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Economic models of agent’s optimization
problems or of interactions among agents of­
ten exhibit simultaneity. It is well known that
any function in which an explanatory variable is
partly determined by the dependent variable of
the function, cannot be identified without addi­
tional information. Typically this additional in­
formation is provided by observable exogenous
variables or functional structures. Here we fo­
cus on nonlinear simultaneous equations models
with non­additive disturbances. Nonlinear non­
additive specifications are a fundamental feature
of economic models with unobserved hetero­
geneity, including multidimensional models of
consumer and producer choice, models of Nash
equilibrium in industrial organization and many
models of labour market behavior.

In linear models with additive disturbances
there are many alternative approaches to ad­
dressing endogeneity in estimation. Two­stage
least squares, instrumental variable and con­
trol function approaches are three such com­
monly adopted approaches. In simple speci­
fications of the linear simultaneous model all
three approaches generate consistent, often ana­
lytically identical, estimators (Hausman (1987),
for example). However, linear models with ad­
ditive disturbances are highly restrictive repre­
sentations of simultaneity in economic behav­
ior. The marginal effect of endogenous vari­
ables is constant across all its values and ho­
mogenous across all individuals. Nonlinear non­
additive models are more attractive but the con­
ditions for the application of standard simultane­
ous equations estimators are quite different and
somewhat more involved.

The instrumental variable approach in the
nonlinear case typically proceeds by using an
observable instrument for a single structural
equation, independent of the structural errors
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and functionally dependent with the endogenous
explanatory variable. Newey and Powell (1989,
2003), Ai and Chen (2003), Hall and Horowitz
(2003) and Darolles, Fan, Florens, and Renault
(2011) follow this general approach.1 Iden­
tification requires additional conditions on the
relationship between the endogenous variable
and the excluded instrument, and estimation in­
volves solving an ill­posed inverse problem.

We take a different tack in this paper and
consider approaches that specify equations for
all endogenous variables determined within the
system. We retain the focus on a single struc­
tural equation but by completing the simultane­
ous system, these approaches avoid the ill­posed
inverse problem. They do however require the
complete specification of the simultaneity be­
tween the endogenous variables.

A particularly convenient method, and one
we direct our attention to here, is the control
function approach (Heckman and Robb, 1985).
This is available when the simultaneous sys­
tem can be expressed in a triangular form where
the variables entering satisfy certain conditional
independence restrictions; the precise restric­
tion is provided below. Linear simultaneous
models with additive errors can always be ex­
pressed in triangular form with variables satisfy­
ing a conditional mean independence restriction.
However, in nonlinear non­additive simultane­
ous systems, conditional independence requires
an additional restriction, so­called control func­
tion separability. Blundell and Matzkin (2010)
derive this condition and show that it completely
characterizes simultaneous models where the
control function approach can be used to esti­
mate the structural function of interest. Chesher
(2003), Imbens and Newey (2009), Hahn and
Ridder (2011) and Kasy (2011), amongst oth­
ers, develop identification and estimation results
assuming triangularity. Here we review some of

1See also Blundell, Chen and Kristensen (2007), Cher­
nozhukov and Hansen (2005), Chernozhukov, Imbens, and
Newey (2007) and Chen and Pouzo (2012), Chen, Cher­
nozhukov, Lee and Newey (2011).
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the different ‘system’ approaches to estimation
in nonlinear simultaneous equations models, fo­
cussing on the control function approach, and
document the biases that can occur when inap­
propriately assuming a linear structural model.

We first characterize nonlinear simultaneous
systems and briey review different approaches
to estimation. We contrast a number of specific
approaches to estimation. In particular, those
that use a conditional independence assumption
with conditioning either on an observable vari­
able or, as in the control function case, on an
unobservable variable. We also note approaches
that rely on exclusive instruments. In nonlin­
ear simultaneous models, if the control function
separability assumption is not satisfied, estima­
tion using a control function approach may be
highly misleading. A numerical example is used
to show the potential biases from inappropri­
ately adopting a control function approach.

I. Simultaneous Equation Systems

Consider the following simultaneous model
describing the interactions between two out­
come variables y1 and y2

(1)
y1  b10  b11y2  b12z1  1

y2  b20  b21y1  b22z2  2


satisfying 1  b11b21  0 For ease of inter­
pretation we assume all variables are scalar and
the variables  j  R, and z j  R are continu­
ously distributed, for j  1 2 and the z j vari­
ables are exclusive to specific equations. The in­
verse form of the simultaneous system (1) may
be written  j  a j0  a j1 y1  a j2y2  a j3z j

for j  1 2 with appropriate restrictions on the
coefficients. Similarly, the reduced form can be
derived explicitly and has a linear additive form.

Although convenient, linearity in endogenous
variables implies that the marginal effect of the
endogenous variable is constant across all its
values. Moreover, the additivity in unobserv­
ables implies that the marginal effect of endoge­
nous variables is homogeneous across individ­
uals with the same z  z1 z2  If we wish
to interpret the  j as unobserved heterogeneity
relating to agents making the observed actions
on y1 and y2such as in models for demand and
supply or the interactions between agents, then
it is very difficult to derive a separable struc­
tural model. Consequently, in models describ­

ing structural equations of economic behavior
with unobserved heterogeneity we would typ­
ically wish to consider nonlinear non­additive
systems of the form y1  m1y2 z1 1 and
y2  m2y1 z2 2

Parameters of Interest: In non­additive
specifications we have to consider carefully the
parameters of interest. Suppose we are inter­
ested in the feedback from y2 to y1 as described
by the structural function m1. For this purpose
we can ignore the presence of z1 and write

(2)
y1  m1 y2 1
y2  m2 y1 z2 2



There are three parameters of interest we wish
to highlight.

(a) The average structural function of m1, de­
fined by Blundell and Powell (2003) as Gy2 

m1 y2 1 f11 d1

(b) The local average response function, de­
fined by Altonji and Matzkin (2005) as y2 
 m1y21

y2
f1Y2y21 d1 which will be

constant for all y2 when m1 is linear.

These two parameters refer to averages. We
might also be interested in parameters defined at
points in the distribution of unobservables. For
example,

(c) The quantile structural function,
q1   y2, defined by Imbens and Newey
(2009) as the  th quantile of m1 y2 1 for y2

fixed (so that the only source of randomness is
1). We may also be interested in derivatives
of q1   y2 w.r.t. y2; see Chesher (2003) for
identification results on this.

Characterizing the Simultaneous Model:
To characterize the simultaneous equations
model we retain the simple structural system (2)
where m1 and m2 are assumed to be continu­
ously differentiable, and that, conditional on any
value z2 the densities of 1 2 and of y1 y2
are continuous with convex support.

We make two further assumptions:
(Monotonicity) the functions m1 and m2

are strictly monotone in 1 and 2, respectively;
(Crossing)


m1y2


my1  1. The

monotonicity assumption guarantees that m j

can be inverted in  j , j  1 2. This assumption
allows us to express the direct system of struc­
tural equations (2), defined by


m1m2


 in

terms of a structural inverse system of functions
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
r1 r2



(3)
1  r1 y1 y2
2  r2 y1 y2 z2



The crossing assumption is a weakening of
the common situation where the value of the en­
dogenous variables is determined by the inter­
section of a downwards and an upwards sloping
function. Together with monotonicity, this as­
sumption guarantees the existence of a unique
value for y1 y2  given any z2 In other words,
these assumptions guarantee the existence of a
reduced form system of equations, defined by
functions


h1 h2


 which map the vector of ex­

ogenous variables 1 2 z2 into the vector of
endogenous variables y1 y2

(4)
y1  h1 z2 1 2
y2  h2 z2 1 2



These assumptions also guarantee that the re­
duced form function h j is monotone increasing
in  j , j  1 2. These results are established in
Blundell and Matzkin (2010, Lemma 1).

II. Approaches to Identification and
Estimation

Suppose we are simply interested in the deriv­
ative of the unknown function m1 in a structural
model y1  m1 y2 1 where m1 is strictly
increasing in 1 and where it is suspected or
known that y2 is itself a function of y1.

The single equation approach proceeds by us­
ing an observable instrument, z2 independent of
1 and functionally dependent with y2. Identifi­
cation takes the form of asking whether an inte­
gral equation has a unique solution. The answer
requires restrictions on the conditional distrib­
ution of y2 given z2 Estimation involves deal­
ing with an ill­posed inverse problem. We refer
to the references on nonparametric instrumental
variables provided in the introduction for details.

The approaches we focus on in this paper in­
volve describing the source of simultaneity, by
specifying some function m2 and unobservable
2 such that y1 y2 satisfies eq. (2), where
m2 is strictly increasing with respect to 2 and
where, as in the single equation approach, z2

is an observable variable that is excluded from
m1. Identification in the system approach is
analyzed in terms of conditions on the struc­

tural system composed by

m1m2


and the dis­

tribution of 1 2 z2  Pointwise estimation
of the derivative of m1 with respect to y2 can
be performed without facing ill­posed inverse
problems. Roehrig (1988), Benkard and Berry
(2006), and Matzkin (2004, 2008, 2010) follow
this approach.

A. Conditional Independence

One system approach to the identification and
estimation of the derivative of the function m1

in the system (2) proceeds by assuming that the
system is observationally equivalent to an alter­
native system, of the form

(5)
y1  m1 y2 1
y2  s z2 



The second equation is then used to determine
a variable or sets of variables such that, condi­
tioning the distribution of y1 on y2 and those ad­
ditional variables has the effect of purging the
dependence between y2 and 1 When such ad­
ditional conditioning variables are observed, the
method is called "conditioning on observables".
When a conditioning variable is unobserved and
is estimated in a first­stage, the estimated vari­
able is usually called a "control function". In ei­
ther case, the additional conditioning variable or
variables can be interpreted as providing a proxy
for the elements within 1 that are not distrib­
uted independently of y2 Conditioning on such
"proxy" leaves the unobserved part of the equa­
tion independent of y2 and the "proxy". (See
Matzkin, 2004, for details.)

Conditioning on observables: Suppose that
in the system (5) 1 is distributed independently
of  conditional on z2 Given z2 y2  s z2 
is a function of only  Recall that when two
random variables are independently distributed,
any functions of those random variables are also
independently distributed. Hence,  being in­
dependent of 1 given z2 implies that y2 as a
function of  y2  s z2   is distributed inde­
pendently of 1 given z2 Hence, "conditioning
on the observable z2" purges the dependence be­
tween y2 and 1

Control function: Suppose instead that in the
system (5) 1 is distributed independently of z2

conditional on  Then, in this case, the "proxy"
that purges the dependence between y2 and 2 is
 Conditional on  y2  s   is a function
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of z2 Since conditional on  1 is distributed
independently of z2 the function y2  s  
is also distributed independently of 1 condi­
tional on  When the relation y2  s z2 
is such that  can be estimated, one can condi­
tion the first equation on the estimated  and pro­
ceed as if there existed no endogeneity. Chesher
(2003) and Imbens and Newey (2009) follow
this approach in the nonparametric nonadditive
setup above. Conditions for pointwise identifi­
cation and estimation of the derivatives of m1

again avoid an ill­posed inverse problem. They
obtain the expressions for m1 and the derivative
of m1 as displayed in Section 2.1. They both ex­
ploit the indirect mapping from the observable
variables y1 y2 z2 to the unobservable vari­
ables, 1  


r1 y1 y2 s y2 z2




When can a control function be used in
models with simultaneity? If the simultane­
ous model m1 and m2 were linear and addi­
tive in 1 and 2 as in (1), the elements of m1

could be easily identified (and estimated) recur­
sively, following the control function approach.
One can obtain the second equation in the form
needed to estimate the control function by solv­
ing for y2 in the first eq. of (1) and rewrit­
ing the system as a recursive one. This would
yield (5) with s z2  being linear and, condi­
tional on , y2 is mean independent of 1 As
a consequence, estimation of the parameters in
the structural equation for y1 can proceed using
the augmented regression approach (Dhrymes
(1970), Telser (1964)). This triangular repre­
sentation implies no further restrictions in the
linear system.

If, however, the simultaneous equations
model were either nonlinear or nonadditive in
either 1 or 2 it might not be possible to ex­
press the structural system (2) in the triangular
form (5) with z2 being independent of 1 
as needed for the implementation of the control
function approach. So under what conditions
are the two systems, (2) and (5), observationally
equivalent?

Bundell and Matzkin (2010) provided an an­
swer to this question. They defined a new con­
cept, control function separability defined in
terms of the indirect system (3):
Definition (CFS): The structural inverse sys­
tem (3) satisfies control function separability
(CFS) if there exist functions  : R2  R and
q : R2  R such that (a) r2 y1 y2 z2 



q z2 y2  r

1 y1 y2

; (b)  is strictly in­

creasing in its first argument, and; (c) q is
strictly increasing in its second argument.

For CFS to be satisfied, r2 y1 y2 z2 must
be weakly separable in r1 y1 y2  Moreover,
y1 can affect the value of 2 only through
r1 y1 y2. This implies that the reduced form
for y2 can be written as a function of the scalar
unobservable control variable 1 2 and z2,
where  is independent of z2. Under regular­
ity conditions, Blundell and Matzkin (2010) es­
tablish that CFS completely characterizes obser­
vational equivalence between (2) and (5). In
particular, if CFS holds, the functions m1 and
m2 are identified and can be estimated using
the two­step procedure described in Imbens and
Newey (2009).

B. Exclusive Instruments

When the system of simultaneous equations is
not observationally equivalent to one of the tri­
angular systems considered in the previous sec­
tion, identification can be obtained by impos­
ing alternative restrictions on the system. One
such set of restrictions is in terms of the inverse
system (3) where, for example, we could im­
pose the restriction that the second equation of
(3) satisfies 2  r2 y1 y2  z2. In this case,
Matzkin (2010) provides additional conditions
on

r1 r2


and the distribution of 1 2 z2

under which, the derivative of m1 with respect
to y2 can be read off the conditional density of
the observable variables y1 y2 conditional on
the observable variable z2 at either one or two
values of z2 The particular values of z2 that
provide such identification can also be read off
from the conditional density of y1 y2 given
z2 Indirect estimation of such derivative is then
obtained by substituting the conditional density
by a nonparametric estimator for it. Under sim­
ilar conditions, a minimum distance estimator
for such derivative is also obtained, which has
a closed form solution.

III. Numerical Illustration

Here we develop a simple bivariate non­
linear nonadditive system with inverse
equations 1  1

1 y2  1
2 y1, im­

plying m1 y2 1  1


1

2 y2 1




and 2  1 b1 z2 b2 z2
1
1 y2 
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b1 z2 b2 z2
1
1 y1  g2 z2 where

1 x  x3, 2 x  x is the standard
normal cdf, and g z2  z22  1. The
functions b j z2 will be specified below. It is
easily checked that the system is invertible if
b2 z2  0 and that CFS is satisfied if, for some
constant c  R, b1 z2  cb2 z2, in which
case y2  s z2   2 g2 z2 b2 z2 ,
where   c1  2. In particular, y2 is
endogenous if c  0. We then investigate how
control function estimators of m1 perform when
CFS is satisfied or not, respectively.

We focus exclusively on biases incurred by
different estimators and so choose the sample
size to be n  10 000 such that the variance
of the different estimators can be ignored. For
the two estimators in question, we evaluate their
performance by plotting the true quantile struc­
tural function which takes the form q1   y1 

1


1

2 y2 q1  


, where q1  is  th

quantile of 1, against the ones implied by the
estimators. The quantile structural functions are
evaluated at three different quantiles,  1  02,
2  05 and 3  08.

We first consider the case where CFS is sat­
isfied with b2 z2 


19 190 z2 and

b1 z2  2b2 z2. Figure 1 plots the nonpara­
metric structural quantile estimator of Imbens
and Newey (2009) for this case. Here and in
the following figures the drawn lines represent
the true function and dotted lines the estimates
for three different quantiles. We find that this
estimator does well and closely tracks the popu­
lation versions.
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Figure 1. CFS holds
Next, we investigate how the Imbens and

Newey (2009) estimator does when CFS
does not hold in data. For this case,

b2 z2 remains unchanged but now b1 z 
05 005 z4  log1 z210. Figure 2

shows the performance of the Imbens­Newey es­
timator in this case. Biases are now present, in
particular, in the upper quantiles.
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Figure 2. CFS is violated
Finally, Figure 3 shows the mean of the es­

timated quantile structural function based on
the control function estimator assuming (incor­
rectly) that data is generated by a linear regres­
sion model, q1

2SLS   y1  b10  b11 y2 

q1  , where b10 and b11 are two­stage least
squares (2SLS) estimates and q1  is the 
quantile of the residuals from the 2SLS regres­
sion. We see that the 2SLS estimator is severely
biased and over­estimates of the impact of y2 on
y1. This is not surprising given the highly non­
linear features of the data­generating process
which is ignored by the 2SLS estimator. In par­
ticular, the data­generating process has fat tails
which affects predictions based on covariances
but not quantiles.
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Figure 3. CFS holds, misspecified model used

IV. Summary and Conclusions

We have reviewed two broad alternative
classes of ‘system’ approaches to estimation in
nonlinear non­additive simultaneous equations
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models. The first use a conditional indepen­
dence assumption and second adopt exclusion
restrictions on instrumental variables. In par­
ticular, we have focussed on a special case of
the second approach, the control function, not­
ing that in nonlinear models estimation using
the control function estimator may be severely
inconsistent unless strong restrictions on the si­
multaneous model are satisfied. A simulation
model was then used to show the potential biases
from inappropriately adopting a control function
approach.
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