Labour Supply Responses and the Extensive Margin: The US, UK and France

Richard Blundell Antoine Bozio
UCL and IFS
IFS
January 2011

Guy Laroque

INSEE-CREST, UCL and IFS

Extensive and Intensive Margins of Labor Supply

- The distinction between the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Gruber and Wise (1999).

Extensive and Intensive Margins of Labor Supply

- The distinction between the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Gruber and Wise (1999).
- Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005)

Extensive and Intensive Margins of Labor Supply

- The distinction between the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Gruber and Wise (1999).
- Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005)
- In this paper we provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin.

Extensive and Intensive Margins of Labor Supply

- The distinction between the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Gruber and Wise (1999).
- Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005)
- In this paper we provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin.
- We examine three key countries - the US, the UK and France- over the past 30 years.

Extensive and Intensive Margins of Labor Supply

- The distinction between the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Gruber and Wise (1999).
- Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005)
- In this paper we provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin.
- We examine three key countries - the US, the UK and France- over the past 30 years.
- these three countries stand at the top, middle and bottom, respectively, of Prescott's 2004 table of labour supply flexibility.

Extensive and Intensive Margins of Labor Supply

- The distinction between the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Gruber and Wise (1999).
- Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005)
- In this paper we provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin.
- We examine three key countries - the US, the UK and France- over the past 30 years.
- these three countries stand at the top, middle and bottom, respectively, of Prescott's 2004 table of labour supply flexibility.
- Our analysis finds that neither margin dominates in explaining changes in total hours worked.

Extensive and Intensive Margins of Labor Supply

- The distinction between the extensive and intensive margin has long been recognised in microeconometric studies, Gronau (1974), Heckman (1974, 1979), Cogan (1981),... Gruber and Wise (1999).
- Also key parameters in the public economics literature on earnings tax design, Saez (2002), Laroque (2005)
- In this paper we provide a detailed decomposition of the evolution of total hours of work into changes at the extensive and intensive margin.
- We examine three key countries - the US, the UK and France- over the past 30 years.
- these three countries stand at the top, middle and bottom, respectively, of Prescott's 2004 table of labour supply flexibility.
- Our analysis finds that neither margin dominates in explaining changes in total hours worked.
- the relative importance of the extensive and intensive margin is shown to differ systematically by age, gender and family composition.

Fig 1.A Mean annual hours per individual aged 16 to 74

Fig 1.B. Employment rate (per population) aged 16 to 74

Fig 1.C. Mean annual hours per worker aged 16 to 74

Fig 2.A. Male total hours by age 1977

Fig 2.B. Male total hours by age 2007

Fig 3.A. Male employment by age 1977

Fig 3.B. Male employment by age 2007

Fig 4.A. Female total hours by age 1977

Fig 4.B. Female total hours by age 2007

Fig 5.A. Female employment by age 1977

Fig 5.B. Female employment by age 2007

Elasticities at the Intensive and Extensive Margin

- We consider intertemporal preferences represented by

$$
U= \begin{cases}\lambda R(h)-\frac{h^{1+1 / \alpha}}{1+1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

where

Elasticities at the Intensive and Extensive Margin

- We consider intertemporal preferences represented by

$$
U= \begin{cases}\lambda R(h)-\frac{h^{1+1 / \alpha}}{1+1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

where

- h is labor supply measured in hours,

Elasticities at the Intensive and Extensive Margin

- We consider intertemporal preferences represented by

$$
U= \begin{cases}\lambda R(h)-\frac{h^{1+1 / \alpha}}{1+1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

where

- h is labor supply measured in hours,
- $R(h)$ is the disposable income of someone who works h hours given an hourly wage rate w, s is subsistence income when unemployed,

Elasticities at the Intensive and Extensive Margin

- We consider intertemporal preferences represented by

$$
U= \begin{cases}\lambda R(h)-\frac{h^{1+1 / \alpha}}{1+1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

where

- h is labor supply measured in hours,
- $R(h)$ is the disposable income of someone who works h hours given an hourly wage rate w, s is subsistence income when unemployed,
- λ is the marginal utility of income

Elasticities at the Intensive and Extensive Margin

- We consider intertemporal preferences represented by

$$
U= \begin{cases}\lambda R(h)-\frac{h^{1+1 / \alpha}}{1+1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

where

- h is labor supply measured in hours,
- $R(h)$ is the disposable income of someone who works h hours given an hourly wage rate w, s is subsistence income when unemployed,
- λ is the marginal utility of income
- (α, β) are unobserved heterogeneity in tastes and costs of work.

Elasticities at the Intensive and Extensive Margin

- We consider intertemporal preferences represented by

$$
U= \begin{cases}\lambda R(h)-\frac{h^{1+1 / \alpha}}{1+1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

where

- h is labor supply measured in hours,
- $R(h)$ is the disposable income of someone who works h hours given an hourly wage rate w, s is subsistence income when unemployed,
- λ is the marginal utility of income
- (α, β) are unobserved heterogeneity in tastes and costs of work.
- α is the Frisch elasticity of labor supply with respect to the net marginal wage rate.

Elasticities at the Intensive and Extensive Margin

- We consider intertemporal preferences represented by

$$
U= \begin{cases}\lambda R(h)-\frac{h^{1+1 / \alpha}}{1+1 / \alpha}-\beta & \text { if } h>0 \\ \lambda s & \text { if } h=0\end{cases}
$$

where

- h is labor supply measured in hours,
- $R(h)$ is the disposable income of someone who works h hours given an hourly wage rate w, s is subsistence income when unemployed,
- λ is the marginal utility of income
- (α, β) are unobserved heterogeneity in tastes and costs of work.
- α is the Frisch elasticity of labor supply with respect to the net marginal wage rate.
- The distribution of heterogeneity is described through the conditional distribution of fixed costs β given $(\alpha, \lambda, w), F(\beta \mid \alpha, \lambda, w)$, and the marginal pdf of $(\alpha, \lambda, w), g(\alpha, \lambda, w)$.

Aggregation

- Let $h(\alpha, \lambda, w)$ be the hours supplied and $p(\alpha, \lambda, w)$ the proportion of workers of type (α, λ, w)

Aggregation

- Let $h(\alpha, \lambda, w)$ be the hours supplied and $p(\alpha, \lambda, w)$ the proportion of workers of type (α, λ, w)
- The elasticity of labour supply at the intensive margin is defined as $\varepsilon_{l}(\alpha, \lambda, w)$ and at the extensive margin as $\varepsilon_{E}(\alpha, \lambda, w)$

Aggregation

- Let $h(\alpha, \lambda, w)$ be the hours supplied and $p(\alpha, \lambda, w)$ the proportion of workers of type (α, λ, w)
- The elasticity of labour supply at the intensive margin is defined as $\varepsilon_{l}(\alpha, \lambda, w)$ and at the extensive margin as $\varepsilon_{E}(\alpha, \lambda, w)$
- Note that total hours in the economy \tilde{H} is:

$$
\tilde{H}=\int_{w} \int_{\alpha} \int_{\lambda} p() h() g(\alpha, \lambda, w) d \alpha d \lambda d w
$$

Aggregation

- Let $h(\alpha, \lambda, w)$ be the hours supplied and $p(\alpha, \lambda, w)$ the proportion of workers of type (α, λ, w)
- The elasticity of labour supply at the intensive margin is defined as $\varepsilon_{l}(\alpha, \lambda, w)$ and at the extensive margin as $\varepsilon_{E}(\alpha, \lambda, w)$
- Note that total hours in the economy \tilde{H} is:

$$
\tilde{H}=\int_{w} \int_{\alpha} \int_{\lambda} p() h() g(\alpha, \lambda, w) d \alpha d \lambda d w
$$

- so that the 'aggregate' hours elasticity is given by

$$
\varepsilon=\frac{1}{\tilde{H}} \int_{w} \int_{\alpha} \int_{\lambda} p() h()\left[\varepsilon_{I}(\alpha, \lambda, w)+\varepsilon_{E}(\alpha, \lambda, w)\right] g(\alpha, \lambda, w) d \alpha d \lambda d w
$$

Aggregation

- Let $h(\alpha, \lambda, w)$ be the hours supplied and $p(\alpha, \lambda, w)$ the proportion of workers of type (α, λ, w)
- The elasticity of labour supply at the intensive margin is defined as $\varepsilon_{l}(\alpha, \lambda, w)$ and at the extensive margin as $\varepsilon_{E}(\alpha, \lambda, w)$
- Note that total hours in the economy \tilde{H} is:

$$
\tilde{H}=\int_{w} \int_{\alpha} \int_{\lambda} p() h() g(\alpha, \lambda, w) d \alpha d \lambda d w
$$

- so that the 'aggregate' hours elasticity is given by

$$
\varepsilon=\frac{1}{\tilde{H}} \int_{w} \int_{\alpha} \int_{\lambda} p() h()\left[\varepsilon_{I}(\alpha, \lambda, w)+\varepsilon_{E}(\alpha, \lambda, w)\right] g(\alpha, \lambda, w) d \alpha d \lambda d w
$$

- elasticities are weighted by the share of type (α, λ, w) labor supply in the aggregate.

Decomposing Changes in Hours Worked

- Our interest is how overall average hours worked H per person varies over time and across countries,

Decomposing Changes in Hours Worked

- Our interest is how overall average hours worked H per person varies over time and across countries,
- and the way it differs across person characteristics, age and gender for instance.

Decomposing Changes in Hours Worked

- Our interest is how overall average hours worked H per person varies over time and across countries,
- and the way it differs across person characteristics, age and gender for instance.
- Suppose there are $j=1, \ldots, J$ broad categories, H_{t} is computed in any year t as an average of the category hours $H_{j t}$ with weights equal to the population shares $q_{j t}$

$$
H_{t}=\sum_{j=1}^{J} q_{j t} H_{j t}
$$

Decomposing Changes in Hours Worked

- Our interest is how overall average hours worked H per person varies over time and across countries,
- and the way it differs across person characteristics, age and gender for instance.
- Suppose there are $j=1, \ldots, J$ broad categories, H_{t} is computed in any year t as an average of the category hours $H_{j t}$ with weights equal to the population shares $q_{j t}$

$$
H_{t}=\sum_{j=1}^{J} q_{j t} H_{j t}
$$

- where each $H_{j t}$ can be expressed as the product of hours per worker $h_{j t}$ and participation in the labour market $p_{j_{t}}$

$$
H_{j t}=p_{j t} h_{j t}
$$

Decomposing Changes in Hours Worked

- We develop a simple decomposition:

Decomposing Changes in Hours Worked

- We develop a simple decomposition:
- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right] .
$$

Decomposing Changes in Hours Worked

- We develop a simple decomposition:
- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right] .
$$

- The total change across all J categories of workers is then

$$
\Delta_{t}=\sum_{j=1}^{J} \Delta_{j t}
$$

Decomposing Changes in Hours Worked

- We develop a simple decomposition:
- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right]
$$

- The total change across all J categories of workers is then

$$
\Delta_{t}=\sum_{j=1}^{J} \Delta_{j t}
$$

- and, by construction, we have

$$
H_{t}-H_{t-1}=S_{t}+\Delta_{t}
$$

Decomposing Changes in Hours Worked

- We develop a simple decomposition:
- We measure the change due to the behavior of category j, holding the population structure constant as in date $t-1$, as in a Laspeyres index

$$
\Delta_{j t}=q_{j, t-1}\left[H_{j t}-H_{j, t-1}\right]
$$

- The total change across all J categories of workers is then

$$
\Delta_{t}=\sum_{j=1}^{J} \Delta_{j t}
$$

- and, by construction, we have

$$
H_{t}-H_{t-1}=S_{t}+\Delta_{t}
$$

- where S_{t} measures the change in the composition of the population:

$$
S_{t}=\sum_{j=1}^{J} H_{j t}\left[q_{j t}-q_{j, t-1}\right]
$$

Table 1 Decomposing the change in total hours, 1977-2007

	Year	Youth (16-29)		Prime aged (30-54)		Old (55-74)	
		Men	Women	Men	Women	Men	Women
FR	1977	1402	871	2010	951	827	367
	2007	858	627	1639	1116	508	344
	Δ_{j}	-82	-38	-82	36	-36	-3
UK	1977	1707	938	2117	873	1107	323
	2007	1219	876	1786	1055	790	385
	Δ_{j}	-71	-9	-70	39	-42	10
US	1977	1344	835	2018	947	1025	447
	2007	1236	956	1922	1373	1084	754
	Δ_{j}	-19	22	-19	90	6	38

Sources: Enquête Emploi, Labour Force Survey, Census Population Survey.

- evolution of total Δ differs: -195 for FR, -118 for UK, +165 for US.

Table 1 Decomposing the change in total hours, 1977-2007

	Year	Youth (16-29)		Prime aged (30-54)		Old (55-74)	
		Men	Women	Men	Women	Men	Women
FR	1977	1402	871	2010	951	827	367
	2007	858	627	1639	1116	508	344
	Δ_{j}	-82	-38	-82	36	-36	-3
UK	1977	1707	938	2117	873	1107	323
	2007	1219	876	1786	1055	790	385
	Δ_{j}	-71	-9	-70	39	-42	10
US	1977	1344	835	2018	947	1025	447
	2007	1236	956	1922	1373	1084	754
	Δ_{j}	-19	22	-19	90	6	38

Sources: Enquête Emploi, Labour Force Survey, Census Population Survey.

- evolution of total Δ differs: -195 for FR, -118 for UK, +165 for US.
- composition $S:+10$ for FR, +25 for UK, +46 for US, see Figure 6 ..

Fig 6. Decomposing the change in total hours (1977-2007)

Bounding Changes at the Extensive and Intensive Margins

- We decompose the change in total hours for the j type Δ_{j}, into the sum of an an intensive component $l_{j}=p_{l j} \Delta h_{j}$ and an extensive component $E_{j}=h_{E j} \Delta p_{j}$.

Bounding Changes at the Extensive and Intensive Margins

- We decompose the change in total hours for the j type Δ_{j}, into the sum of an an intensive component $l_{j}=p_{l j} \Delta h_{j}$ and an extensive component $E_{j}=h_{E j} \Delta p_{j}$.
- Assuming the fraction $p_{l j}$ is in the interval $\left[p_{j, t-1}, p_{j t}\right]$, we get the intensive bounds:
I_{j} belongs to the interval $\left[p_{j, t-1}\left(h_{j t}-h_{j, t-1}\right), p_{j, t}\left(h_{j t}-h_{j, t-1}\right)\right]$.

Bounding Changes at the Extensive and Intensive Margins

- We decompose the change in total hours for the j type Δ_{j}, into the sum of an an intensive component $l_{j}=p_{l j} \Delta h_{j}$ and an extensive component $E_{j}=h_{E j} \Delta p_{j}$.
- Assuming the fraction $p_{l j}$ is in the interval $\left[p_{j, t-1}, p_{j t}\right]$, we get the intensive bounds:
I_{j} belongs to the interval $\left[p_{j, t-1}\left(h_{j t}-h_{j, t-1}\right), p_{j, t}\left(h_{j t}-h_{j, t-1}\right)\right]$.
- From the identity $\Delta_{j t}=I_{j}+E_{j}$, the extensive bounds are given by
E_{j} belongs to the interval $\left[h_{j, t-1}\left(p_{j t}-p_{j, t-1}\right), h_{j, t}\left(p_{j t}-p_{j, t-1}\right)\right]$.

Bounding Changes at the Extensive and Intensive Margins

- At the limits, the change in total hours for any category satisfies two polar exact statistical decompositions:

$$
\begin{equation*}
\Delta_{j t}=q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t}+\left[p_{j t}-p_{j t-1}\right] h_{j t-1}\right\} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta_{j t}=q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t-1}+\left[p_{j t}-p_{j t-1}\right] h_{j t}\right\} \tag{2}
\end{equation*}
$$

Bounding Changes at the Extensive and Intensive Margins

- At the limits, the change in total hours for any category satisfies two polar exact statistical decompositions:

$$
\begin{equation*}
\Delta_{j t}=q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t}+\left[p_{j t}-p_{j t-1}\right] h_{j_{t-1}}\right\} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta_{j t}=q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t-1}+\left[p_{j t}-p_{j t-1}\right] h_{j t}\right\} \tag{2}
\end{equation*}
$$

- The first term on the right hand side of both expressions is the intensive margin, weighted in (1) with the final participation rate (as in a Paasche index) and in (2) with the initial participation rate (as in a Laspeyres index).

Bounding Changes at the Extensive and Intensive Margins

- At the limits, the change in total hours for any category satisfies two polar exact statistical decompositions:

$$
\begin{equation*}
\Delta_{j t}=q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t}+\left[p_{j t}-p_{j t-1}\right] h_{j t-1}\right\} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta_{j t}=q_{j, t-1}\left\{\left[h_{j t}-h_{j t-1}\right] p_{j t-1}+\left[p_{j t}-p_{j t-1}\right] h_{j t}\right\} \tag{2}
\end{equation*}
$$

- The first term on the right hand side of both expressions is the intensive margin, weighted in (1) with the final participation rate (as in a Paasche index) and in (2) with the initial participation rate (as in a Laspeyres index).
- The second term is the extensive margin (Laspeyres in (1), Paasche in (2)).

Table 2. Decomposing the changes at the extensive and intensive margins by age and gender (1977-2007)

	Year	Men $16-29$	Women $16-29$	Men $30-54$	Women $30-54$	Men $55-74$	Women $55-74$
FR	I-P, I-L	$[-37,-28]$	$[-23,-19]$	$[-59,-56]$	$[-49,-35]$	$[-11,-8]$	$[-10,-9]$
	E-L, E-P	$[-54,-45]$	$[-19,-16]$	$[-27,-23]$	$[71,85]$	$[-28,-25]$	$[6,7]$
	Δ	-82	-38	-82	36	-36	-3
UK	I-P, I-L	$[-42,-36]$	$[-26,-23]$	$[-48,-45]$	$[-3,-2]$	$[-22,-19]$	$[-8,-6]$
	E-L, E-P	$[-35,-29]$	$[14,17]$	$[-25,-22]$	$[41,41]$	$[-23,-20]$	$[15,17]$
	Δ	-71	-9	-70	39	-42	10
US	I-P, I-L	$[-6,-6]$	$[1,1]$	$[-5,-5]$	$[14,19]$	$[3,3]$	$[3,5]$
	E-L, E-P	$[-13,-13]$	$[21,21]$	$[-14,-14]$	$[72,77]$	$[3,3]$	$[33,35]$
	Δ	-19	22	-19	90	6	38

Sources: Enquête Emploi, Labour Force Survey, Census Population Survey.

Table 2. Decomposing the changes at the extensive and intensive margins by age and gender (1977-2007)

	Year	Men $16-29$	Women $16-29$	Men $30-54$	Women $30-54$	Men $55-74$	Women $55-74$
FR	I-P, I-L	$[-37,-28]$	$[-23,-19]$	$[-59,-56]$	$[-49,-35]$	$[-11,-8]$	$[-10,-9]$
	E-L, E-P	$[-54,-45]$	$[-19,-16]$	$[-27,-23]$	$[71,85]$	$[-28,-25]$	$[6,7]$
	Δ	-82	-38	-82	36	-36	-3
UK	I-P, I-L	$[-42,-36]$	$[-26,-23]$	$[-48,-45]$	$[-3,-2]$	$[-22,-19]$	$[-8,-6]$
	E-L, E-P	$[-35,-29]$	$[14,17]$	$[-25,-22]$	$[41,41]$	$[-23,-20]$	$[15,17]$
	Δ	-71	-9	-70	39	-42	10
US	I-P, I-L	$[-6,-6]$	$[1,1]$	$[-5,-5]$	$[14,19]$	$[3,3]$	$[3,5]$
	E-L, E-P	$[-13,-13]$	$[21,21]$	$[-14,-14]$	$[72,77]$	$[3,3]$	$[33,35]$
	Δ	-19	22	-19	90	6	38

Sources: Enquête Emploi, Labour Force Survey, Census Population Survey.

Decomposing the Estimated Distribution of Elasticities

- Finally, we illustrate the way we use this micro-data analysis to recover the distribution of labour supply elasticities that is consistent with the decomposition in Table 2

Decomposing the Estimated Distribution of Elasticities

- Finally, we illustrate the way we use this micro-data analysis to recover the distribution of labour supply elasticities that is consistent with the decomposition in Table 2
- Use UK FES - consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households since 1978

Decomposing the Estimated Distribution of Elasticities

- Finally, we illustrate the way we use this micro-data analysis to recover the distribution of labour supply elasticities that is consistent with the decomposition in Table 2
- Use UK FES - consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households since 1978
- We allow for general fixed costs of work and heterogeneity in preferences for work.

Decomposing the Estimated Distribution of Elasticities

- Finally, we illustrate the way we use this micro-data analysis to recover the distribution of labour supply elasticities that is consistent with the decomposition in Table 2
- Use UK FES - consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households since 1978
- We allow for general fixed costs of work and heterogeneity in preferences for work.
- We highlight differences between the extensive and intensive margins and draw implications for the aggregate hours elasticity.

Decomposing the Estimated Distribution of Elasticities

- Finally, we illustrate the way we use this micro-data analysis to recover the distribution of labour supply elasticities that is consistent with the decomposition in Table 2
- Use UK FES - consistent series on marginal taxes, incomes, hours of work, wages and consumption for a representative sample of households since 1978
- We allow for general fixed costs of work and heterogeneity in preferences for work.
- We highlight differences between the extensive and intensive margins and draw implications for the aggregate hours elasticity.
- There have been distinct changes in participation and effective marginal tax rates over this period

Fig 7.A Changes in the participation tax rate in the UK

Fig 7.B Changes in the marginal tax rate in the UK

Estimating the Elasticity Decomposition

- The labour supply specification and approach to identification follows closely that in Blundell, Duncan and Meghir (Ecta, 1998).

Estimating the Elasticity Decomposition

- The labour supply specification and approach to identification follows closely that in Blundell, Duncan and Meghir (Ecta, 1998).
- Use the large changes in relative growth in after tax wages and other incomes across different education, age and gender groups over the years 1978, 19871997 and 2007 to identify the distribution of wage and income elasticities.

Estimating the Elasticity Decomposition

- The labour supply specification and approach to identification follows closely that in Blundell, Duncan and Meghir (Ecta, 1998).
- Use the large changes in relative growth in after tax wages and other incomes across different education, age and gender groups over the years 1978, 19871997 and 2007 to identify the distribution of wage and income elasticities.
- Recover Marshallian elasticities for within period utilities - Frisch elasticities are also be estimated.

Estimating the Elasticity Decomposition

- The labour supply specification and approach to identification follows closely that in Blundell, Duncan and Meghir (Ecta, 1998).
- Use the large changes in relative growth in after tax wages and other incomes across different education, age and gender groups over the years 1978, 19871997 and 2007 to identify the distribution of wage and income elasticities.
- Recover Marshallian elasticities for within period utilities - Frisch elasticities are also be estimated.
- The extensive margin is a structural normal binary response model which allows for general unobserved fixed costs of work as well as a set of demographic and education characteristics.

Aggregate responses and elasticties at the intensive and extensive margins

- elasticities at the extensive margin are larger than at the intensive margin and elasticities for women at both margins are larger than those for men - key determinant of these differences across gender is the age composition of children in the family.

Aggregate responses and elasticties at the intensive and extensive margins

- elasticities at the extensive margin are larger than at the intensive margin and elasticities for women at both margins are larger than those for men - key determinant of these differences across gender is the age composition of children in the family.
- median intensive elasticity ranges between . 09 and .23. (Frisch elasticities are somewhat larger.)

Aggregate responses and elasticties at the intensive and extensive margins

- elasticities at the extensive margin are larger than at the intensive margin and elasticities for women at both margins are larger than those for men - key determinant of these differences across gender is the age composition of children in the family.
- median intensive elasticity ranges between . 09 and .23. (Frisch elasticities are somewhat larger.)
- median extensive elasticity for women is .34 , for men is .25 .

Aggregate responses and elasticties at the intensive and extensive margins

- elasticities at the extensive margin are larger than at the intensive margin and elasticities for women at both margins are larger than those for men - key determinant of these differences across gender is the age composition of children in the family.
- median intensive elasticity ranges between . 09 and .23. (Frisch elasticities are somewhat larger.)
- median extensive elasticity for women is .34 , for men is .25 .
- aggregate hours elasticity to lies in the range .3 to . 44 (using the empirical distribution of the wages and estimated unobserved heterogeneity).

Aggregate responses and elasticties at the intensive and extensive margins

- elasticities at the extensive margin are larger than at the intensive margin and elasticities for women at both margins are larger than those for men - key determinant of these differences across gender is the age composition of children in the family.
- median intensive elasticity ranges between . 09 and .23. (Frisch elasticities are somewhat larger.)
- median extensive elasticity for women is .34 , for men is .25 .
- aggregate hours elasticity to lies in the range .3 to . 44 (using the empirical distribution of the wages and estimated unobserved heterogeneity).
- little evidence of instability of preferences over time, given demographics and composition.

Fig 8.A Intensive elasticity estimates: UK men and women, age 30-54

Fig 8.B Extensive elasticity estimates: UK men and women, age 30-54

Summary

- We have proposed a systematic way of examining the importance of the extensive and the intensive margins of labour supply in explaining the overall movements in total hours of work over time.

Summary

- We have proposed a systematic way of examining the importance of the extensive and the intensive margins of labour supply in explaining the overall movements in total hours of work over time.
- We have shown how informative bounds can be developed on each of these margins.

Summary

- We have proposed a systematic way of examining the importance of the extensive and the intensive margins of labour supply in explaining the overall movements in total hours of work over time.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 40 years.

Summary

- We have proposed a systematic way of examining the importance of the extensive and the intensive margins of labour supply in explaining the overall movements in total hours of work over time.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 40 years.
- We have shown that the extensive and intensive margins both matter in explaining changes in total hours.

Summary

- We have proposed a systematic way of examining the importance of the extensive and the intensive margins of labour supply in explaining the overall movements in total hours of work over time.
- We have shown how informative bounds can be developed on each of these margins.
- We have applied this analysis to the evolution of hours of work in the US, the UK and France over the past 40 years.
- We have shown that the extensive and intensive margins both matter in explaining changes in total hours.
- We have estimated the total hours elasticity from the distribution of micro elasticities at the extensive and intensive margins.

