. The Model 

Let {(Ylu, Y2i, Xli)} l represent an independent and identically distributed 
(i.i.d.) sequence of n household observations on the budget share Ylil of good 
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1= 1, ..., L > 1 for each household i facing the same relative prices,4 on the 
log of total expenditure Y2i, and on a vector of household composition vari- 
ables X1i. Household expenditures typically display a large variation with de- 
mographic composition. For each commodity 1, budget shares and total outlay 
are related by the general stochastic Engel curve 

(1) Ylil = 
GI(Y2i, Xi) + ei, 

where GI, 1 = 1, ..., L, are unknown functions that can be estimated us- 
ing a standard nonparametric LS regression method under the exogeneity of 
(Y2i, Xji) assumption: E[eil Y2i, Xgi] = 0. When X1 is discrete, one approach 
to estimation would be to stratify by each distinct discrete outcome of X, and 
estimate by nonparametric regression within each cell. Alternatively we may 
wish to pool Engel curves across household demographic types and allow the 
X1 to enter semiparametrically in each Engel curve. Blundell, Browning, and 
Crawford (2003, Proposition 6) showed that the following extended partially 
linear specification is consistent with consumer optimization theory: 

(2) Ylil= ht(Y2i 
- 4)(Xli01)) + 

Xii62,1 
+ 8il, 

where ht, l= 1,..., L, are unknown functions, and (X6i01) is a known func- 
tion up to a finite set of unknown parameters 01 and can be interpreted as the 
log of a general equivalence scale for household i (see, e.g., Pendakur (1998)).5 
For example, we may choose ) (Xi 01) = Xi 01, where Xli is a vector of demo- 
graphic variables that represent different household types and 01 is the vector 
of corresponding equivalence scales. Notice that (2) reduces to an additive 
form for functions of the demographic variables X1i only when h, is linear. 
This corresponds to the almost ideal model or translog models of Deaton and 
Muellbauer (1980) and Jorgenson, Lau, and Stoker (1982). For nonlinear spec- 
ifications of ht, including the quadratic almost ideal system (QUAIDS) specifi- 
cation of Banks, Blundell, and Lewbel (1997), the theoretical consistency result 
implies that the demographic terms must also enter in the function hi as is the 
case for (2). 

There are both theoretical and empirical reasons why the total expenditure 
is likely to be endogenous in the sense that E[eitl Y2i] / 0. Notice that the log of 
total expenditure Y2zi reflects savings and other consumption decisions made at 
the same time as the budget shares Yli are chosen. In fact the system of budget 
shares can be thought of as the second stage in a two-stage budgeting model in 

4Since budget shares should add up to one, total number of goods is actually L + 1. Provided 
the same basis functions are chosen to approximate ht(Y2i - 4)(XiO,)), 1 = 1,..., L, the SMD 
estimators we propose will be invariant to the commodity omitted. 

5This is nested within the fully nonparametric specification (1). Blundell, Duncan, and Pen- 
dakur (1998) compared this specification (2) with the fully nonparametric alternative and found 
that it provides a good representation of demand behavior for households in the FES. 
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which total expenditure and savings are first determined, and then, conditional 
on total expenditure, individual commodity shares are chosen at the second 
stage (see, e.g., Blundell (1988)). There are other explanations for endoge- 
nous total expenditure. See Hausman, Newey, Ichimura, and Powell (1991) 
and Newey (2001) for a measurement error story. In our application, we con- 
sider households in which the head of household is working and use the gross 
earnings of the head of household as an instrument X2i. The gross earnings of 
the household head will be exogenous for consumption expenditures under the 
assumption that heterogeneity in earnings is not correlated with households' 
preferences over consumption. 

A central objective of this paper is to relax the exogeneity assumption on Y2i 
in the estimation of the semi-nonparametric budget share system (2). Blun- 
dell, Duncan, and Pendakur (1998) have analyzed the parametric control func- 
tion approach. In this paper, we consider the alternative nonparametric IV 
approach to solve the endogeneity problem. In particular, we consider semi- 
nonparametric IV estimation where hi(-) is an unknown function and 01, 02,1 
are unknown finite-dimensional parameters. Functions of X2i are then used as 
instrumental variables. More precisely, we shall assume 

(3) E[ei|lXli, X2i = 0, I = 1, ..., L. 

2.2. Identification 

We first lay out the notation that will be adopted throughout the remain- 
ing discussion. Denote Yli = (Ylil, ..., YiL)' E RL, X, = (X'i, X1i)' E X with 
dim(X1), dim(X2) > 1, and Zi = (Y'i, Y2i, Xi)'. Let a - (0, hi, ..., hL) denote 
all the unknown parameters of interest, and let A = O x I x ... x -L de- 
note the parameter space, where 0- (0Q, 0k2, ..., 08,)' denotes a vector of 
unknown finite-dimensional parameters and 0 e 0-a compact subset of RdD 
with do - (1 + L) dim(X1)-and h, e FIt denotes an unknown Engel curve as- 
sociated with good 1, 1 = 1, ..., L, where R7-, is a subset of space of functions 
that are square integrable against the probability measure of Y2i (to be speci- 
fied later). Finally, we denote p - (p, ..., pL)' E RL, where for 1 = 1, ..., L, 

pl(Zi, a) = 
Yli - 

hl(Y2i 
- (XSU01)) 

- 

Xli02,1, 

with a known functional form 0(.). For each household i facing the same 
relative prices and for goods 1 = 1, ..., L, the Engel curve model satisfies 
(2) and (3), which we rewrite as 

(4) E[p(Zi, ao)gXi] = 0, 

where ao 
- 

(0o, hol,..., ho0) • A is the true but unknown parameter of in- 
terest. For policy analysis, we would like to estimate 0o, the Engel curve 
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functions hot, and other linear functionals such as the average derivatives 
E[Vhot(Y2i - )(Xi 6ol))], I= 1, ..., L. 

The first assumption is about identification of ao. 

ASSUMPTION I--Identification: E[Ylt- 
- h(Y- ( P(XVi01)) - 

XiO2,1lXli, 
X2i] = Ofor 1 = 1,..., L implies 01 = 0ol, 82,1 = 8o2,1, and hi = ho, almost surely. 

We provide the following set of sufficient conditions, which might not be a 
minimal set of conditions, but do appear quite sensible for our Engel curve 
system application: 

THEOREM 1: Suppose (4) and the following statements hold: 
1. For all bounded measurable functions 8 (Y2, X1), E[8 (Y2, XI)I X1, X2] = 0 

implies 8 (Y2, X1) - 0 almost surely. 
2. The conditional distribution of Y2 given (X1, X2) is absolutely continuous 

with respect to the Lebesgue measure on (-oo, +oo). 
3. Functions hi, 1 = 1,..., L, and 4 are bounded, differentiable, and cannot 

be simultaneously linear. 
4. X1 is a vector of linearly independent, discrete random variables which only 

takes finite many values and does not contain constant one. 
5. If X1 is a scalar dummy variable, then at least one hi is not linear and 4 is 

not periodic. 
Then Assumption I is satisfied. 

REMARK 1: (i) Condition 1 is normally referred to as bounded complete- 
ness in X2 of the conditional distribution of Y2 given X = (X1, X2). Note that 
this is a weaker concept than the completeness in X2 of the conditional dis- 
tribution of Y2 given X = (X1, X2) (which is defined as: For all measurable 
functions 8(Y2, X1) with finite expectations, E[8(Y2, X1) IX, X2] = 0 implies 
5(Y2, X1) - 0 almost surely). By definition, completeness automatically implies 
bounded completeness. However, the requirement that the conditional dis- 
tribution of Y2 given X = (X1, X2) is complete is somewhat restrictive, since 
there are not many known families of distributions beyond the exponential 
family that are complete. Luckily, there are much larger families of distribu- 
tions that are bounded complete. For instance, within the location family of 
absolutely continuous distributions (with respect to Lebesgue measure), they 
are bounded complete if and only if the characteristic functions are zero-free, 
while within its subclass of very thin tailed densities, the only complete class 
is either a Gaussian or a Dirac measure. In particular, a location family of ab- 
solutely continuous distributions with compact supports is bounded complete, 
but the only complete distribution is a Dirac measure. Also, a family of non- 
trivial finite scale mixtures of the standard Gaussian distribution is bounded 

complete but not complete. See, for example, Lehmann (1986, p. 173), Ho- 
effding (1977), and Mattner (1993) for more examples of distributions that are 
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bounded complete but not complete. For the identification of g in a purely 
nonparametric IV regression model E[Y1 - g(Y2)IX] = 0, Newey and Powell 
(2003) and Darolles, Florens, and Renault (2006) imposed the "completeness" 
condition. However, if one restricts the unknown functions g to be sup-norm 
bounded (i.e., supy Ig(y)l 

_< 
const < o), then E[Y1 - g(Y2)IX] = 0 uniquely 

identifies the unknown g if and only if the conditional distribution of Y2 given 
X is bounded complete. Therefore, if economic theory or any prior informa- 
tion suggests the unknown g(.) should be sup-norm bounded, then it will be 
much easier to identify the unknown g from E[Y1 - g(Y2)IX] = 0. For exam- 
ple, if some economic theory implies that g should be continuous and that Y2 
has bounded support, then g is identified from E[Y, - g(Y2)JX] = 0 as long as 
the conditional distribution of Y2 given X is bounded complete. Here, for the 
Engel curve application, even though Y2 (log total expenditure) could have un- 
bounded support, but since Engel curves all should be bounded below by zero 
and above by one, it suffices to impose the weaker "bounded completeness" 
identification condition. 

(ii) Conditions 2-5 are satisfied in our Engel curve study. In the empirical 
application in Section 7, we take Xli = 1 or 0 to indicate whether the ith family 
has children or not. In our data set and in many other empirical Engel curve 
analyses, the estimated joint density of log total expenditure and log gross earn- 
ings is approximately bivariate normal with high correlation coefficient. Since 
our instrumental variable X2 is a monotonic transformation of log gross earn- 
ings into [0, 1] support, the dependence between Y2 and X2 is still strong. Fi- 
nally, as noted in the Introduction, nonlinear behavior in the Engel curve rela- 
tionship is commonplace for many goods; see, for example, Hausman, Newey, 
Ichimura, and Powell (1991), Lewbel (1991), and Banks, Blundell, and Lewbel 
(1997). 

3. SIEVE MINIMUM DISTANCE ESTIMATION 

Our estimation method corresponds to that of Ai and Chen (2003) for 
semiparametric conditional moment restrictions and is similar to Newey and 
Powell's (2003) method for nonparametric IV regression. First we approxi- 
mate the unknown functions hi E Nt by ht,, E ti,n, 1 = 1,..., L, where 

'l,n 
is a sieve space for R7-1. In particular, we let Ni,n be some finite-dimensional 
approximation space (e.g., Fourier series, splines, wavelets, etc.) that be- 
comes dense in 7- as sample size n -* oo. Then for arbitrarily fixed can- 
didate value a = (0, h"i,, ..., hL,n) in the sieve parameter space % A - O x 
i1,n x ... x 

-NL,n, 
we estimate the population conditional moment function 

m(x, a) 
- (ml(x, a), ..., mL(x, a))' - E[p(Zi, a)IXi = x] nonparametrically 

by ii(x, a) (iiil(X, a),..., 
miL(x, 

a))'. Finally, we estimate the 0 and the un- 
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known sieve coefficients of hi,, 1 = 1,..., L, jointly by applying the SMD pro- 
cedure: 

m n 

(5) min 
• (Xi, 

a)'[o'[(X)S)]_X(s'(X, 

a) 
aEAn n i=l 

where X is some consistent estimator of some positive definite weighting ma- 
trix I. To obtain a semiparametric efficient estimator of 0o, we may follow the 
three-step procedure proposed in the first version of Ai and Chen (2003): 

STEP 1: Compute the identity weighted SMD estimator an = 
arg minEA, 

)= 
, i'(Xi, a)'Mh(Xi, a). 

STEP 2: Compute a nonparametric estimator ,o(X) of the optimal weight- 
ing matrix Xo(X) - Var[p(Z, ao)lX] using 'n and any nonparametric regres- 
sion procedures (such as kernel, nearest neighbor, or series). 

STEP 3: Obtain the optimally weighted SMD estimator ,n = (0,, hi,,..., 
hL,n) An by 

1in 
(6) minm - M L 

(Xi, 
a)'[Xo(Xi)]_ 

'(Xi, a), 
aEAn f i=1 

using an = (On, hl,,,..., hL,n) E An as the starting point. 

REMARK 2: (i) An equivalent but sometimes computationally simpler alter- 
native to the procedure (5) is the profile SMD procedure: First, for each fixed 
0 E 0, we compute h1,n(0; -), = 1, ..., L, as the solution to 

mm in (Xi, 0, 
hi,..., hL)'L[(Xi)]-im(Xi, 

0, hi, ..., hL). 
hlET"l,n '=i=L 

Second, we compute On, as the solution to 

min • i(Xi, , h1,,(; 

"), 

..., hL,n(O; 

"))' 
i=1 

x 
[a(X,)]-m (X,, ), hl,(o ; 

.),..., 
hL,n(. ; 

")) 

and estimate 
hot(.) 

by hl,n = 
hl,n(8n; ") 

for l= 1, ..., L. 
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(ii) If total expenditure is assumed to be exogenous, then Y2 is a "perfect IV" 
and we have E[p(Zi, ao)lXli, Y2i] = 0. In this case, we do not need to esti- 
mate a, via (5). Instead we can apply the sieve generalized least squares (GLS) 
procedure 

(7) min 
j 

p(Zi, a)'.(Xi)-'p(Z, a) aEAn fl 
i=1 

or the profile sieve GLS procedure. Again the semiparametric efficient esti- 
mator of o, can be obtained by the above three-step procedure except with 

mii(Xi, a) replaced by p(Zi, a). 

3.1. Possible Sieve Bases for h 

Since ho,(.), 1 = 1,..., L, have the same argument Y2 - 4(X' 81) and simi- 
lar smoothness, to simplify notation, we assume that they belong to the same 
function space, hot E = 7-I; hence, they can be approximated by the same 
sieve space Hn = ~i,n for 1 = 1,..., L. In our empirical application, Y2 is log 
total expenditure, and a simple kernel nonparametric estimation of the density 
of Y2 using our data set reveals an approximate normal density. Therefore, we 
assume that the support of Y2 - 4(X' 01) is the entire real line R. Then the 
choice of sieve bases is partially suggested by what kind of smoothness we want 
to impose on hot E N. 

We now introduce several typical spaces for real-valued functions on y, 
where y is either R or a bounded interval of R. Let k be a nonnegative in- 
teger and let Ck (y) be the space of k-times continuously differentiable func- 
tions. For any real-valued r > 0, let k = [r] be the largest nonnegative integer 
such that [r] < r and set r' - r - [r] E (0, 1]. A function h on y is said to be 
in H61der space Ar(y) if it is in C[r](y) and its [r]th derivative, VE[rh, satisfies 
a Hl1der condition with exponent r' (i.e., IV'r]h(x) - V'r]h(y) < clx - ylr'for 
all x, y E Y for some finite c > 0). The space At(Y) becomes a Banach space 
under the H61der norm: 

V[']h(x) - V['rh(y)l 
Ilh llAr maxsup IV'h(x)l + sup < 00. 

j<[r] x xn:y IX - ylr-[r] 

Let L2(y) be the space of functions with finite I hIL2 
- 

Jlh(y)l2 dy. Let 

W2k (Y) be the Sobolev space of functions in L2(Y) with their derivatives 
up to order k also in L2(Y); it becomes a Banach space under the norm 

IIhl|w -1o j0 
V hIIL, 2 < c. For any real-valued r > 0 with k = [r] < r < k +1, 
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let W2r(y) be the (fractional) Sobolev space of functions in L2(Y) with finite 
norm IIhII w2r: 

[r] 
(ff V'rh(x) - V[rlh(y) 12 1/2 

(8) 
Ilhllw2r = 

| VJhlL + 2 -2(r-[r])+ dx dy < 0. 
j=0 y2(rr])+l 

Let w(.) be a positive continuous weight function on y and let L2(Y, w) be 
the weighted space of functions with finite norm Ilhl L2(y,w) - Ih x w'/211L2' 
Denote W2r(y, w) as the weighted Sobolev space of functions with finite 
norm IIhIIw (y,,) = IIh x w1/2 11wr. Also define a mixed weighted Sobolev space 
W2r(y; w, leb) {h E L2(Y, w): IIVhllwr-, < 00}. 

Let At(y) = {h e Ar(y): llhllAr < c} be a H61der ball (of radius c) with 
smoothness r and take 

W2c(y; w, leb)_= {h E W2r(y; w, leb): IlhllL2(yw) 
IlVhllw -i < cl as a weighted Sobolev ball (of radius c) with smoothness r. 
Since Engel curves hot, 1= 1,..., L, are bounded between zero and one, and 
since consumer demand theory and many empirical studies suggest that hot, 
1 = 1, ..., L, are reasonably smooth, we could assume either h.ot e 

-=" 
= {h 

Ar(R):0 < h < 1} for some r > 1/2 or 
ho E R 

-b 
= {hc W2 ( ; f2, leb):0 < 

h < 1) for some r > 1, where fy2 denotes the marginal density of Y2. Then a 
sieve space R, could take either the form 

(9) 

-a=- 
h: 

R 
[0, 1], sup 

IVr]h,(y)| I c, 

h(Y2 
- 

(X01)) 
= 

kn 
- y2 

(XI01))HJ 
, 

or the form 

(10) 7-n =h{1 : R- [0, 1], IIV["rhllL2 C, 

h,(Y2 - 
(Xg 01)) = 

Okn (Y2 - (XI 1))'H}, 

where •kn (.) is a k, x 1 vector of known basis functions that are at least y = 

([r] + 1) times differentiable (such as Fourier series, wavelets, or B-splines) 
and H is a kn x 1 vector of unknown sieve coefficients. 

In the theoretical Sections 4 and 5 we have used the wavelet sieve basis 
for hn e 7-n. Let y > 0 be an integer. A real-valued function qi is called a 
mother wavelet of degree y if it satisfies (a) f, yk (y) dy = 0 for 0 < k < y, 
(b) / and all its derivatives up to order y decrease rapidly as lyl -+ 00, and 
(c) {2k/2q/,(2ky 

- j): k, j c Z} forms a Riesz basis of L2(R), that is, the linear 
span of {2k/2 q(2ky - j): k, j Z} is dense in L2(R) and 

k=-oo j=-co L2(7) k=-oo j=-oo 
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for all doubly bi-infinite square-summable sequences {akj: k, j E Z}. (The no- 
tation ak - bk means Clak < bk < c2ak for some finite positive constants cl, c2 
that do not depend on the sequences {ak }, {bk}.) A scaling function ?p is called 
a father wavelet of degree y if it satisfies (a') f, p(y) dy = 1, (b') p? and all its 
derivatives up to order y decrease rapidly as yl - oo, and (c') { p(y - j) : je Z} 
forms a Riesz basis for a closed subspace of L2(R). 

Orthogonal wavelets 

Given an integer y > 0, there exist a father wavelet 'p of degree y and a 
mother wavelet qi of degree y, both compactly supported, such that for any 
integer ko > 0, any function h in L2(R) has the wavelet y-regular multireso- 
lution expansion 

h(y) = akojPkoj(y) + L 
bgbkjfiqkj(y), y e i, 

j=-oo k=ko j=-oo 

where 

akj = 
h(y)pqkj(y) dy, pkj(y) 

- 2k/2Q(2y - j), y , 

bkj-- g(Y) 
Pkj(Y) dy, 

jk (Y) = 

2k/2qj(2Yk--j), 

Y (- 
, 

and {cpkoj, j E ; qkj, k > ko, j E Z} is an orthonormal basis of L2(R); see 
Meyer (1992, Theorem 3.3). For an integer Kn > ko, we consider the finite- 
dimensional linear space spanned by this wavelet basis of order y > r: 

2Kn -1 

hn(y) 
-= 

kn,(y)'l- I aKn,j'PKn,j(y), kn 
= 2Kn 

j=0 

Cardinal B-spline wavelets 

The cardinal B-spline wavelets of order y > r are denoted 

Kn 

(11) h,(y) = 
k7(y)' = rkj2k-2B,(2ky 

- j), kn = 2Kn + 1, 
k=0 jEICn 

where B,(.) is the cardinal B-spline of order y > r, 

B,(y) = 
(-1() I[max(0, 

y 
-i)] 

i=O0 
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which is y - 1 times differentiable and has support on [0, y]. For any fixed 
integer k = 0, 1, ..., K,, IC, is the set that consists of those j's such that the 
support of z - B,(2kZ - j) overlaps the empirical support of Y2 - 4)(X'01), 
j = ?1, ?2,.... The compact support of B,(.) ensures that #QC, is finite for 
any fixed k. 

In simulations and empirical studies, we have also used the following two 
sieve bases for h, E "FH,: 

Polynomial splines of order qn > r 

qn rn 

(12) hn(y) 
= 

qJkn 
(y)'H- 

i(Y) + Tq, +k(Y - 
Vk), 

j=0 k=1 

k, = q, + rn + 1, 

where (y - ,v)q 
= max{(y - v)q, 0} and {Vk 

k=1,...,rn 
are the knots. In the empir- 

ical application, for any given number of knots value rn, the knots {Vk k=1,...,rn 
are simply chosen as the empirical quantiles of Y2, that is, vk = k/(rn + 1)th 
quantile of Y2. 

Hermite polynomials of order kn - 1 

kn-1 (y - V1)2 
(13) 

hn(y) 
= kn 

(yTj(yH- vl)jexp 2 - 2V)2 

j=-02 where in the Monte Carlo study v, and v2 are chosen as the sample mean and 
sample variance of the data { Y2i}=' 

3.2. Sieve Least Squares Estimation for m and Xo 

There are many nonparametric procedures, such as kernel, local linear re- 
gression, nearest neighbor, and various sieve methods, that can be used to 
estimate m(x, a) and o0(x). Here we present the sieve LS estimation as an 
illustration. 

For each fixed (X, a), we approximate m(X, a) = E[p(Z, a) IX] by the func- 
tion mn(X, a) = E•L , aj(a)po0(X), where poj are some known basis functions 
and Jn, #(J) - 00 slowly as n --+ o. We write m,(X, a) = pJn(X)'A, where 
pJn(X) = 

(P01(X), ..., PoJn(X))' and P = (pJn(X1), ..., pJn(X,))'. Then the 
sieve LS estimator of m(X, a) is 

(14) ifi(X, a) = 

p"n(X)'(P'P)- 

p 
pJn(Xs)p(Zi, 

a), 
i=1 
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where (P'P)- denotes the generalized inverse of the matrix P'P. Similarly we 
can compute a sieve LS estimator 

,o(X) 
of V,o(X) in Step 2 by regressing 

p(Z, 
On)p(Z, 

n,)' on pJ"(X): 

(15) lo(X) -= pj(X)'(P'P)- pJn(Xi)p(Zi, &)p(Zi, a)', 
i=1 

where ^n is the SMD estimator obtained in Step 1 or any other consistent 
estimator of ao. 

Many known sieve bases could be used as pJ"(X). In our empirical ap- 
plication, X = (Xj, X2)' is a bivariate vector, where X1 e {0, 1) and X2 is 
the normal transformation of the log of gross earnings: X2 = D (log gross 
earnings) e [0, 1]. We take 

(16) pg"(X) = (BJ2n(X2)', X1 x B'2n (X2)')', Jn = 2J2n, 

where BJ2n (X2) is a J2n X 1 vector of univariate B-splines or polynomial splines 
or wavelets or cosine series {cos(7TjX2) : j= 0, 1,... , J2n - 11. 

4. CONVERGENCE RATE OF THE SIEVE NONPARAMETRIC IV ESTIMATOR 

In this section we study the convergence rate of the sieve IV estimator hnl 
of the unknown Engel curve ho, using the subsample of X, = 0, where h0n is 

computed using V(X) = IL without loss of generality. We establish the conver- 
gence rate of hn,1 under the mean squared error metric: 

11h, - ho0112 = E[{ht(Y2 - 4)(0)) - hot(Y2 - (0))}2] 

In the following discussion, we denote k, = dim(i-n,), and make assump- 
tions: 

ASSUMPTION 1: (i) The data {Zi = (Y,', X')': i = 1, 2,..., n} are i.i.d.; (ii) 0 < 
Ylil 1 for 1 = 1, ... , L; (iii) conditions 1 and 2 of Theorem 1 hold. 

ASSUMPTION 2: (i) hol E 7- ({he A(R):0 < h < 1} for 1 = 1,..., L for 
some r > 1/2; (ii) E[I Y212a] < for some a > r. 

ASSUMPTION 3: For any x in the support of X1, E[Y11IX1 = X1, X2 ], 
I= 1,...,L, belongs to Arm(X2), rn > 1/2, and E[hn(Y2 - (X'O1))IX1 = xl, 
X2= .] belongs to Arm (X2) for any h, e 7-,. 

ASSUMPTION 4: (i) The smallest and the largest eigenvalues of E{BJ2n (X2) x 

BJ2n (X2)'} are bounded and bounded away from zero for each J2n; (ii) BJ2n (X2) is 
either a cosine series or a B-spline basis of order Yb, with Yb > rm > 1/2; (iii) the 
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density of X2 is continuous, bounded, and bounded away from zero over its sup- 
port X2, which is a compact interval with nonempty interior. 

ASSUMPTION 5: (i) k, --+ o, J2,,n/n -* 0; (ii) limn,I-,(J2n/k,) = co > 1; 

limn-+o((k2 /n) = 0. 

We define 7,, as a sieve measure ofill-posedness: 

VE7 E{h( Y2) }2 (17) 7,n -- sup 
hE7~n:h#0 V/E{E[h(Y2)IX1 = 0, X212 

which is well defined under the conditions for identification. Obviously 7, > 1, 
and 7, = 1 if and only if Y2 is measurable with respect to the sigma field gen- 
erated by {X1 = 0, X2} (then E[h(Y2)1X1 = 0, X2] = h(Y2) for all h e 

7-n,). 
For 

example, 7, = 1 when Y2 is exogenous (and we take Y2 = X2). We note that 
the ,n measure of ill-posedness, as given in (17), depends on the choice of 
sieve space 7-4n. This is why we call it a sieve measure of ill-posedness. 

ASSUMPTION 6: For 1 = 1,..., L, there is a 
{IknI'Io • -4'n 

such that 72 x 

E{E[ho,(Y2) - Ikn(Y2)}'lHl1X,= 0, X2]12 2 

•const 
II ho - Ikn 2 

THEOREM 2: Let d be the identity weighted SMD estimator with the sieve space 
n,, given in (9)-(11). Suppose Assumptions 1, 2(i), (ii), 3, 4, 5(i), (ii), and 6 are 

satisfied. Then 

Ilht - 
horlly2 

= 
Op(kn t +7, 

n x/k/n) 
forall l = 1,..., L. 

1. Mildly ill-posed case: If Tn = O((k,)sL(k,)) for some finite s > 0 and 
L(k,) = 0 or a slowly varying function that goes to oo slower than any poly- 
nomial order, then 

Ilhn, - hotlly2 -= Op(n-r/(2(r+s)+l)L(nl/(2(r+s)+l))) 

provided k, = O(nl/(2(r+s)+l)); 

2. Severely ill-posed case: If 7,, = O(exp(k,)) and rm = oc, then 

Ilhnt - holl,2 = Op([logn]-r) provided k,, = O(logn). 

REMARK 3: (i) For exogenous total expenditure Y2, we have ,, = 1. The- 
orem 2 implies 

IIhn 
- holly2 = 

O,(knr 
+ k/n). If k,, = O(nl/(2r+1)), then 

I 
h,n 

- holly, = 
Op(n-r/(2r+l)), which coincides with the well known optimal rate 

of Stone (1982) for nonparametric LS regression; see also Newey (1997, The- 
orem 1) or Chen and Shen (1998, Theorem 1). Comparing this rate for the 
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exogenous Y2 case to that for the endogenous Y2 case in Theorem 2, we note 
that the bias part kn' 

is of the same order, but the standard deviation part 
blows up from vk/n in the exogenous case to 

7nV, knn 
in the endogenous 

case. 
(ii) Without further assumption on the conditional expectation operator 

E[h(Y2) IX = 0, X2], one generally does not know the speed of divergence of 
the sieve measure of ill-posedness 7,. Nevertheless, Tn can be easily estimated 
from the data by 

E•1in 
{hn( 

Y2i) 12 

7n - sup 
hnE7n: hn0 O 

ni=1{E[hn(Y2)IXi; 
= 0, X2i]}2 

where, for any fixed hn E "In, E[hn(Y2)IX1 = 0, X2] is a nonparametric esti- 
mate of the conditional expectation E[hn(Y2)1X1 = 0, X2] such as a sieve LS 
estimator using the sieve basis BJ2n (X2). In most applications, log(7kn) behaves 
either as s x log(kn) + o(log(k,)) for the mildly ill-posed case (with some fi- 
nite s > 0) or as c x 

kn 
+ o(kn) for the severely ill-posed case (with some finite 

c > 0). For kn = 2, 3, 4,..., we can compute log('k,) and regress it on either 
log(k,) or kn to estimate the speed of divergence of 

7kn. 
In the following discussion, we provide some sufficient conditions to bound 

the sieve measure of ill-posedness Tn,. Let fo,x2,Y2, fo,X2, and fo,y2, respectively, 
denote the joint probability density of (X2, Y2) (with respect to Lebesgue 
measure on X2 x ), and marginal densities of X2 and Y2, all condition- 
ing on X1 = 0. Denote the conditional expectation operator as {Th}(X2) 
E[h(Y2)1X2, X1 = 0], which maps L2( , fo,Y2) into L2(X2, fo,X2). Denote the 
adjoint operator of T as T*, {T*g}(Y2) =- E[g(X2)1Y2, X1 = 0], which maps 
L2(X2, fo,X2) into L2( , fo,Y2). Assumptions 1(iii) and 4(iii) imply that T and 
T* are compact operators. Therefore, T has the singular value decomposition 
{bIk; k~1k, Ok)l=1, where {,UkI,=1 are the singular numbers arranged in nonin- 
creasing order (L>k 

>_/k+1 
\ 0), and {l1k(Y2)}•1 and {[ok(x2)}L1 are eigen- 

function (orthonormal) bases for L2( , fo, y2) and L2(X2, f,X2), respectively. 
See Appendix A for details. 

LEMMA 1: LetAssumptions 1(iii) and 4(iii) hold. Then: 
1. In 

> 
1/Akn,. 2. If the sieve space '-,n spans the linear subspace (in L2 (, f0,y2)) generated by 

{•lk 
: k = 1, ..., k,}, then (i) Tn, 1/1lkn and (ii) Assumption 6 is satisfied. 

REMARK 4: (i) If the joint density 
fo,x2,g2 is bivariate Gaussian with nonzero 

constant correlation coefficient, then Lk ? exp(-ck) for some constant c > 0. 
This corresponds to the so-called severely ill-posed inverse problem. Noting 
that E[Y1 - hoI(Y2)1X2]= 0 if and only if E[Y1 - ho0(Y2)ID(X2)]= 0 and the 
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conditional expectations operator E[.IV(X2)] shares the same singular values 
{1k) }as those of E[.IX2], we could use a Hermite polynomial sieve for hot(Y2) 
and Lemma 1 implies that Tn x 1/, kn exp(ck,). Notice that r,,, = oo in this 
case, hence we could use a cosine sieve for E[Y1 - hl(Y2)|JQ(X2)] to satisfy 
Assumption 4(ii). Now Theorem 2.2 becomes applicable and Ilhn - holl2 = 
O,([log n]-r) provided kn = O(log n). This logarithmic rate is shown to be op- 
timal by Efromovich and Koltchinskii (2001, Corollary 6.3 and Example 3.2) 
(their e, a, and 3 are our n-1/2, r and 1) in the context of an ill-posed inverse 
white-noise model with an unknown operator that can be estimated by a train- 
ing sample. 

(ii) According to Theorem 2, for the sieve nonparametric IV estimator to 
perform well for a given sample size n, we should choose the sieve space '7-n 
to best approximate the structural function ho and at the same time to have 
the best order of sieve measure of ill-posedness Tn. Lemma 1 suggests that 
the sieve nonparametric IV estimator could reach the optimal convergence 
rate when 

n-", 
coincides with the linear subspace generated by the eigenfunc- 

tions { (k : k = 1, ..., kn}. Nevertheless, it does not rule out the existence of 
other sieve spaces that possess the best approximation error rate 

kn' 
and the 

best order of Tn. In fact, for an ill-posed inverse white-noise model with a 
known operator T, Donoho (1995) established the optimal convergence rate 
for a sieve estimator using a wavelet sieve -,n that best approximates the func- 
tion ho, but differs from the linear subspace generated by the eigenfunctions 
{lk : k = 1, ..., k,}. See Cohen, Hoffmann, and Reiss (2004) for similar re- 
sults. In Section 6.2, we present a Monte Carlo study to evaluate the finite 
sample performance of the sieve IV estimator when (X2, Y2) is drawn from a 
bivariate Gaussian density. We find that the sieve IV estimator using cardinal 
B-splines for both ho(Y2) and E[Y1 - ho(Y2)1X2] performs well and is compa- 
rable to the one using the ideal Hermite polynomial (eigenfunction) sieves. 

Even if one knows the conditional expectation operator T, one might still 
not know its corresponding singular value system {/Lk; 1k, OkP0k,=1 explicitly. 
Nevertheless, we can still bound 7, using the smoothness of the operator 
T*T and the property of the sieve space -4,. We provide such examples in 
the next two theorems. Let h denote the Fourier transform of h (i.e., h(s) = 

J f exp{-iyf}h(y) dy), and let (g)V denote the inverse Fourier transform of 

g (i.e., (g)V(y) = 
J• exp{iyS}g(?)de). For any s R, a fractional Sobolev 

space W2s(R) is the space of functions h in L2(A ) such that (1 + I 12)s/2h(-) e 

L2(R); that is, W2s(R) = {h E L2(R): Ih1 w Isk 11((1+ I 12)s/2h(.))VIL2 < (00. 
This definition is equivalent to that of (8) when s > 0. Note that for s > 0, the 
norm Ilhllws,,2 is a shrinkage in the Fourier domain. It is known that W2-s(R) 
is the dual space of Ws(R). See Triebel (1983) for various equivalent defini- 
tions of W2(R) and the corresponding space W2S(y) for Y being an interval 
of •. 
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THEOREM 3: Let Assumptions 1(iii) and 4(iii) hold. Suppose that fo,y2 is 
bounded above and bounded away from zero over its support Y, which is a 
bounded interval of R with nonempty interior. Suppose that there is a finite con- 
stant s > O0 such that 1I(T*T)l/2hll y2 

Ilhlw-sw(y, 
for all h E L2(Y, fo,Y2). Then: 

1* 9 1-k 
- (k)-'. 

2. Let the sieve space 7-n be cosine sieve, spline sieve of order y > s, wavelet 
sieve of order y > s. Then (i) Tn < const - (k,)s, (ii) Assumption 6 is sat- 
isfied, and (iii) if Assumptions 1, 2(i), (ii), 3, 4, and 5(i), (ii) hold with 

k, = O(nl/(2(r+s)+1)), then I hnt 
- ho1lly2 = Op(n-r/(2(r+s)+l) 

We note that the condition II(T*T)l/2hll y2 Ilhllw-s(y) for all h E L2(Y, fo,y2) 
means that the operator (T*T)1/2 maps L2(Y, f,Y2) isomorphically onto 
W2s(y). This condition implies an eigenvalue decay order /k 

- (k)-s, but it 
does not provide expressions of the eigenfunctions of (T*T)1/2. Nevertheless, 
according to part 2 of Theorem 3, several commonly used sieve spaces n-, that 
have the best approximation error rate 

kn' 
also have the best order of sieve 

measure of ill-posedness Tn. The convergence rate of Theorem 3 achieves the 
minimax optimal rate obtained by Chen and Reiss (2007) for the ideal case of a 
nonparametric instrumental regression with a known conditional expectation 
operator T. 

Recently, Hall and Horowitz (2005) and Darolles, Florens, and Renault 
(2006) proposed alternative nonparametric IV estimators and obtained con- 
vergence rates of their estimators. Due to the different estimation procedures 
and different assumptions, it is beyond the scope of this paper to clarify the 
exact relations between their convergence rates and ours as stated in Theo- 
rem 3. Nevertheless, we point out that Hall and Horowitz (2005) established 
rate optimality of their estimator without assuming the existence of any deriv- 
atives of ho; instead, they imposed a condition on ho in terms of the decay 
speed of its Fourier coefficients relative to the eigenfunction basis 

{(lk 
: k > 1} 

of the operator T*T. We assume h, E A(y) for some r > 1/2 (see Assump- 
tion 2(i)), which requires the existence of the [r]th derivative, V[r]ho, where 
[r] is the largest nonnegative integer such that [r] < r. Moreover, as a suffi- 
cient condition to obtain root-n consistent estimation of the equivalence scale 
parameter, 001, in condition 3 of Theorem 1, we assume the existence of the 
first derivative of ho (also see Section 5). Therefore, our estimation of shape- 
invariant Engel curves imposes a derivative smoothness condition on ho that is 
not assumed in Hall and Horowitz (2005). 

Theorem 3 assumes that the support of fo,y2 is a bounded interval of R. The 
following result relaxes this assumption. 

THEOREM 4: Suppose that Assumptions 1, 2(i), (ii), 3, 4, and 5(i), (ii) 
hold. Let wa(y) - (1 + y2)-a for some a > 1/2. Suppose that fo,Y2(y) 
Wa(y) for large lyI. Suppose that there are finite constants c, s> 0 such that 
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II(T*T)l/12hJ y2 > cllh |IIw•s(,wa) 
for all h E L2(R, fo,y2). Let the sieve space RFn, be 

given in (9)-(11) with y > s. Then: 
1. 

n7, 
const - (kn,)s. 

2. If Assumption 6 is satisfied, then II h,n - holl12 
= O,(n-r/(2(r+s)+l)) provided 

k, = O(nrtl/(2(r+s)+l)). 

The relation between the smoothness of T*T and singular values k be- 
comes more complicated when f0,y2 has unbounded support R. See Chen, 
Hansen, and Scheinkman (2005) for some results. 

5. ASYMPTOTIC NORMALITY AND EFFICIENCY OF 6 

For the system of shape-invariant Engel curves with an exogenous total ex- 
penditure model, Blundell, Browning, and Crawford (2003) have established 
,In asymptotic normality of their kernel LS estimator of 0o. However, there 
are no published results on whether 0o could be estimated at a /' rate for 
the endogenous total expenditure case or on how to obtain efficient estimation 
of 0o under heteroskedasticity of unknown form. In this section, for the sys- 
tem of shape-invariant Engel curves with a possibly endogenous total expen- 
diture model, we provide relatively low-level sufficient conditions for 0 to be 
,i asymptotically normally distributed and for the three-step estimator to be 
semiparametrically efficient. The following Propositions 1-3 can be obtained 
by applying the general theory of Ai and Chen (2003). We refer readers to our 
working paper version (Blundell, Chen, and Kristensen (2003)) for the proofs. 

5.1. Asymptotic Normality and Efficiency 

We first impose the following conditions: 

ASSUMPTION 2 -Continued: (iii) Conditions 3-5 of Theorem 1 hold; 
(iv) 0o = 

(0'o, 
'o2,1 *..., ** o2,L)' E int(O). 

ASSUMPTION 5-Continued: (iii) J, > (1 + L-') dim(X1) + k,; (iv) k 2 
In(n)/ 

O, k'rm - o(n-1/4). 

ASSUMPTION 7: Uniformly over X e X: (i) I(X) = V(X) + o,(n-1/4); 
(ii) X(X) is finite positive definite; (iii) Xo,(X) = Var[p(Z, ao) lX] is finite posi- 
tive definite. 

PROPOSITION 1: Suppose Assumptions 1-7 and B1 and B2 (stated in Appen- 
dix B) are satisfied. Let & be the SMD estimator (5) with the sieve space given 
by (9). Then f(0,, - 0o) ==-- .A/N(O, V-'), where V is given in (28) in Appen- 
dix B. 
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Before we state the semiparametric efficiency of the three-step estimator 0 
obtained in (6), we need some additional notation. We define D, (X, ao) and 
Dw2,1(X, ao) as the L x dim(X1) matrix-valued functions given by 

(18) 
Dwl(X, 

ao) = E[Vho(Y2 - 
4(X'Ool))V0(X'801)X' 

+ w1(Y2 - 
(XlOol)) 

I X] 

with 

[Vho0(Y2 - 
1(X'01)) 

Vho(Y2 - 
(X0ol)) 

- " Lx 1 vector, 

VhoL(Y2 - 
4(X'Ool)) 

and for l= 1,..., L, 

(19) 
Dw2,1(X, 

ao) = E[-eiX' + w2'(Y2 - ((XOo1)) I X], 

where el denotes the L x 1 vector with O's everywhere except 1 in the lth 
element, and w'(Y2 - ?(X'o01)) and w2"(Y2 - _ (X8o01)) are L x dim(Xi) 
matrix-valued square-integrable functions of Y2 - 

4(X0o01). 
Let D (X, ao) 

be the kth column of Di(X, ao). Let w0i(Y2 - (X0o01))= (wj(Y2 - 

(X0o1)), ..., 
Wdim(1) 

(Y2 - 4)(X'Oo1))) be given by 

w 
= arg inf 

E[Dwi 

(X, ao)' o(X)-1Dj (X, a)] 

w4kE'-Iho) 
k k 

wk#O0 

for k = 1,...,dim(X1). 

Finally we denote 

(20) Do (X, ao) = (Dwo(X, ao), Dwo2,1(X, ao), . . ., Dwo2,L(X, ao)) 

as the L x (1 + L) dim(X1) matrix-valued function and let wo = (wO2, w?o21, S 
.., Wo2,L) 

PROPOSITION 2: Let &, = (0?, h,) be the three-step estimator (6). Sup- 
pose all conditions of Proposition 1 are satisfied with 

-= Xo. Then O, is 
semiparametrically efficient and fn(On - -o) ==V .A(0, Vo-), 

where Vo = 

E[Dwo(X, ao)'[lo(X)]-'Dwo(X, ao)]. 

5.2. Consistent Covariance Estimator 

To conduct any statistical inference using the semiparametric efficient esti- 
mator 0, we need a consistent estimator Vo of Vo. Let 

Dw, 
(X, ") be a consistent 
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estimator of Dw, (X, a,). For example, we can use the sieve LS estimator 

DO (X, a) 

= pJ" (X)'(P'P) 
n 

J dp(Zi, 'a) dp(Zi, ) 

xi=L 
(Xi) dOj dh L[w(Y2,i (Xi(O)) 

where, for j= 1, 

dp(Zi, a) dp(Zi, a) 

dO1 dh 
[wl(Y2/ 

- (X 

Si1) 

)] 

= Vh(Y2, - 
k(XSi10))V (Xi1 )Xi + 

wl(Y2,i -(Xl)) 

with 

Vh (Y2g - 4(X, 01)) 

Vh(Yzi - (Xli1)) Lx 1 vector, 

VhL (Y2i (Xi )) 

and, for 1= 1, ..., L, 

dp(Zi, a) dp(Zi, ) 
(y2i 

dO2,1 dh [ 

= 
-e1Xli 

+ w2,1"(Y1- (Xi)) 

Let Dk (X, ') denote the kth column of 
Di,(X, 

7) and let i = (= , ..., 

Wdim(Xi)) denote the solution to 

1 n 
inf - 

Du 
(X, )(Xi) (Xi,) 

UkE n : U k 0 i=1 
k 

for k=1,...,dim(X1). 

Then Di(X, 'a) = (D~1 (X, "), DE21(X, "), ..., D,2L (X, )) is a consistent es- 
timator of Do(X, a) given in (20). Finally, let 

Vo-= 
1 

in (XSi, )' x 

PROPOSITION 3: Under the conditions of Proposition 2, Vo = Vo + o,(1). 
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6. IMPLEMENTATION AND SIMULATIONS 

6.1. Implementation 
The SMD estimation of the system of shape-invariant Engel curves can be 

easily implemented using a matrix-oriented software package such as Gauss or 
Matlab. Here we only discuss the implementation for the endogenous case; the 
exogenous case follows along the same lines. 

Since the lth unknown Engel curve 
hz(.) 

only enters the lth conditional mo- 
ment function m,(x, 6, ht) =- E{Y1I - hi(Y2 - P(X'01)) - 

Xl02,11X 
= x} lin- 

early, Step 1 of the SMD procedure can be easily implemented using the profile 
approach: 

STEP 1A: For each fixed 06 O, compute 
n 

h1,n(O; 

") 

arg min 
[~i(Xi, 

, 
ht)]2 

for l=1,...,L. 
hlET.(n 

i=1 

STEP 1B: Compute o,, - argmin0Es 
E9=a 

ZLinAt(Xi, 8, h1,n(; .))12 and es- 
timate ho(.) by h,,, = h1,(O,,; -) for l = 1,..., L. 

Recall that any candidate Engel curve function hi,,,() = qkn" (.)'Hl E 7-,, 1 = 
1, ..., L, is subject to two constraints: (i) 0 < h1,n < 1 and (ii) supy IV['rhi,,,(y)l < 
c for F7-, in (9) or Il Vfrhlh,nlL2 C for 7- in in (10). In simulations and empirical 
applications, we have imposed one weaker but easier to compute constraint: 

n i= Ih,,,(Y2i)12 + fIV[r]ht,n(YI2dy D,, where D,, could grow slowly 
with sample size n (say D, = log n or log logn). Let Co = 1 

i=f 
Ifkn (Y2 - 

(XliO1))f 
kn(Y2, - 4(X6i01))' and C,[r = f {v[r]qkn (y)V[r]qkn(y)} dy (for 

spline basis, C[r] can also be the self-adjoint difference Gram matrix; see, e.g., 
Schumaker (1993)). Let C = Co + C[rj be k, x k, matrices. Then the constraint 
becomes (H')'CH' < D, for a known bound D,. If we use the sieve LS estima- 
tor iti for mi, then the Step 1A procedure becomes: for = 1, ..., L, compute 
h,,,(6; ) = qkn(.) HD(0), where H' (0) solves 

(21) min(Y11(02,I) - 'F(O1)H)'P(P'P)-P'(Y11(02,1) - W(01) 

+ A {(HI)'CHi' - D,,} 

with Y1l(02,) = (Y111- XK102,1,... Yinl - X,,2,1)', (081) - (kn(Y21 

(XlO61)),..., 
qkn(Y2n - 4(X,,81)))' and A > 0 being the Lagrange multi- 

plier. The problem (21) has a simple closed-form solution: 

Hi(6) = (f(61 )'P(P'P)-P'W(01) + C)- I( 
1)'P(P'P)-P'Y( 

2,1), 

where A satisfies {HD (()}'C{Hb()} = D,,. 
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In practice, the bound Dn might be unknown. In our simulation studies 
and empirical applications we actually solved the following equivalent prob- 
lem to (21) for a few possible values of A E [0, 1]: 

(22) min(Y,1(02,1) - '(0, 
1)1)'P(P'P)-P'(Y1l(02,I) 

- 8'(01)1') 
II1 

+ AHi"'CH. 

The solution is 17(0) = 
(1I(01)'P(P'P)-P'I(01) 

+ AC)-I(01)'P(P'P)-P' x 
Y11(02,1). We note that when A = 0 (i.e., without smoothness constraints), this 
solution is simply the well known IV/2SLS estimator. 

Let H'f(0) denote either the solution Ab(0) to problem (21) or the solution 

H1•(0) 
to problem (22). Then hl,,(0; .) = qkn(.)yH1(0) is the profile SMD es- 

timator in Step 1A. Next, we plug (h1,(80; .),..., hL,n(O; ))' into the Step 1B 
problem: 

L 

(23) min (Yl1(02,1) - T(0)811'(0))'P(P'P)-P'(Yll(02,1) - (081)171(0)). 
l=1 

The solution Oto problem (23) will be a /-/n-consistent estimator for 
00, 

and the 

corresponding SMD estimator for 
hot 

is 
ht0,(0; .) 

= ,kn (.I), 1 = 1, ..., L. 
To solve problem (23), one needs to run a numerical routine since 0 enters 
nonlinearly, but it is relatively easily performed compared to optimizing over 
both H and 0 simultaneously. 

In Step 2, we use the above sieve profile estimator (H, 0) to compute a con- 
sistent estimator .o(X) for po(X). In Step 3, we could use the above sieve pro- 
file estimator (H, 0) as a starting point to solve the optimally weighted SMD 
problem (6) simultaneously over (H, 0). Actually this optimization can again 
be solved easily using the profile approach. 

In the actual implementation of the above procedures, one has to specify 
sieve bases (pJ1(X), kn (Y2)), and smoothing parameters (J,, k,). The the- 
oretical results obtained in Sections 4 and 5 provide some guidelines about 
such choices for the case of known bound D,. In particular, one should choose 
Jn > k, to ensure identification and to satisfy Assumption 5, but then the choice 
of J, will be mainly related to the invertibility of the matrix P'P, and the quality 
of the "instruments" pJn(X) for the "endogenous regressors" I#kn (Y2). In the 
simulations and empirical applications we find that Jn = cokn, co x 2 or 3, works 
fine. We also consider the case of unknown bound Dn; hence, we have to select 
A in addition to (J,,, kn). There is a certain interdependence between k, and A; 
a high number k,, could potentially lead to overfitting (i.e., the estimated Engel 
curve h becomes wiggly and the variance gets big), but this can be controlled 
for with a slightly bigger penalization weight A. For a given choice of k,, one 
may try out different values of A s [0, 1] and choose the one that appears most 
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plausible. An alternative method would be to use a data-driven procedure such 
as the generalized cross-validation (GCV) to choose A E [0, 1]; see, for exam- 
ple, Eubank (1988) for a discussion of this procedure in a standard nonpara- 
metric LS regression setting. However, there is no theoretical justification for 
such a procedure in the endogenous case. In fact, even for the sieve nonpara- 
metric LS regressions, how to optimally choose k, and A simultaneously is still 
an open question. Finally, for the semiparametric efficient estimation of 0, one 
can choose slightly bigger J,, k, (or smaller A) than those used for the purely 
nonparametric IV estimation of h. 

6.2. Two Monte Carlo Studies 

Before applying the SMD estimators of the shape-invariant Engel curves to 
the British FES data set, we assess the performance of the purely nonparamet- 
ric IV estimator in two small simulation studies. We are particularly concerned 
with the quality of our chosen instrument X2 (gross earnings) for the endoge- 
nous variable Y2 (total expenditure), as well as the impact of the choices of 
sieve basis functions and various smoothing parameters. The simulation results 
suggest that our chosen instrument X2 is reasonable in the sense that our sieve 
IV estimator performs well for the FES data set under consideration. More- 
over, our sieve IV estimator is found to be relatively insensitive to the choice 
of sieve basis functions, while many different combinations of smoothing para- 
meters Jn = 2J2n, kn, and A will lead to similar estimated functions that are all 
consistent estimates of the true unknown function. 

6.2.1. Simulation 1: (Y2, X2) is drawn from the data 

The first Monte Carlo design will mimic the specific FES data set; see the 
empirical section for a detailed description of the data. All we need to know 
here is that the data set consists of two subsamples of households: families with 
no children and families with 1-2 children such that X1 e {0, 1} and J, = 2J2n. 
In this simulation study, we only use the data from the group of households 
with no children (i.e., X1 = 0), which has sample size n = 628. For each house- 
hold in this group, we observe an endogenous regressor Y2 (log total expen- 
diture) and an instrument X2 (normal transformation of log gross earnings, 
which takes values in [0, 1]). We may then estimate the joint density of (Y2, X2) 
using kernel methods and denote the resulting nonparametric estimator as 

f (y2, x2), from which the data will be drawn in our simulation study. The model 
we simulate is given by 

(24) Y = ho(Y2) + e, e = E[ho(Y2)X2] - ho(Y2) + v, 

where v ~ .N(0, 0.01) and is independent of (Y2, X2) ~ f(y2, x2). We draw an 
i.i.d. sample from (v, Y2, X2) with sample size n = 628 and use these to calcu- 
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late Y1 via (24) for two choices of 
ho 

(one is linear and the other is nonlinear): 

(i) ho(y2) = -0.1095y2 + 0.7229, 

(ii) ho(y2) = (((y2 - 5.5)/0.3), 

where 4f denotes the standard normal cumulative distribution function, 
and where the mean (5.5) and variance (0.32) have been chosen such that 

ho(y2) ~ 0 for Y2 = mini{Y2i) and ho(y2) 1 for y2 = maxi{Y2i). Model (i) 
closely mimics the estimate obtained for food-in expenditure in the empiri- 
cal application. 

The sieve nonparametric IV estimation of ho(y2) is very simple. First, we 
approximate ho(Y2) by h,(Y2) = qfkn(Y2)'IH and m(X2) = E[Y1 - h(Y2)1X2] 
by m,(X2) = BJ2n(X2)'A. We then obtain an estimator of H by solving 

min[Yl 
- 

4H]'B(B'B)-1B'[Yl 
- 1//H] + A(H)'C(H), 

H 

where Y1 = (Y11, ..., Yin)', = = (kn(Y21), 
? ? ? 

qkn(Y2n)), B = (BJ2n(X21), . 
BJ2n (X20))', and the smoothness penalization matrix C = Co + C2 with Co, C2 
defined in Section 6.1. This problem has the solution HA = (T'B(B'B)-1B' + 
AC)- 

'B(B'B)-'B'Yl, 
such that h(y2) = 1qkn(y2)I AH. For each choice of ho, we simulate 100 data sets {(Y2i, X2i, Y)i)n628 and, 

for each simulated data set, we estimate ho using the sieve nonparametric IV 
estimator. We tried various basis functions B'2n (X2) and 4fkn (Y2) for the con- 
ditional mean m and h, respectively, all yielding similar results as long as the 
sieve approximating terms J2n and kn and the penalization weight A were sim- 
ilar. We here report the results for a few combinations: h is approximated by 
either a third order polynomial spline with kn = 4, 5, 6, 7, 8, 9 or a third or- 
der B-spline with kn = 9, 14; m is approximated by either a cosine basis with 

Jz2n 3kn, 27, or a fourth order B-spline with J2n = 15, 25. To check for the ro- 
bustness of the sieve IV estimators toward the choice of smoothness penaliza- 
tion, we also present the results for different penalization weights A = 0.8, 0.4, 
0.1, 0.01, 0.001, 0.0. Table I reports integrated squared bias, integrated vari- 
ance, and integrated mean squared error (MSE) based on the 100 simulations 
for the sieve IV estimators of nonlinear h,6 where h was estimated using either 

6Let hj be the estimate of 
ho 

from the jth simulated data set and let h(y) = E 
j= 

h1(y)/100. 

The pointwise squared bias is [h(y) - ho(y)12 and the pointwise variance is 100-1 j [i(y) - 
h(y)]2. All the tables report the integrated squared bias as fyY[h(y) - ho(y)12 dy, where y and y 
are, respectively, the 2.5th and 97.5th empirical percentiles of Y2 from the no-kids subsample 
data { Y2i =628. The reported integrated variance and MSE are computed in a similar way. Other 

ways to report Monte Carlo integrated squared bias are to use 628- 
i=l 

[h(Y2i) - ho(Y2i)]2 
or, similarly, to report the integrated variance and MSE as sample average across the no-kids 
subsample data. We have tried both. Although they give different numbers (the ones computed 
using numerical integration against y e [y, y] are generally bigger), the qualitative patterns are 
the same. 
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TABLE I 

MONTE CARLO STUDY 1: MSE OF SIEVE IV ESTIMATOR OF NONLINEAR h 

mn = B-Spline, J2n = 15 mn = B-Spline, J2n = 25 

hn kn 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00 

P-spline 4 2.24 2.31 1.20 1.78 1.75 2.20 2.01 1.52 1.32 1.29 
0.33 0.64 1.02 1.38 1.46 0.30 0.56 0.86 1.06 1.10 

MSE 2.56 2.95 3.00 3.16 3.21 2.50 2.57 2.38 2.38 2.39 

P-spline 6 1.84 1.72 1.43 1.66 2.86 1.76 1.31 0.95 0.98 1.04 
0.40 0.85 1.59 3.11 7.52 0.36 0.73 1.27 2.18 3.04 

MSE 2.23 2.57 3.01 4.77 10.38 2.12 2.04 2.22 3.16 4.08 

B-spline 9 0.47 1.10 1.51 1.47 0.70 0.50 0.78 0.89 0.93 0.86 
0.61 1.88 5.58 11.83 39.19 0.58 1.59 3.16 4.18 5.39 

MSE 1.09 2.98 7.09 13.30 39.89 1.08 2.37 4.05 5.11 6.25 

B-spline 14 1.75 1.62 1.50 2.13 6.45 0.54 0.85 1.02 1.16 2.14 
0.40 0.90 2.29 6.79 265.54 0.63 1.73 3.85 5.99 27.16 

MSE 2.15 2.52 3.79 8.92 271.99 1.17 2.58 4.87 7.15 29.30 

Note: The three elements in each cell are, from top to bottom, integrated squared bias (x 10-2), integrated variance 

(x 10-2), and integrated mean square error (MSE) (x 10-2). 

polynomial splines or B-splines with different smoothing parameters k0, J2n, 
and A. In all the cases, the sieve IV estimator behaves well for A > 0.01; the 
integrated bias of the sieve IV estimators is relatively small and not very sen- 
sitive toward the choice of the penalization weight A. However, the variance 
increases as A decreases, and A = 0.8 yields the best performance in terms of 
the integrated MSE for large k, > 8. We obtained similar results for sieve IV 
estimators of the linear h. The sieve IV estimates for the nonlinear and the lin- 
ear h are plotted in Figures 1 and 2 with a k, = 9-dimensional B-spline for h, 
J2n = 25-dimensional B-spline for m, and A = 0.8 and 0.0. Corresponding ta- 
bles and plots for other choices of k,, J2n and other base functions for h and 
m were very similar. The full set of results can be obtained from the authors 
upon request. 

From these results it is also apparent that imposing smoothness constraints 
(i.e., A > 0) improves the quality of the sieve IV estimators, both in terms of the 
variance and the smoothness of the estimated functions. However, the overall 
shape of the estimated functions and their relative positions to the true h are 
not strongly affected by the choice of A, which again indicates that for a given 
value k, of sieve terms in approximating h, the penalization weight A does not 
have a great influence on the bias of the sieve IV estimator. 

In the empirical section below, we note that for the group of families with 
no children, the Stock-Yogo (2005) test for weak instruments in the paramet- 
ric linear 2SLS regression problem suggests the presence of weak instruments 
under the specification A = 0.0, J2n = 15 or 25, and kn > 4. For the sample 
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IV-estimator, ; = 0.8 LS-estimator, k = 0.8 
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FIGURE 1.-Monte Carlo study 1: LS and IV estimator of nonlinear h, k, = 9. 

with children and for the pooled sample, this turns out not to be the case. So 
again our focus here on the sample without children is relevant. However, a 
consequence of weak instruments is that if one wrongly treats the sieve IV esti- 
mation as a parametric 2SLS regression, then each estimated sieve coefficient 
will be heavily biased toward its LS estimate. Hence, the corresponding sieve 
IV curve should be biased toward the inconsistent sieve LS estimator of h. Fig- 
ures 1 and 2 show no indication of any bias toward LS. This is also confirmed 
by Table I, where with A = 0.0, the bias of sieve IV generally decreases as J2n 

increases from 15 to 25. Finally Table II reports the integrated squared bias, 
integrated variance, and integrated MSE of the sieve IV and the inconsistent 
sieve LS estimators with k, = 6, 9. This shows that the sieve LS estimator is 
not sensitive toward the choice of A, consistently having a small variance but a 
large bias compared to the sieve IV estimator leading to its MSE being greater 
than that of the IV estimator. 

The results of the first Monte Carlo study can be summarized as follows: 
1. The choices of basis functions for h (third order polyspline vs. third order 

B-spline) and m (cos-sin vs. fourth order B-spline) are not very impor- 
tant. 
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IV-estimator, X = 0.8 LS-estimator, X = 0.8 
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FIGURE 2.-Monte Carlo study 1: LS and IV estimator of linear h, k, = 9. 

2. For any fixed A e [0, 1], the choice J2n = cok, with co z 2, 3 works well for 
sieve IV estimator. 

TABLE II 

MONTE CARLO STUDY 1: MSE OF SIEVE ESTIMATORS OF NONLINEAR h 

IV Estimator, J2n = 25 LS Estimator 

hn kn 0.80 0.10 0.01 0.001 0.00 0.80 0.10 0.01 0.001 0.00 

B-spline 9 0.50 0.78 0.90 0.94 0.86 18.77 18.42 18.48 18.39 18.37 
0.58 1.59 3.16 4.18 5.39 0.09 0.11 0.11 0.12 0.12 

MSE 1.08 2.37 4.06 5.12 6.25 18.86 18.54 18.50 18.51 18.49 

P-spline 6 1.76 1.31 0.95 0.98 1.04 19.50 18.82 18.53 18.49 18.48 
0.36 0.73 1.27 2.19 3.04 0.06 0.07 0.09 0.09 0.09 

MSE 2.12 2.04 2.22 3.17 4.08 19.56 18.89 18.62 18.58 18.57 

Note: The three elements in each cell are, from top to bottom, integrated squared bias (x 10-2), integrated variance 

(x 10-2), and integrated mean square error (MSE) (x 10-2). 
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3. For any fixed A e [0, 1], increasing k, will slightly reduce squared bias, but 
increase variance of the sieve IV estimator. In particular, for fixed small 
A E [0.0, 0.001], k, has to be small (4 or 5) to get a small variance (hence 
a small MSE) of the sieve IV estimator. 

4. For any fixed 
kn, 

increasing A toward 1 reduces variance, hence making 
the MSE of a sieve IV small. In particular, a large k, (7, 8, 9, 14) can 
be balanced by a high A e [0.01, 0.8] that still keeps the variance and the 
MSE of a sieve IV estimator small. 

5. There are many combinations of smoothing parameters J2n, 
kn, 

and A that 
can reduce the variance part and lead to a small MSE of the consistent 
sieve IV estimator. 

6. There is no combination of smoothing parameters k, and A that can re- 
duce the bias part of the inconsistent sieve LS estimator; hence, the in- 
consistent sieve LS estimator has a big MSE. 

7. For any fixed A e [0.1, 1] and fixed k,, increasing J2n = cok, with a bigger 
co > 2 still leads to small MSE of the sieve IV estimator, and the sieve IV 
estimator is not biased toward the inconsistent LS estimator. 

We note that findings 1-3 are consistent with our theoretical results in Sec- 
tions 4 and 5. In the empirical application with sample size n = 1655, the set of 
smoothing parameters k, = 4, 5, 6, J2n ; 3k,, and A E [0.0, 0.001] will satisfy 
Assumption 5 (with r = 2 say) for VIn normality and efficiency of 0 estimates. 
Findings 4 and 5 should be related to the smoothing spline literature, although 
there is no theoretical justification yet. Finding 6 is not too surprising given the 
Monte Carlo design, since the sieve LS estimator of the linear and the non- 
linear h is inconsistent. Finding 7 seems to be in contradiction to the results 
in the parametric weak IV literature. It could be interesting to study the rela- 
tion between the sieve IV estimation and parametric weak IV regression in the 
future. 

We want to make sure the simulated data sets do mimic the real FES data set 
subsample with no children such that the insights we learnt about the smooth- 
ing parameters kn, J2n, and A from the Monte Carlo can be applied to the em- 
pirical estimation in the next section. From the discussion of the sieve mea- 
sure of ill-posedness, we know one important ingredient for nonparametric IV 
regression is the decay behavior of the singular values {Itk) associated with 
the conditional expectations operator T(h)(-) = E[h(Y2)1X2 = .]. Therefore, 
we estimated the singular values {[Akd associated with T. We restricted h to 
h(Y2) = qkn(Y2)'H and imposed smoothness constraints on it via the afore- 
mentioned penalization matrix C and Lagrange multiplier A, while the opera- 
tor T was approximated using BJ2n (X2). Then for each simulated data set, we 
estimated 1= A 2 

>2/ > 
_... 

A > by the solutions to the eigenvalue problem 

I,2(F -' + AC) - ~"B(BB')-IB-I = 0, 

where 11 and B were defined earlier, kn (Y2) is a third order B-spline basis 
with 

kn 
= 14, and BJ2n (X2) is a fourth order B-spline basis with J2n = 25. We 
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repeated this 100 times. We found that the eigenvalue estimates using simu- 
lated data match well with the ones estimated using the real FES data of the 
no-kids subsample. See Blundell, Chen, and Kristensen (2003) for these esti- 
mates. 

Another important point in relation to the weak IV issue is that the singular 
values for the pooled FES data decay less rapidly than those for the no-kids 
subsample. Consequently, we expect our estimator to be better behaved in the 
pooled sample. 

6.2.2. Simulation 2: (Y2, X2) is drawn from a bivariate Gaussian density 

From Remark 4 in Section 4, we know that the theoretical convergence rate 
of the sieve IV estimator will be very slow (logarithmic) if the joint density of 
log total expenditure and log earnings were, in fact, bivariate Gaussian. We 
now investigate the finite sample performance of the sieve IV estimator in this 
severely ill-posed inverse setting. We maintain the Monte Carlo design from 
above, only now we draw (Y2, X2) from a bivariate Gaussian density instead 
of from the kernel density estimate. The mean and covariance matrix of the 
Gaussian density are chosen to be the empirical counterparts of the no-kids 
subsample. We consider four different cases for both linear and nonlinear h: 

1(a) Use X2 as an instrument, and use B-splines for both h(Y2) and 
m(X2) = E[Y1 - h(Y2)IX2]. 

1(b) Use X2 as an instrument, and use Hermite polynomials for both h(Y2) 
and m(X2). 

2(a) Use X2 = (X2) as an instrument, and use B-splines for both h(Y2) 
and m(X2) = E[Y1 - h(Y2)IX2]. 

2(b) Use X2 = F(X2) as an instrument, use Hermite polynomials for h(Y2), 
and use a cosine basis for m(X2). 

For each case, we have tried different combinations of smoothing parame- 
ters: kn = 6, 9, J2n = 23, and A = 0.8, 0.4, 0.1, 0.01, 0.001, 0.0. See Tables 
III and IV and Figure 3 for some of the results with nonlinear h. 

Our findings for both linear and nonlinear h are as follows: 
1. Regardless of the choices of instrument (X2 or X2) and the smoothing 

parameters (A, ks), the sieve IV estimates of h using cardinal B-spline 
bases for both h and m perform very well. 

2. For A = 0.0, the sieve IV estimates of h under cases 1(a), 2(a), and 2(b) 
all perform well. However, the sieve IV estimate using the ideal Hermite 
polynomial sieves for both h and m performs poorly due to big variance. 

3. There is a slight advantage to using X2 = F(X2) e [0, 1] as an instrument, 
especially so if one uses a Hermite polynomial sieve for h. 

4. For A e [0.001, 0.4], the sieve IV estimates of h under all four cases per- 
form well, that is, the choices of sieve bases are not very important as long 
as A e [0.001, 0.4]. 
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TABLE III 
MONTE CARLO STUDY 2: MSE (x 10-2) OF SIEVE IV ESTIMATORS OF NONLINEAR h, 

BIVARIATE NORMAL DESIGN 

hn = B-spline, mn = B-spline hn = Herm., mn = Cosine or Herm. 

kn = 6, J2n = 23 0.40 0.10 0.01 0.001 0.00 0.40 0.10 0.01 0.001 0.00 

Uniform X2 mn = Cosine 
Bias2 0.73 0.43 0.39 0.51 0.53 1.62 0.77 0.77 0.77 0.69 
Variance 0.18 0.32 0.47 4.71 7.06 0.27 0.73 1.02 1.48 2.35 
MSE 0.91 0.75 0.86 5.22 7.59 1.89 1.50 1.79 2.25 3.04 

Normal X2 mn = Hermite 
Bias2 0.83 0.47 0.37 0.15 0.15 2.30 0.83 0.84 0.95 0.67 
Variance 0.20 0.33 0.46 2.69 3.73 0.51 1.81 2.26 5.04 21.23 
MSE 1.03 0.80 0.83 2.84 3.88 2.81 2.64 3.10 5.99 21.90 

5. For all four cases with fixed k, = 6, 9 and J2n = 23, as A increases from 
0.0 to 0.8, the variances of sieve IV estimates reduce fast, but the squared 
biases of sieve IV estimates increase a little bit. 

6. There are many combinations of sieve bases and smoothing parameters 
12n, k,, and A that can reduce the variance part and lead to a small in- 
tegrated MSE of the consistent sieve IV estimator. However, there is no 
combination of sieve bases and smoothing parameters kn and A that can 
reduce the large bias of the inconsistent sieve LS estimator. 

We already demonstrated that the sieve IV estimation is very easy to im- 
plement. The Monte Carlo results now indicate that the sieve IV estimators 
perform well even in the severely ill-posed inverse setting. 

TABLE IV 
MONTE CARLO STUDY 2: MSE (x 10-2) OF SIEVE ESTIMATORS OF NONLINEAR h, 

BIVARIATE NORMAL DESIGN 

kn = 9 IV Estimator, J2n = 23 LS Estimator 

Normal X2 0.40 0.10 0.01 0.001 0.00 0.40 0.10 0.01 0.001 0.00 

h, = Bspl, m, = Bspl 
Bias2 0.69 0.43 0.23 0.17 0.17 19.40 19.24 19.11 19.12 19.12 
Variance 0.34 0.52 1.24 6.23 6.57 0.07 0.08 0.09 0.11 0.11 
MSE 1.03 0.95 1.47 6.40 6.74 19.47 19.32 19.20 19.23 19.23 

hn = Herm., mn = Herm. 
Bias2 1.48 0.52 0.56 1.63 1.76 16.69 18.34 18.67 18.90 19.17 
Variance 0.41 1.76 2.66 5.50 23.62 0.06 0.05 0.06 0.06 0.08 
MSE 1.89 2.28 3.22 7.13 25.38 16.75 18.39 18.73 18.96 19.25 
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FIGURE 3.-Monte Carlo study 2: IV estimator of nonlinear h, instrument X2/c(X2), k, = 6, 
A =0.0. 

7. AN EMPIRICAL INVESTIGATION 

In this section we apply the results developed in the previous sections to the 
problem of estimating a system of shape-invariant Engel curves. In this appli- 
cation total expenditure is allowed to be endogenous and gross earnings of the 
head of household is used as an instrument. We begin our analysis with a data 
description and examination of the quality of the gross earnings as an instru- 
ment. We then present semi-nonparametric estimates of Engel curves under 
the two alternative assumptions: (i) Y2 is exogenous and (ii) Y2 is endogenous. 
We assess the importance of allowing for endogeneity both on the nonparamet- 
ric shape of the Engel curve and on the parametric components that represent 
the demographic parameters. 

7.1. The Engel Curve Data 

In our application we consider L = 7 broad categories of nondurables and 
services: food-out, food-in, alcohol, fuel, leisure goods and services, fares (in- 
cluding expenses on public transports), and travel (excluding expenses on pub- 
lic transports). The data set is drawn from the British FES. We have applied the 
SMD estimator on data from the survey for three different years and the quali- 
tative conclusions are the same. For the purposes of this discussion, we select a 
single year: 1995. To preserve a degree of demographic homogeneity, we select 
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TABLE V 

DATA DESCRIPTIVES 

Couples w/o Children Couples w/Children 

Mean Std. Mean Std. 

Budget shares: 
Food-in 0.1776 0.0950 0.2256 0.0938 
Food-out 0.0829 0.0591 0.0790 0.0555 
Alcohol 0.0712 0.0791 0.0496 0.0543 
Fares 0.0216 0.0499 0.0137 0.0399 
Fuel 0.0612 0.0385 0.0675 0.0364 
Leisure goods 0.1357 0.1456 0.1261 0.1268 
Travel 0.1488 0.0985 0.1324 0.0857 

Expenditure and income: 
log nondurable expenditure 5.3744 0.4864 5.4503 0.4229 
log gross earnings 5.7712 0.5389 5.9112 0.5309 

Sample size 628 1,027 

from the FES a subset of married or cohabiting couples with and without chil- 
dren. We select those where the head of household is aged between 20 and 55 
and in work. We exclude all those households with three or more children. So 
our demographic variable, X1, is simply a binary dummy variable that reflects 
whether the couple have 1-2 children (X1 = 1) or no children (X1 = 0), and we 
may write 4 (X'i01) as Xi,01. The log of total expenditure on nondurables and 
services is our measure of the continuous endogenous explanatory variable Y2. 
The earnings variable is the amount that the head of the household earned in 
the chosen year before taxes. This leaves us with 1,655 observations, including 
1,027 couples with one or two children. 

Table V presents descriptive statistics for the main variables used in the em- 
pirical analysis. It shows the smaller share of food-out, alcohol, fares, leisure 
goods, and travel expenditure for households with children, while on the other 
hand it has the comparably larger expenditure share of food-in and fuel. This 
indicates strong differences in the spending patterns between the two demo- 
graphic groups, and we should expect the parameter 0 in our semiparametric 
model to reflect these. 

Figures 4 and 5 present plots of the kernel estimates for the joint density 
of log total expenditure and log earnings; see Hirdle and Linton (1994) for a 
review of the kernel method. On each graph there is also a series estimate of 

E[Y211og earnings]. The two variables show a strong positive correlation: for 
the sample with children, the correlation is 0.5095; for those without children 
it is 0.5111. We see that the joint density is also smooth and, together with the 
conditional mean, confirms our belief that the gross earnings variable should 
be a good choice for our instrumental variable. Since the kernel estimate of 
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the density of log earnings is close to normal, we have taken the instrumental 
variable X2 = F(log earnings) in the empirical applications. 

7.2. Quality of the Instrument 

Our sieve IV estimator is similar to the parametric linear IV regression once 
the basis functions pJn(X) and qkn (Y2), and the smoothing parameters J,, kn, 
and A are chosen. As a consequence, we consider the regression 

(25) 1kn"-l(y2) 
= ApJn(X) + e, E[elX] = 0, 

where qkn-1(y2) is a vector of endogenous regressors of dimension k, - 1 
(excluding the constant regressor from the original sieve basis qkn (y2)) and 
pJn (X) is a vector of instrumental variables with dimension J,. Here we choose 

ftkn (Y2) = B3k(Y2) as a third order B-spline basis with k, = 9 (and A = 0.4), 
and let pJ"(X)' = [B2"n(X2)', XIB2n (X2)'], where 

B42n 
(X2) is a fourth order 

B-spline basis for functions of X2 with the number of sieve terms J2n = 15; 
hence, the length of the vector pJn(X) is actually Jn, = 2J2n = 30 for the full 
sample including both types of households. We then perform two tests for the 
quality of instruments. 

In the first we test the hypothesis Ho: rank(A) = r* by applying the result 
in Robin and Smith (2000). As reported in Blundell, Chen, and Kristensen 
(2003), we easily reject Ho for r* = 0, ..., 8. Note that the Robin-Smith (2000) 
test is based on the assumptions that the model (25) is correctly specified with 
both k, and J,, being fixed and finite known numbers, and that A is estimated 
root-n consistently with asymptotically normal distribution. However, our ba- 
sic setup of unknown h(.) implies that the model (25) with finite fixed k, and 
J, is misspecified, and that A could only be estimated at a slower than root-n 
rate. Nevertheless, this test could be seen as a parametric approximation of the 
test for E[ho(Y2)IX] = 0. Second, we perform the Stock and Yogo (2005) test 
of the null hypothesis Ho: BJ2n (X2) are weak instruments for q11kn- (Y2). This is 
done with /,kn-1(yz) = (Y2, Y2, y3). The test statistic is 4.5647 for households 
without children and 10.9535 for those with children. With number of instru- 
ments J2, = 15, the 5% critical values are given by 10.33 and 4.37 (for a 10% 
and 30% maximal bias relative to ordinary least squares (OLS) respectively). 
When pooling the two household groups with number of instruments becoming 
2J2, = 30, the test statistic equals 14.0615, while the 5% critical value is 10.77 
(for a 10% maximal bias relative to OLS). Note that the Stock and Yogo (2005) 
test is conservative, and is based on the parametric 2SLS estimator under the 
assumption that the model (25) is correctly specified with k, being fixed and 
finite known numbers. See Blundell, Chen, and Kristensen (2003) for further 
discussion. 

Together these results suggest that we may wish to be cautious in our inter- 
pretation of the nonparametric IV results for the subsample of families without 
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children. However, the results should be reliable for the pooled sample that is 
used for the SMD estimator of the shape-invariant Engel curve model devel- 
oped in this paper. This assumption is given further consideration when we 
report the estimated curves below. 

7.3. Estimation Results 

The estimation of the system was performed as follows: First we obtained 
a profile estimator of a = (0, H) using the closed form sieve IV solution of 
H(0). We then used this estimator as a starting point for the numerical opti- 
mization procedure employed to obtain simultaneous estimates of 0 and H. 
In most cases however, the simultaneous estimates are practically identical to 
the initial profile ones. Note also that we do not restrict h to 0 < hi < 1 and 
0 o ~ ~L hi < 1 in the estimation procedure. As we shall see, imposing this 
restriction would have no effect on our estimates anyway, since the resulting 
unrestricted estimates all satisfy these constraints for Y2 in the domain of our 
sample of Y2. To obtain efficient estimates of 0, we run the three-step proce- 
dure described in Section 3. In the second step, the conditional covariance ma- 
trix, X•(X), is estimated using either the sieve method or the kernel method. 
The results reported here are based on kernel estimates, but 0 proves to be 
fairly robust to the choice of estimator for X$o(X). To improve the estimates, 
we run an iterative procedure, repeating Step 2 and 3 until 0 converges to- 
ward a stable level. In this application, we require that 110(+') -_ 0')i11 < 0.005, 
where 0(i) denotes the estimate obtained in the ith iteration; this convergence 
criterion is satisfied after 7-10 iterations. 

Figures 6-9 present the range of estimated curves for four of the goods in our 
system. The plots offer a comparison of the fully nonparametric estimates vs. 
the semiparametric ones and the endogenous case vs. the exogenous one. For 
these plots, we use a third order B-spline sieve for h with number of sieve terms 
kn = 9, and a fourth order B-spline of dimension J2n = 15 for m. We penalize 
both the level and the second order derivative of h (i.e., C = Co + C2), with pe- 
nalization weight A = 0.4. All plots are with identity weighting X(Xi) = IL. As 
noted earlier, the nonparametric IV estimates using the subsample of house- 
holds without children should be interpreted with care. However, the plots of 
the estimated curves seem to be consistent with the Monte Carlo findings and 
appear reasonably well behaved, even for the subsample without children. Our 
main focus is on the lower right hand side plot in each panel that represents 
the sieve IV estimates under the shape-invariant restriction. 

Together with the estimated Engel curves, we also report their 95% point- 
wise confidence bands. The bands are obtained using the nonparametric boot- 
strap based on 1,000 resamples. In each resample, n = 1,655 observations are 
drawn from the original data set with replacement and then h is reestimated. 
We perform this with 6 = 0 fixed at its efficient estimated value, since 0 is 
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FIGURE 6.-Engel curve for food-in: - - -, w/children; -, w/o children; ++, 95% confidence 
bands. 

Vh consistent while h has a slower than n/i convergence rate; hence, this has 
no effect asymptotically. For simplicity, we use the same J2n and k, in the es- 
timation of h using the bootstrap sample. However, to control for the asymp- 
totic bias in h - ho, we slightly decreased A in the bootstrap sample, so in effect 
we were overfitting (or undersmoothing in kernel literature)7; see, for exam- 
ple, Hall (1992, Section 4.5) for theoretical justification of this undersmooth- 
ing procedure for kernel least squares regression. In the exogenous case, by 
Theorem 2 in Newey (1997), h(y2) has a pointwise asymptotically normal dis- 
tribution; hence, in this case the bootstrap yields consistent estimates of the 
true confidence bands; see, for example, Theorem 1.2.1 in Politis, Romano, 
and Wolf (1999). In the endogenous case, we have no theoretical justification 
for the bootstrap since we have not derived a pointwise asymptotic distribution 
of h(y2), but we conjecture such a result exists. From Theorem 2 on the con- 
vergence rate of the nonparametric IV regression, we know that compared to 
the exogenous case, the endogenous estimates have similar asymptotic bias but 
a bigger variance. The reported confidence bands in the endogenous case are 

7Alternatively we could fix the A value, but slightly increase the number of sieve terms k, in the 
estimation of h using the bootstrap sample. We have tried this as well and the results are similar. 
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FIGURE 7.-Engel curve for food-out: - - -, w/children; -, w/o children; ++, 95% confidence 
bands. 

wider compared to those for the exogenous case, which is consistent with the 
theory.' 

Several interesting features are present in the plots. As may be expected, 
the estimated shares of food-out for households with children are everywhere 
below those for households without children. As family size increases, for any 
given total outlay, the share going to food-out falls; at the same time, the share 
going to food-in increases. So there is a shift in expenditure shares from one 
set of nondurables to another when families have children. The curvature also 
changes significantly as we allow for endogeneity. So neglecting potential en- 
dogeneity in the estimation can lead to incorrect estimates of the Engel curve 
shape. The Engel curve for food-in, for example, shows a much more pro- 
nounced reverse S shape under endogeneity and a more dramatic shift to the 
right in the curve resulting from the presence of children. 

8Newey (1997) also supplied us with a consistent estimator of the asymptotic variance of h(y2) 
in the exogenous case, which can be used to construct alternative confidence bands. Since the 
endogenous case with identity weighting is simply a penalized 2SLS regression, we can easily 
compute an estimate of the asymptotic variance of h(y2) in the endogenous case, still assuming 
that it is asymptotically normal. This gives confidence bands very similar to the ones obtained by 
the bootstrap, both in the exogenous and endogenous cases. 
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FIGURE 8.-Engel curve for fuel: - - -, w/children; -, w/o children; ++, 95% confidence bands. 

To check the robustness of our Engel curve estimates with respect to the 
choices of sieve basis functions and the smoothing parameters, we carry out 
extensive sensitivity analysis. We approximate h by several different sieve bases 
such as wavelet cardinal B-splines, polynomial splines, and Hermite polynomi- 
als. For the endogenous case, we also approximate the conditional mean m by 
cosine series and wavelet cardinal B-splines. To examine the robustness of the 
sieve estimator of the conditional mean, we also employ a kernel regression 
method to estimate m; this gives very similar results that are available from 
the authors on request. The shapes of the estimated Engel curves based on 
different bases all look similar as long as the number of effective sieve terms 
in approximating h is k, = 5-9 and the number of sieve terms in approximat- 
ing m is J2n = 15-27. Generally the smoothness parameter A should increase 
slightly as k, grows. We try out different values of A for each value of k, in the 
range 5-9; the shapes of the estimated Engel curves are fairly robust toward 
the choice of A.9 In Figure 10 we report four semiparametric IV estimates of 
Engel curves for the leisure goods that correspond to four different values of 

9In general, a smaller penalization is needed in the semiparametric estimation compared to the 
fully nonparametric one. This owes to the fact that in the semiparametric specification the same 
h function is used for both household groups, while in the nonparametric estimation a different h 
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FIGURE 9.-Engel curve for leisure goods: - - -, w/children, -, w/o children; ++, 95% confi- 
dence bands. 

the smoothing parameter A = 0.1, 0.3, 0.5, and 0.7. As noted above, the value 
of A used in Figure 9 is 0.4. There appears to be some overall robustness in the 
Engel curve shape to the choice of A, although for low values of A the curve 
appears too variable, which is not too surprising since k, = 9 here. Analyses 
display a similar pattern for the other goods and are available from the au- 
thors on request. 

The semiparametric efficient estimates of 0 are given in Table VI. These 
estimates have been obtained using the same functional bases and the same 
J2n = 15 and k, = 9 as used to obtain the Engel curve h estimates, except 
with a smaller A. The estimates of 0 are plausibly signed in both the en- 
dogenous and the exogenous cases. The differences can be assessed more for- 
mally. Let OLS and 06v denote the semiparametric efficient estimate of 0 un- 
der Ho: Y2 exogenous and HI: Y2 endogenous, respectively. Furthermore, let 

VLs and VIv denote the estimates of their respective variances. We then have 
asy. 2 

that n(OLS - Ov)(VLS 
- 

Vv)-(OLs 
- 

IV) XL+ 
under the null. This Hausman 

is used for each group. This allows us to pool the two groups of households in the semiparametric 
estimation, while in the nonparametric setting we treat the two groups separately. 
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FIGURE 10.-Engel curve for leisure goods: IV estimate sensitivity to A, k, = 9. 

test for the exogeneity of Y2 produces a statistic of 880.06 with critical value 

X2(95) 
= 15.5, and we reject the null hypothesis. That is, the data support the 

hypothesis that Y2 is endogenous. The results show a strong impact on 01 of al- 
lowing for endogeneity. This parameter measures the general log equivalence 
scale for the presence of children with a couple normalized to unity. The LS 

TABLE VI 

EFFICIENT ESTIMATES OF 0 IN THE EXOGENOUS AND ENDOGENOUS CASES 

Semiparametric IV Semiparametric LS 

Coefficient Std. (x10-3) Coefficient Std. (x10-3) 

01 0.3698 57.4712 0.1058 34.3810 
02-food-in 0.0213 6.5406 0.0461 4.8861 
02-food-out 0.0006 3.6744 -0.0046 2.4182 
02-alcohol -0.0216 4.5047 -0.0239 2.5322 

02-fares -0.0023 2.5089 -0.0092 1.4027 
02-fuel -0.0035 2.7611 0.0054 1.9069 
02-leisure goods 0.0388 10.9148 -0.0016 6.2392 
02-travel -0.0384 5.9912 -0.0226 3.9748 
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TABLE VII 

ESTIMATES OF 0: SENSITIVITY ANALYSIS 

Semiparametric IV--0 Estimates 

kn, J2n Food-in Food-out Alcohol Fares Fuel Leisure Goods Travel 01 

B-spl 9, B-spl 15 0.0207 0.0003 -0.0210 -0.0019 -0.0038 0.0422 -0.0393 0.3834 
B-spl 9, B-spl 25 0.0171 -0.0005 -0.0233 -0.0005 -0.0027 0.0489 -0.0419 0.4113 
B-spl 8, Cos 20 0.0204 -0.0005 -0.0248 -0.0009 -0.0029 0.0458 -0.0387 0.3989 
P-spl 8, B-spl 15 0.0209 -0.0019 -0.0222 -0.0004 -0.0029 0.0429 -0.0359 0.3981 
P-spl 5, B-spl 25 0.0191 -0.0002 -0.0285 -0.0011 -0.0038 0.0496 -0.0399 0.4088 

estimate is implausibly low, whereas the IV estimate is very plausible and rep- 
resents an equivalence scale of about 0.45, normalized to unity for a couple 
without children. This is also seen in the more dramatic shift in the plotted 
curves between the two groups as commented on above. One can also give 
interpretations to the estimates of 02; for example, the negative value of 02 
for alcohol shows the decline in the overall alcohol budget share, given total 
equalized expenditure, that occurs for larger households. 

To check the robustness of our 0 estimates with respect to the choices of 
sieve basis functions q, kn and pJn, we also approximate h with a second and a 
third order polynomial spline of dimension kn = 5-14, and to approximate m 
with Fourier series and fourth order B-splines with J2, = 15-27. The estimates 
0 are very similar to those reported in Table VI, and are also stable as k, in- 
creases in both the exogenous and the endogenous cases.10 To conserve space, 
here we only report a small sensitivity check in terms of 0 estimates under 
the endogeneity. Although the 0 estimates reported in Table VII are obtained 
using smaller penalization A than those reported in Table VI, the estimated 
values are virtually the same. 

Finally, we briefly mention the results of a number of further comparisons 
that we have carried out. The first implements the control function approach 
of Newey, Powell, and Vella (1999). As one might expect, this gives estimates 
that are between our sieve IV estimates (for the endogenous case) and the 
sieve LS estimates (for the exogenous case). Second, we compare our semi- 
nonparametric model with a parametric quadratic model of the QUAIDS 
class proposed by Banks, Blundell, and Lewbel (1997). A test on 0 rejects the 
QUAIDS model in favor of the semi-nonparametric model. Third, we imple- 
ment the SMD procedure using three different years of FES data sets, and try 
both gross earnings and disposable income as the instrument. The empirical 
findings are again surprisingly robust to the choice of sieve bases and smooth- 

10Inspection of the associated plots for the Engel curves h show that the overall shapes and 
turning points are maintained for these alternative sieve basis approximations. These findings are 
consistent with our Monte Carlo results. 
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ing parameters in the sense of being qualitatively similar, and are available 
from the authors on request. 

8. CONCLUSIONS 

In this paper we study the sieve semi-/nonparametric IV estimation of a 
shape-invariant Engel curve system with endogenous total expenditure. We 
provide identification and establish the nonparametric convergence rate and 
semiparametric efficiency properties of our estimators under relatively low- 
level sufficient conditions. We also present Monte Carlo simulation results that 
shed some lights on the choice of smoothing parameters and the performance 
of the sieve nonparametric IV estimator. 

In our application to consumer behavior in the U.K. FES we show the impor- 
tance of allowing for endogeneity and document the relatively simple steps in- 
volved in implementing the sieve semi-nonparametric IV method. The shape- 
invariant Engel curve system, which pools across demographic groups, enables 
us to estimate the parametric equivalence scales and the demographic impacts 
accurately and efficiently. We find the estimated curves and demographic para- 
meters to be plausible, and we document a significant impact of accounting for 
the endogeneity of total expenditure. Adjusting for endogeneity increases the 
common demographic shift parameter and produces a much more plausible 
estimate of the income equivalence scale. 

We also contrast our sieve IV estimator with the sieve LS estimator that 
assumes exogenous total expenditure. It appears that the nonlinear behav- 
ior in the share Engel curve is systematically different under the exogeneity 
assumption. Our application illustrates the importance of utilizing the semi- 
nonparametric restrictions, and suggests that it would be worthwhile to further 
investigate the imposition of restrictions derived from economic theory in iden- 
tification and estimation of econometric models; see, for example, Matzkin 
(1994). 
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APPENDIX A: PROOFS 

PROOF OF THEOREM 1: Without loss of generality and given condition 4, 
we can assume that Xli is a scalar dummy random variable (i.e., Xli e {0, 1}). 
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First conditioning on Xli = 0, we have 

E[Ylil-hl(Y2i- (0))X =li0=,X2i]=0 for l=1,...,L. 

Since 4) is known, conditions 1 and 2 imply 

hi= ho almost surely, for l= 1,..., L. 

Now hot(.) is identified. This and conditions 3 and 4, together with condi- 
tional moment restriction (4), identify 0,1 and 0o2,1 Since for all = 1,..., L, 

E[Yli' 

- 
hol(Y2i 

- O(Xlil)) - 
XiU02,l I 

Xli 

= 1, X2i] 
= 0, 

this and (4) imply 

(26) E[hol(Y2i - 4),(ol)) 
- 

hol(Y2i- (01)) (0o2,1l- 02,1) 1 Xli 
= 1, X2i] 

= 0. 

Since there is an l* with hotl*(.) nonlinear and differentiable, we have 

E[Vhol*(Y2i - (-ol1)) 
I Xi = 1, X2i] 

x 
(4)(01) 

- 
4)(ol0)) 

+ (6o2,1* - 02,1*) = 0, 

where 0o1 is some value between 060 and 01. Again conditions 1 and 2, and 

Vhotl*(Y2i - (8ol)) , const (in particular, 
- 

0) imply that E[Vhot,(Y2i - 
( ol)) I Xii = 1, X2i] = const (in particular, 

- 
0); hence, 

P(01) - 4) (Oo) = 0 and 6o2,1* - 02,1* = 0. 

By condition 5 we have 01 - 600 = 0. This and (26) imply 0o2,l - 82,1 = 0 for 
l= 1,..., L. Q.E.D. 

PROOF OF THEOREM 2: It suffices to establish the result for the purely non- 
parametric IV regression model E[hot(Y2 - (P(0))1X1 = 0, X2] = E[Y1I1X1 = 
0, X2] for an arbitrarily fixed 1 = 1, ..., L. To simplify notation further, we as- 
sume 4)(0) = 0, suppress the conditioning variable X1 = 0, and drop the sub- 

script 1. We denote h = arg minhn 
n /=1 

i=(X2i, h)2, where 

7-n= h(Y2) = kn(y2) = 
7TkjkqJl(Y2): 

k=0 je1Cn 

0 <h 
<1, ||Vrh I 

c , 
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and with pJn(O, X2) = BJ2n (X2), B = (BJ2n (X21), ... , BJ2n(X2n))', and Jn, = 2J2n, 

n 

m(X2i, h) = 
{Ylt, - h(Y2t)}B'2n (X2t)'(B'B)-B'J2n (X2i) 

t=1 

n 

= {~Y 
-{y 

{kn(Y2t) }'H}BJ2n (X2t)'(B'B)-lBJ2n (X2i) 
t=1 

= r IX, - [kn (2) IX2]2i'7 

= E[Y, X2i] - E[h(Y2)IX2i]. 

In the following discussion we denote 
En,x2{f} =1 f(Xzi, (g, f)n,X2 = 

En,X2{g f}, lfIn,X2 = (f, f)n,X2, and If 11x2 = E{T(X2)}2. Also let go(X2) 
E[Y1|X2]. Then 

Tho 
= go by Theorem 1. Let (X2) = |E[YIX2] and 

(Th)(X2)- E[h(Y2)1X2]. Then h = 

argminhen 
n11Th- 

II2,X2, 
which is the 

solution to 

find h e'7, such that (Th, Th)n,X2 = 
(g, Th)n,X2 

for all h E 3,. 

We first state three claims. 

CLAIM 1: (i) UnderAssumption 2(i), (ii), and the sieve space -4n, given by (9)- 
(11), we have that there is a finite c > 0 such that for any h e N, there is a 
I{qkn(Y2)}'1 E "4n 

satisfying 1h(-) - {q()kn}H-)111 
<_ 

ckr. 
(ii) Under Assumption 4, we have that there is a finite c' > 0 such that for any 

g Arm(X2), there is a BJ2n (X2)'A such that IIg(-) - BJ2n(.)'AII x2 
- 

c 
J2nm? 

CLAIM 2: Under Assumptions 1, 2(i), (ii), 3, 4, and 5(i), (ii), we have 

(i) l|go 
- 

'llx2 
= 

Op(J2rm+ Jn); 
(ii) suphEn ||II{- T}hllx2 = 

Op(J-rm 
+ 

2n/n) 
(iii) 

SUPhE.nJ 

Ili((, h) - m(-, h)llx2 = 
O,(J2rm + 

J2n/n). 

CLAIM 3: UnderAssumptions 1, 2(i), (ii), 3, 4, and 5(i), (ii), we have that there 
exist constants cl, c2 > 0 such that 

n,X2 
i c21•(", h)|| 2 

uniformly over h e 7-4,, except on an event whose probability tends to zero as 
n -+ 00. 
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We now apply Claims 1, 2, and 3 to continue the proof of Theorem 2. Denote 

Ilhllv2 - E[h(Y2)]2. By the triangular inequality and Assumption 2, there is a 
{ Iqkn, f'o 

e 7 
n such that 

1Ih- hol11y2 11ho - 
{I•lkn'HIolly2 

+ IYih- 
{qkn'0o 

IoY2' 
Next by the definition of Tn and the triangular inequality, 

11 - _I .kn ) o11 Y2 1 
n X 

I 
kn o X2 hih- {< 

Tn 
X 11z T(jh- { 

1kn'o lx2 
< 7n, 

X {ITh -*'llx2 + I - go lx2 + IITho - 
T{qJ kn}I0 

oIgX2} 
TnX { IIT - T}hx + II - lx2 + II- go x2 

+ 11 T{ho - {_,kno1Xll,2}. 
By Assumptions 1(iii) and 3, we have 

Tho 
= go E Arm (X2). Also by the def- 

inition of 
,"n 

and Assumption 3, we have Th e Arm(X2) for all h e 
n,. 

Under 
Claim 3 and by the definition of h, we have 

II Th - llx211 + op(1)} 
= 11Th - glln,X2 

< II T{kn " '}H0 
-- 

g'lln,X2 

= II (qkn•I'o0 
- llx21 + Op(1)}. 

Now by the definitions of i and m, and the triangular inequality, it holds that 

II 
T kn t -o 11X2 

= MIi(, { qkn } IO)1 X2 

< I~iM(., {qkn 
•'Jo) - m(., (q~,kn I'o) 

+ I m(., {(Jkn}' o) - m(, ho) 11X2 
= I|i(., {qjkn }'Ho) - m(., ?qknIl o)1 X2 + |T{ho - ,]knHofIX2. 

These and Claim 2 imply 

IIh- 
{Ifkn}'Ho lY2 

_ 

n X {Op(J2-m + J2n/n) 

Hence 

+ 7,n x 
Op(J-rm 

+ J2n IITho - 
•okln 

IoX). 
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This, Assumptions 2(i), (ii), 5(i), (ii), and 6, and Claim 1(i) imply 

IIh- hollY const x k'+ T, x 
Op( kn/n). 

We now finish the proof of Theorem 2 by establishing the three claims. 

PROOF OF CLAIM 1: (i) Under Assumption 2(i), (ii) and given the sieve 
space '-,, we have for any h e N, there exists { qkn }'H e 7-, such that for any 
fixed a > r > 0 and for c > 0, 

sup I [h(y) - {qkn(y)I]( + y2)-"/2 ck '; y 

see, for example, Chen, Hansen, and Scheinkman (1997). Then 

S[h(y) 
- { 

Wkn(y) ,]2f,(y) dy 

= f[h(y) - 

{_qkn(y) ]2(1 + 
y2-a[(1 +Y2)afo,(Y)]dy 

[_ 
sup [h(y) - {12kn2(y))](1 +y2)a/2 2(1 + y)f0, 2(Y) dy; 

hence 

IIh 
- 

{Iqkn)"}'lf|11Y2 

f[h(y) - {qkn 
,(y)}'IH]2 f, (y)dy 

< Csupl[h(y) - {Ikk"n(y)'-](1 + y2)-a/2 < C'k'r. 
y 

(ii) See Timan (1963) for Fourier series and see Schumaker (1993) for spline 
sieves. Q.E.D. 

PROOF OF CLAIM 2: (i) By Assumptions 1, 2(i), (ii), and 3, go = Tho E 
Arm(X2). This together with Assumptions 4 and 5(ii) imply that all the con- 
ditions of Theorem 1 in Newey (1997, p. 150) are satisfied with his d = 0, his 
K = our J2n, his 

o0(K) 
= our /J2n, and his K-" = our jj2rm, hence we obtain 

result (i). 
(ii) By the definition of 7n, and Assumption 3, we have Th e A'rm(X2) for all 

h E 7-H,. Moreover, since 0 < h < 1 for all h e 7-,, we have that Var{h(Y2)lX1 = 
0, X2) < 1 for all h E 7-,n. Note that Th is simply the sieve LS regression of 
h(Y2) on BJ2n (X2). We now go through the proof of Theorem 1 in Newey 
(1997, pp. 161-163), and see that Newey's result (with his d =0) actually holds 
uniformly over he 7-4,; hence we obtain result (i). 

(iii) Part (iii) directly follows from (i) and (ii). Q.E.D. 
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PROOF OF CLAIM 3: By the definition of n,, and Assumptions 1(iii), 
2(i), (ii), and 3, we have m(., h) e Arm(X2) for all he 

•n,. 
Moreover, since 

0 < Y1 < 1 and 0 < h < 1 for all h e -H,, we have that Var{Y1 - h(Y2)IX1 = 
0, X2) < 1 for all h e 74,. Note that Mi(., h) is simply the sieve LS regression 
of Y1 - h(Y2) on BJ2n (X2), hence ii(., h) belongs to the closed linear span 
of BJ2n (X2) with probability approaching 1. Now we go through the proof of 
Lemma 4 in Huang (1998) with his A, = our 

/Jz 
and his N, = our J2n. Under 

our Assumptions 1-4 and 5(ii), we notice that Huang's result actually holds 
uniformly over h e z,, hence we obtain Claim 3. Q.E.D. 

Q.E.D. 

For any h, h' E L2(R, fo,Y2), define the inner product (h, h')y2 -= f h(y) x 

h'(y)fo,2 dy and the norm IlhllY2= (h, h)y2. Similarly we define the inner 
product (., -)x2 and the norm II- IIX2 on L2(7, f0,x2). Let fo,Y21X2 denote the 
conditional density of Y2 given {X2, X1 = 0}. Assumptions 1(iii) and 4(iii) 
imply that the densities fo,y2, fo,X2, fo,X2,Y2, and fo,Y21X2 are all continuous. 
Let L,(R) and L,(X2) be the spaces of bounded measurable functions of 
Y2 and X2, respectively. Under the identification condition, the conditional 
expectation operator, {Th}(X2) = f h(y)foy21x2(ylX2) dy, is a bounded lin- 
ear operator from L,,(R) into L,(X2) and is invertible on its range (i.e., 
N(T) = {h: Th = 01 = {0}). It is obvious that T is also a bounded operator 
from L2(T, fo,Y2) into L2(X2, fo,X2), with its kernel function defined as 

t(x2,yY2) = 
f0,X2, 2 2, y2) 

fo,x2 (X2)fo,Y2 (Y2) 

fo,Y2X2(Y21x2 for any (x2, Y2) E X2 X R. 
fo,2 (y2) 

Denote the kernel function of the self-adjoint operator TT*: L2(X2, f,X2) X 

L2 (X2, fo,x2) as 

t2(w, x2) t( y)t(x2,Y)fo,2 (Y) dy for any (w, x2) '2 
X 

'2. 

Assumptions 1(iii) and 4(iii) imply that t2(w, x2) is continuous on A2 X A2, 
where X2 is a compact interval. Hence TT* is a compact operator (see, e.g., 
Theorem 3.1.5 in Zimmer (1990)). This implies that T, T*, and T*T are all 
compact. It is well known that the compact operators T*T and TT* share the 
same eigenvalue sequence {I ,}k•1 with 

A2-=- 
1 

>_2 

> > .. . \, 0, and for all 
k>l, 

T*T lk 
/)4lk, 

TT*1k Ok= k/2 Ok, 

T4lk = tk 4Ok, T*4Ok = 
1ItkZk 

? 
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The corresponding eigenfunctions, 
{•lk1kl1 

(of T*T) and {k0k}=1 (of TT*), 
are orthonormal bases for L2((R, fo,Y2) and L2(X2, fo,X2), respectively. The 

nonnegative value of 
X4k 

is called the kth singular number of T (and of T*), 
which is also denoted as Ak to simplify notation, and {i-k; 

•lk, 4Ok}k"=1 is called 
the singular value system of T. By the identification condition, we have 4k > 0 
for all k > 1. Therefore, the inverse operator T-1 is not bounded. 

PROOF OF LEMMA 1: As already mentioned, Assumptions 1(iii) and 4(iii) 
imply that the operators T, T*, TT*, and T* T are all compact with the singular 
value system {[/k; •lk, 0kOk}"=1. For any h E L2(•, fo,Y2), g E L2(X2, f0x2), we 
have 

00 

(Th)(x2)= :I.k(h, 71k)Y2O0k(X2), 
k=1 

00 

(T*g)(y2) = -L k(g, Ok)X21k(Y2), 
k=1 

fo,x2,2 (x2, Y2) 00 

fox2 (x2)fo,y2 
(Y2) 1=A1k 

0k(X2) 
0 

1k(Y2) 

1. Let clsp{7-( - {uknk(y)'H E L2( f,Y fo,2): E kn} be the closed linear 
subspace (in L2(R, fo, Y2)) that is generated by the sieve basis functions k(kn() 
for n7-,. It is easy to see that 

(27) 7= h(Y2)up ]2 
hEclsp{-n) : h# E[{Th}(X2)]2 infheclsp{ln): Ilhlly2=1 II ThII2X2 

Let Pkn-1 = CISp{lk = = 1, ..., k, -1) and let (Pkn-l)- be its orthogonal com- 
plement in L2(R, f0,y2). Since dim(clsp{N,}) = kn, there is a h e clsp{7-,n} n 
(Pkn_-1) 

with Ilhlly2 = 1 such that 

=_ 
inf II 

Th1122 

<I Th112 < 
sup IITh |112 

(Tn)2 
hEclsp{-n)}: 

IlhllY2=l1 
22 

hE(Pkn_-l): Ihlly2=1 

sup (T*Th, h)y2 = 
(Ak,,)2. hE(Pkn-l1) 

: 
jIlhlly2=1 

Hence 7, 1/kn. 
2. Under the stated assumptions, for any h, e clsp{7-(,}, we have the alterna- 

tive representation h,(y2) = 
{kn(y2)'k/-/f 

H 
n= (h, 4lk)Y2Plk(y2). 



ESTIMATION OF ENGEL CURVES 1663 

(i) For any h E clsp{(fI,} with h : 0, 

kn 

T{hl(X2) = E{h(Y2)|X2} 
- 

E j(h, 4j)yv2 o0j(X2), 
j=1 

kn kn 

__2} 
2 ( j 212 } 

2 
IIThII22 = yLp {(h, 41(i)y22 > kn E{(h', klj)Y2 

2 
kn lhll 2y2 

j=1 j=1 

Hence 

Ilhll2 1 
7,n 

sup < 

hEclsp{7-n}I: h0O II Thllx2 - k 

(ii) Notice that 
00 

ho(y2) 
-Iokn(y2) 

= 
(ho, lk)Y24)lk(Y2). 

k=kn+l 

Hence, 

T{ho 
- 

{Iqkn")'Io}(X2) 

E[ho(Y2) - { qkn2(Y2)'IIolX2 = x2] 

= (ho(y2) - 
ltkn(y2)}'1o) 

f,X(2,2 (2, 
o2 

, 
Y2) (Y2)dy2 fo,x2 (X2)f, Y2 (Y2) 

00 

= (ho, k1k)Y2 XkI4Ok(X2) 
k=kn+l 

and 

jT{{lfkn}oI0 
- ho}lI2 X2 

k=kn+k 

00 

k=kn+l 

2 

/4•2n 
L. 

{(ho, Plk)Y212 -- 2k Iho 
- 

{qfkn}Holl2 

Therefore, 

IT({{"kn}'Ho - ho} I- 
k• 

h 
Ixh - 

({qkn"'oYlr2? 
This and result 2(i) imply Assumption 6. Q.E.D. 
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PROOF OF THEOREM 3: 
1. By Theorem 11.5.10 of Edmunds and Evans (1987, p. 91), Pk, the kth 

eigenvalue of (T*T)1/2 equals the kth approximation number of (T*T)1/2. Re- 
call that (T*T)1/2 maps L2(Y, f0,Y2) isomorphically onto W2s(y), and fo,y2 is 
bounded above and bounded away from zero over its support Y, which is 
a bounded interval of R. We have that the kth approximation number of 
(T*T)1/2 equals the kth approximation number of the compact embedding op- 
erator mapping from W2s(y) into L2(Y), which is k-s by Theorem 3.3.4 of 
Edmunds and Triebel (1996, p. 119, eq. (2)). 

2. (i) Recall that the sieve measure of ill-posedness is 

||hI|y2 |_j h | 
7, sup = sup 

hEclsp{"n} 

: hO T IThlX2 hEclsp{7-l n): hO II(T* )1/2h 

Since fo,Y2 is bounded above and bounded away from zero over its support Y, 
which is a bounded interval of R, by duality, we have for any h clsp{7-n}, 

Ilhly2 = sup I(h, f)y21 
f eclsp{7-(n}: lfllY2 i 1 

_< 
sup {|lhllw-s(y 

X 
lfllwI(y)}. fEclsp{-n }) : IfIIY2< 

Since II(T*T)1/2hlly2 Ilhllw;1s(y), we have 

IlhlljY 
T7 sup < sup I|f | w1y) 

hEclsp{7ln):h#0 
|[h[iwf 

-s(y) fEClsp{hn) : 
IlflY2i_<l 

sup 
1 

sup 
f clsp{-n I IlfllY2 fEclsp('Nn Ifll L2(y) 

When the support y is a bounded interval of IZ, the inverse inequalities (or 
Bernstein inequalities) hold when the sieve space clsp{H-i,} is wavelets with 
y > s, or B-splines with y > s, or cosine bases. That is, there is a constant 
c > 0 such that Ilf llws(y), c(kn)SlIlfllL2(y) for all f E clsp{-,n}; 

see, for example, 
Meyer (1992) for wavelet sieves and Schumaker (1993) for spline and cosine 
sieves. Therefore, we obtain 

7, x sup < sup <f c(kn). 

hEclsp{-n):h 

0 I|lhllWi W (y) feclspl7, IlfllL2(y) 

(ii) Notice that 

(kn)-'m 
i IIT{ho - H',kn x2 II(T*T)/2{ho - 

H'ok"nll2 
|lho - H 

orkn"IIw2s(y). 
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By duality, we have 

Ilho - 
1o 

k" II0w;s(y) 

sup I(ho - II', k", f)L2(Y) I 
f: Ilf l yW2 )_Y)_ 

sup I(ho - IHJkn, f - Psf)L2(y)I 
f: 1lfl WS(y)<1 

_ 
11ho - 

H1'oJkn 
IIL2(y) X Sup If - P nfllL2(y), 

f: 
llW2(y) _l 

where Pl, denotes the L2(Y) orthogonal projection onto the sieve space n-,. 
When the support Y is a bounded interval of R and when the sieve space 'H, is 
wavelets with y > s, B-splines with y > s, or cosine bases, we have the approxi- 
mation error jIf - 

P~,fILL2(y) 
< c x (k,)-s for all f e 

W2s(y) 
with 

Ilfllwys(y) 
< 1, 

where the constant c does not depend on f; see, for example, Meyer (1992) 
for wavelet sieves and Schumaker (1993) for spline and cosine sieves. Since 
fo, y2(y) is continuous, and is bounded above and below over its support Y that 
is a bounded interval of R, we have II ho - lH'l, l Lz2(,) h - iho- I2; hence 

IIT{ho - Ikn Ix2 Ilho - H'knlws(y) 

< c(kf)-s x 11ho - 
HIIknly2. 

This and result 2(i) imply 

7, x II T{ho - H'kn"l2 < c x lho - H', q kn 

Result 2(iii) immediately follows from results 2(i), 2(ii) and Theorem 2.1. 
Q.E.D. 

PROOF OF THEOREM 4: 
1. Since II(T*T)l/2hlly2 > Cllhllw s(R,w), we have 

IlhllY2 
Ilhllrh 

7,'n= sup = sup hJ|y2 

hEclsp{H-n):hf0 
11 Thllx2 heclsp{7-n):h:O 

II(T *T )12/hl i2 

< sup 
hEclsp{H7-n}:hf0 cll h 

Iw;S(R,,Wa) 

Since fo,Y2(y) is continuous on R and fo,Y2(y) Wa(y) for large lyl, by the 
duality theorem we have, for any h e clsp{lI,)}, 

hIIh2 = sup 1(h, f)y21 
feclsp{7-(n}: Ifll Y2 <1 
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< const sup {Ihllws(OR,wa) 
X 

Ilfllw](7,w•a)b* f eclsp{7-n1: Ifll 1Y2 1 

Thus 

Tn 
< sup h 1hilhy < const sup Ilfllw2S(z,wa) 

hEclsp{7-n}: hO cllhII w2s(R,wa) feclsp{7-In}: Iflly2 1Y 

Ilfllw(I,wa, 
IIf/II WM =CI sup W2 =CS sup 

fEclsp-I{ 
In I IlfllY2 fEclspI{-n}f I v/ff,Y211L2 

, 
IIf•/ aII Ws < C sup 

fEclsp({ln IIfV / aIIL2 

Since the sieve space 7-,n is given in (9)-(11) with y > s > 0, we can apply the 
inverse inequality for wavelets and B-spline wavelet spaces (see, e.g., Theo- 
rem 2.3 in Meyer (1992)) and obtain 

Tn 
<c sup IIf 

Nalw2 < const. (k,)s. 
feclsp{hn,} IIffVrWaIIL2 

2. Part 2 immediately follows from result 1 and Theorem 2.1. Q.E.D. 

APPENDIX B: ADDITIONAL ASSUMPTIONS FOR SECTION 5 

Define Dw(X, ao) = (D,O(X, ao), Dw2,1(X, ao), . . . , D2,L(X, ao)), where 

Dj(X, ao) is given in (18) and (19); this is a L x (1 + L)dim(X1) matrix- 
valued function. Recall that wl(.) and w2',(.), I = 1, ..., L, are L x dim(X1) 
matrix-valued squared-integrable functions of Y2 - 4(X'001). Let w* = 

(w*l, w*2 , 
w*2,LZ), where w*j(Y2 - 0(X'Ool)) 

= 
(wI (Y - (X'Ool)), , 

wdim(X)(Y2 - (X Ool))) is given by 

wj 
= arg inf 

E[Dwj 

(X, 
a0o)'(X)-l'D 

(X, a)] 
W~E-kho 

ko 
wj#O 

for k=1,..., 
dim(Xa). 

The asymptotic variance expression for V in Proposition 1 is 

(28) V 
=_[E{Dw,(X, ao)'1(X)-'D,* (X, ao)) 

x (E {D,.(X, co)'n (X)-lo o(X)e (X)-'D,.(X, P o o)1)-3 

x E{D,.(X, ao)'I(X)-'D,.(X, ao)}]. 

Below are the additional conditions imposed for Propositions 1-3: 
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ASSUMPTION BI: E[D,* (X, ao)'X(X)- D) , (X, ao) ] is positive definite. 

We note that Assumption B1 is actually a consequence of a more primitive 
assumption N1 stated in the old version of this paper; see Lemma 1 in Blundell, 
Chen, and Kristensen (2003). 

ASSUMPTION B2: For all 01 within a o(n-1/4) shrinking neighborhood of 00o 
and for x, = 0, 1: (i) E[w*(Y2 - 4(X'O1))IXl = x1, X2 = ] belongs to Arm (X2) 
for 1 = 1, ..., L; (ii) Vqlkn(Y2 - 4(XI01)) is continuous in 01; (iii) E[hn(Y2 - 

(X' 01))IXi = x,, X2 = ] belongs to A"rm(X2) for any h, e -I,. 

The proofs of Propositions 1-3 are direct applications of the theory in Ai 
and Chen (2003), and can be found in Blundell, Chen, and Kristensen (2003); 
hence we omit them. 
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