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ABSTRACT 

Saltatory alternations occur when two sounds alternate with each other, excluding a third sound 

that is phonetically intermediate between the two alternating sounds (e.g. [p] alternates with [β], 

with non-alternating, phonetically intermediate [b]). Such alternations are attested in natural 

language, so they must be learnable; however, experimental work suggests that they are 

dispreferred by language learners. This paper presents a computationally implemented 

phonological framework that can account for both the existence and the dispreferred status of 

saltatory alternations. The framework is implemented in a maximum entropy learning model 

(Goldwater & Johnson 2003) with two significant components. The first is a set of constraints 

penalizing correspondence between specific segments, formalized as *MAP constraints (Zuraw 

2007, 2013), which enables the model to learn saltatory alternations at all. The second is a 

substantive bias based on the P-map (Steriade 2009 [2001]), implemented via the model’s prior 

probability distribution, which favors alternations between perceptually similar sounds. 

Comparing the model’s predictions to results from artificial language experiments, the 

substantively biased model outperforms control models that do not have a substantive bias, 

providing support for the role of substantive bias in phonological learning.* 
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1. INTRODUCTION. Ultimately, the goal of phonological theory is not just to account for 

which patterns are possible or impossible in human language; the theory must also be able to 

explain why certain patterns, though possible, are more difficult to learn (or are otherwise 

dispreferred) compared to others. This idea has a long history (e.g. see Kiparsky 1982:59–60), 

but until recently most of the theoretical work in phonology focused on the first issue: 

developing a framework that could derive the existing patterns while excluding the ones deemed 

impossible. In recent years, however, phonology has experienced an explosion of new empirical 

results thanks, in part, to new methods for collecting data and more sophisticated ways of 

implementing theories in computational models. These advances have provided us with new 

ways of exploring the learnability of phonological patterns. 

An area of research that has greatly benefitted from these advances, and one that forms the 

basis of the current study, is investigating which a priori biases the learner brings to the language 

acquisition process. Research on this topic, traditionally expressed in terms of discovering the 

nature of Universal Grammar, has long focused on language analysis. With careful analysis of 

individual languages, followed by a comparison of such analyses across many languages, 

phonological theories can be tested on their ability to predict the observed typology: existing 

languages should be derivable using the theoretical framework whereas unattested languages (at 

least, ones deemed to be impossible) should not. A clear application of this approach can be seen 

in calculating a factorial typology in Optimality Theory (OT; e.g. see Prince & Smolensky 2004 

[1993], Kaun 1995, Gordon 2002, Baković 2004, Zuraw 2010).  

Recent experimental and computational work has provided new insights on the issue of 

biases in phonological learning by focusing more directly on the learner rather than solely on the 

analysis of the final, adult grammar. Results in this area have come from a variety of studies, 

including artificial language experiments (Pycha et al. 2003, Peperkamp et al. 2006b, Wilson 

2006, Peperkamp & Dupoux 2007, Moreton 2008, Carpenter 2010, Nevins 2010, Skoruppa & 

Peperkamp 2011, Skoruppa et al. 2011, Baer-Henney & van de Vijver 2012, Finley & Badecker 

2012, White 2014), studies comparing corpus analysis with native speaker intuitions (Zuraw 

2007, Hayes et al. 2009, Becker et al. 2011, Becker et al. 2012, Hayes & White 2013), infant 

experiments (Seidl & Buckley 2005, Cristià & Seidl 2008, Chambers et al. 2011, White & 

Sundara 2014), and computational modeling (Peperkamp et al. 2006a, Wilson 2006, Calamaro & 

Jarosz 2015). 



 

 

3 

This growing body of work has been fruitful, but many questions remain. A particular area 

of interest is determining whether phonetic substance plays a role during phonological learning, 

and if so, understanding how to characterize its role. There is little doubt that the phonetic 

properties of speech sounds play an important role in shaping the phonologies of the world’s 

languages. Under some accounts, learners have access to these phonetic properties as part of 

their subconscious linguistic knowledge, and this knowledge plays a direct role in biasing their 

learning; phonological patterns with strong phonetic motivation are favored by learners relative 

to patterns without such motivation (e.g. Archangeli & Pulleyblank 1994, Hayes 1999, Hayes & 

Steriade 2004, Steriade 2009 [2001]). Inductive biases that specifically draw on prior phonetic 

knowledge have been called SUBSTANTIVE BIASES (Wilson 2006). An opposing view holds that 

phonetic substance has little to no role to play in synchronic phonological learning, and that the 

role of phonetics in shaping phonological systems is limited almost entirely to the domains of 

production and perception (i.e. errors of transmission; see Ohala 1981, 1993; Hale & Reiss 2000; 

Blevins 2004; Yu 2004; see also Moreton 2008). On the experimental side, several researchers 

have appealed to a substantive bias account to explain their results (e.g. Wilson 2006, Finley 

2008, Baer-Henney & van de Vijver 2012, White 2014). However, other studies looking for 

effects of substantive bias in experiments have found null results, and the overall evidence on the 

issue of substantive biases in phonological learning remains inconclusive (for a review, see 

Moreton & Pater 2012). 

In this paper, my starting point is a phonological phenomenon—saltation—that is attested in 

natural languages (Hayes & White 2015), but is dispreferred by human learners in experiments 

(White 2014, White & Sundara 2014). Phenomena with these two properties pose a challenge for 

traditional phonological theory; we must have a framework that can simultaneously account for 

the fact that a pattern is learnable (because it is attested) and the fact that it is dispreferred by 

learners. 

I argue for a theoretical framework with the following notable properties. First, the grammar 

is augmented with a set of constraints, formalized as *MAP constraints (Zuraw 2007, 2013), 

which are capable of penalizing correspondences between any two individual sounds (as opposed 

to traditional faithfulness constraints that only penalize changes at the level of the feature); these 

constraints make it possible for saltation to be derived at all. Second, I adopt a substantive bias, 

based on the principles embodied in the theory of the P-map (Steriade 2009 [2001]), which 
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causes the learner to favor alternations between perceptually similar sounds relative to 

alternations between dissimilar sounds. Finally, following an approach pioneered by Wilson 

(2006), the framework is implemented in a maximum entropy (MaxEnt) learning model 

(Goldwater & Johnson 2003), which allows the substantive bias to be implemented as a ‘soft’ 

bias via the model’s prior probability distribution. To test the model, I compare its predictions to 

results from artificial language experiments. Overall, I show that a model with these components 

is successful at predicting the desired learning behavior: saltations are initially dispreferred, but 

with sufficient input data, they can eventually be learned. I further show that the substantively 

biased model provides a better fit to the experimental data than control models without a 

substantive bias, providing support for the idea that substantive bias plays a role during 

phonological learning. 

The paper is organized as follows. The next section provides background on saltation and 

the challenge that it poses for phonological theory. §3 presents the proposed solution: an 

implemented MaxEnt model with a P-map bias. In §4, I provide an overview of experimental 

data from White 2014 showing that saltatory alternations are dispreferred by language learners; 

these data will serve as the basis for testing the model. §§5–7 focus on testing the model’s 

predictions. The remaining sections (§§8-10) discuss outstanding issues and conclude.  

 

2. THE PROBLEM OF SALTATORY ALTERNATIONS. Hayes and White (2015:267) define 

SALTATION in terms of features. An alternation, A ~ C, is considered saltatory if there exists (in 

the phonological inventory of the language) some segment, B, such that B is left unchanged in 

the context where A alternates with C; and ‘for every feature for which A and C have the same 

value, B also has that value, but that B differs from both A and C’. Another way of expressing 

this definition is in terms of a subset relationship: if the set of features that differ between A and 

B, and the set of features that differ between B and C, are each subsets of the set of features that 

differ between A and C, then the alternation, A ~ C, is saltatory. 

Figure 1 shows an example of a saltation found in the Campidanian dialect of Sardinian (see 

Bolognesi 1998). In this language, voiceless stops are realized as voiced fricatives in intervocalic 

contexts (compare: [pãi] ‘bread’, [sːu βãi] ‘the bread’), but voiced stops are unchanged in 

intervocalic position ([b ĩu] ‘wine’, [sːu b ĩu] ‘the wine’, *[sːu βĩu]). In this example, [p] and [b] 



 

 

5 

differ only in [voice], [b] and [β] differ only in [continuant], and [p] and [β] differ in both [voice] 

and [continuant]; thus, the [p ~ β] alternation saltates over phonetically intermediate, non-

alternating [b]. 

 

 

 

 

 

 

FIGURE 1. A saltatory alternation in Campidanian Sardinian. 
 

 

It is worth noting that the definition of saltation offered by Hayes and White (2015) can be 

generalized to refer to any measure of similarity (as opposed to just features) as in (1).  

 

 (1) Definition of saltation from Hayes & White 2015, generalized. 

a. Let A, B, and C be phonological segments. Assume some relevant measure of 

similarity, S. 

b. Suppose that S(A, B) > S(A, C) and S(B, C) > S(A, C); that is, the similarity of A and 

B and the similarity of B and C are each greater than the similarity of A and C. 

c. If in some context A alternates with C, but B is unchanged, then the alternation A ~ C 

is a saltation.  

 

The measure of similarity referenced in (1) could be number of shared features, but it could also 

refer to perceptual similarity, articulatory similarity, and so on. 

It is difficult to be sure about the cross-linguistic prevalence of saltatory alternations as 

there has not (to my knowledge) been a quantitative typological study. Hayes and White (2015) 

describe several cases of saltation, arguing that they only seem to arise through historical 

accident, and that they may be unstable when they do arise. As far as I am aware, the 

Campidanian Sardinian case just discussed is the only case of saltation that (a) is fully 

productive, (b) applies to a full natural class of sounds (as opposed to a single sound in 

p 
 b 
  β 

–voice'
–con)nuant'[
 ]
 +voice'

–con)nuant'[
 ]
 +voice'
+con)nuant'[
 ]
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isolation), and (c) is not limited to a specific morphological context.1 Thus, the available 

evidence suggests that saltatory phonological patterns which are regular, productive, and stable 

are relatively rare (though not unattested).  

Saltatory alternations, like the one presented in Figure 1, cannot be derived in ‘classical OT’, 

meaning the theory as originally proposed by Prince and Smolensky (2004 [1993]), augmented 

by Correspondence Theory (McCarthy & Prince 1995). The problem, which has been pointed 

out by others (Lubowicz 2002, Ito & Mester 2003, McCarthy 2003, Hayes & White 2015), stems 

from the excessive nature of the change involved in such alternations. In order for /p/ to surface 

as [β], the markedness constraints *V[−voice]V and *V[−continuant]V must each be ranked 

higher than the opposing faithfulness constraints, IDENT(voice) and IDENT(continuant), 

respectively, as in (2). However, this ranking would also result in /b/ surfacing as [β], as shown 

in (3). In order to protect /b/ from changing to [β], IDENT(continuant) would need to outrank 

*V[−continuant]V; however, this would also prevent /p/ from changing all the way to [β] – it 

would instead ‘get stuck’ at intermediate [b]. Thus, if /b/ surfaces faithfully as [b], but /p/ saltates 

over [b] to surface as [β], we get a ranking paradox in classical OT.  

 
(2) Tableau showing /VpV/ ⟶  [VβV] in classical OT. 

         
/VpV/ *V[−voice]V *V[−cont]V IDENT(cont) IDENT(voice) 

 F  VβV   * * 
    VbV  *!  * 

VpV *! *   
 

(3) The same ranking incorrectly derives  /VbV/ ⟶  *[VβV]. 
         

/VbV/ *V[−voice]V *V[−cont]V IDENT(cont) IDENT(voice) 
 F  *VβV   *  
☹    VbV  *!   

                                                
1 For instance, a reviewer asks whether there is evidence in English for saltatory alternations. English does have the 
process of velar softening, which results in [k ~ s] alternations (e.g. opaque [oʊˈpeɪk], opacity [oʊˈpæsɪɾi]) that 
saltate over [t]. Note, however, that the process is lexically and morphologically limited, and that it has somewhat 
limited productivity (Pierrehumbert 2006). 
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2.1. MODIFYING THE CONSTRAINT SET: *MAP CONSTRAINTS. The real problem underlying 

classical OT’s inability to generate saltation is the set of traditional feature-based faithfulness 

constraints assumed in the theory, such as IDENT(cont) and IDENT(voice). Without modifying the 

constraint set, the problem persists even if we abandon strict dominance in favor of weighted 

constraints (as we will do below when we switch to maximum entropy grammars; see §3). With 

traditional IDENT constraints, it is necessarily the case that that a longer journey (e.g. /p/ ⟶ [β]) 

will be less harmonic than a shorter journey (e.g. /b/ ⟶ [β]), assuming that the two outputs are 

identical and therefore violate the same markedness constraints.  

For saltation to be allowed, the opposite must be possible; that is, it must be possible for a 

short journey (e.g. /b/ ⟶ [β]) to incur a greater penalty than a long journey (e.g. /p/ ⟶ [β]). As 

a solution, following Hayes and White (2015), I adopt the *MAP family of correspondence 

constraints, proposed by Zuraw (2007, 2013). Unlike traditional IDENT constraints, *MAP 

constraints are not restricted to penalizing changes of a single feature. Instead, they penalize 

correspondences between any two natural classes of sounds. The constraints are formalized as in 

(4), adapted from Zuraw 2007, 2013.   

 

(4)  *MAP, formalized2 

*MAP(x, y): violated when a sound that is a member of natural class x corresponds to a 

sound that is a member of natural class y. 

 

For the cases considered here, what will be necessary are segment-specific versions of the 

constraints. For instance, *MAP(p, β) would be violated when [p] is in correspondence with [β]. 

In this case, the constraint *MAP(p, β) may be considered notational shorthand for 

*MAP(
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤–voice

–cont
+labial

 ,
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤+voice

+cont
+labial

 ), where each of the natural classes happens to consist of only a single 

sound.  

                                                
2 Zuraw’s formalism also allows the constraints to specify a particular context in which a pair of sounds must not be 
in correspondence (e.g. a sound of natural class x in context A__B should not correspond to a sound of natural class 
y in context C__D). Context-specific versions of the constraints are not necessary here. 
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Before moving on, I will clarify a couple of working assumptions about the *MAP 

constraints. First, I follow Zuraw (2013) in assuming that the *MAP constraints should be limited 

to evaluating correspondences between two surface forms (in this case, output-output 

correspondence; Benua 1997) rather than input-output correspondence. Because of their 

connection to the P-map (discussed in §2.2 below), the *MAP constraints must have access to the 

perceptual similarity of the two forms in correspondence; this notion seems less well defined for 

correspondences involving abstract input forms (see Zuraw 2013 for discussion). Second, I treat 

the *MAP constraints as symmetric here, meaning that *MAP(p, β) and *MAP(β, p) are 

considered equivalent. Having asymmetric versions of the constraints is not critical for the 

present study, though exploring this difference would be an interesting direction for future work. 

It is worth noting that *MAP constraints are not necessarily inconsistent with the traditional 

correspondence constraints proposed by McCarthy & Prince (1995); some of the most widely 

used correspondence constraints can be treated as special cases of *MAP constraints. For 

instance, *MAP([αvoice], [–αvoice]) would be violated whenever there is a change in voicing, 

making it identical to IDENT(voice). Not all traditional correspondence constraints, however, can 

be translated straightforwardly into *MAP constraints (see Zuraw 2013 for a discussion).  

Adopting *MAP constraints, we see that OT straightforwardly allows saltation, without 

requiring any other modifications. The solution for the Campidanian Sardinian case, where 

/VpV/ ⟶ [VβV] but /VbV/ remains unchanged, is shown in the tableaux in (5). The markedness 

constraints *V[−cont]V and *V[−voice]V are ranked above *MAP(p, β) so that underlying /VpV/ 

will surface as [VβV]. *MAP(b, β) can then be ranked above *V[−cont]V so that underlying 

/VbV/ will surface as [VbV], thus avoiding [b ~ β] alternations in cases like [b ĩu] ‘wine’, [sːu 

b ĩu] ‘the wine’.3  

                                                
3 Hayes & White (2015) consider two additional ways that the constraint set could be modified so that saltation is 
possible in OT, namely Local Constraint Conjunction (Smolensky 2006) and Comparative Markedness (McCarthy 
2003). The Local Constraint Conjunction approach to saltation requires conjoining a faithfulness constraint and a 
markedness constraint (see Lubowicz 2002, Ito & Mester 2003). The Comparative Markedness approach depends on 
markedness constraints that are violated only by marked structures present in the output form that were not present 
in the input form (i.e. ‘new’ violations; McCarthy 2003). Both accounts give markedness constraints the ability to 
apply only when forms are unfaithful, linking saltation to the concept of derived environment effects. Hayes & 
White (2015) argue that a *MAP approach, sufficiently constrained, is more restrictive than either Local Constraint 
Conjunction (specifically, the conjunction of faithfulness and markedness constraints) or Comparative Markedness, 
both of which predict highly implausible phonotactic patterns. For reasons of space, I will not repeat those 
arguments here. 
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(5) Deriving saltation in OT with *MAP constraints 

a. /VpV/ ⟶ [VβV] 
 

 

 

 

b. /VbV/ ⟶ [VbV] 
 

 

 

 

However, having a theory that allows saltation is only half of the problem. Merely adding 

the *MAP constraints to the theory is not sufficiently restrictive for two reasons. First, saltation 

appears to be a marked pattern. As mentioned above, cases of regular, stable saltation appear to 

be rare in the world’s languages. Moreover, artificial language studies have shown that saltation 

is a dispreferred pattern during learning. For instance, White (2014) found that adults who 

learned potentially saltatory alternations (e.g. [p ~ v]) were biased to assume that phonetically 

intermediate sounds (e.g. [b]) also alternated, thereby avoiding the saltation. (These results are 

used to test the model’s predictions below, and thus are discussed in more detail in §4.) Other 

studies have shown that 12-month-old infants have a similar bias against saltatory patterns when 

learning novel alternations, both in an artificial language (White & Sundara 2014) and in their 

native language (Sundara et al. 2013). 

Second, and more generally, *MAP constraints are much more powerful than traditional 

faithfulness constraints. Indeed, *MAP constraints can do what traditional faithfulness constraints 

can do and much more. Thus we should be concerned about the implications of adding such a 

powerful tool to our phonological framework. For instance, if *MAP constraints can be freely 

ranked, then why is there not a preponderance of completely arbitrary patterns across the world’s 

languages?4 These observations suggest that the *MAP constraints are not freely ranked; rather, 

the theory must be constrained such that marked patterns, like saltation, are dispreferred. 

                                                
4 There are, of course, cases of unnatural/arbitrary patterns that occur in languages (e.g. Hellberg 1978, Anderson 
1981), and such cases may not be as uncommon as we often assume (e.g. Mielke 2008). These patterns must be 

         
/VpV/ *MAP(b, β) *V[−cont]V *V[−voice]V *MAP(p, β) *MAP(p, b) 

 F  VβV    *  
    VbV  *!   * 

VpV  *! *   

/VbV/ *MAP(b, β) *V[−cont]V *V[−voice]V *MAP(p, β) *MAP(p, b) 
 VβV *!     

F  VbV  *    
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To summarize, without expanding the constraint set beyond traditional feature-based 

faithfulness constraints, it is not possible to generate saltation. *MAP constraints make it possible 

for large changes to be preferred over small changes, which is essential for deriving saltation. 

However, given the apparent rarity of saltation, along with experimental evidence suggesting that 

saltation is dispreferred and general concerns about the powerful nature of the *MAP constraints, 

the theory needs to be sufficiently constrained.  

The next section describes the proposed bias:  a substantive bias based on the P-map 

(Steriade 2009 [2001]). 

 

2.2. CONSTRAINING THE THEORY: THE P-MAP. Steriade (2009 [2001]) proposes that learners 

are equipped with a P-map (perceptibility map), representing knowledge that speakers have 

about the relative perceptual distance between any two pairs of sounds in a given phonological 

context. Under Steriade’s account, the P-map is used as the basis for establishing a priori 

rankings of the correspondence constraints in a way that enforces a minimal modification bias in 

learners: phonological alternations are preferred if they result in minimal perceptual changes. 

Steriade supports her proposal with evidence from language typology, suggesting that 

markedness violations tend to be resolved in ways that require perceptually minimal 

modifications. The P-map has since been used to explain phenomena in a variety of languages 

(e.g. devoicing in Japanese, Kawahara 2006; cluster splittability in Tagalog and several other 

languages, Fleischhacker 2005, Zuraw 2007). 

Saltation represents a gross violation of the P-map because rather than being a case of 

minimal modification, it is a clear case of EXCESSIVE modification. To have a saltatory 

alternation, a language must tolerate a large phonetic change (e.g. [p] ⟶  [β]) while not allowing 

a smaller change (e.g. [b] ⟶  [β]). The change from [p] to [β], for instance, is excessive given 

that [b] is legal in the given context and would require a less extreme change.  

Zuraw (2007, 2013) proposes that the perceptual knowledge encoded in the P-map is 

translated into a priori rankings for *MAP constraints. Thus, *MAP constraints penalizing 

                                                                                                                                                       
learnable at some level. Indeed, saltation is an example of a pattern that I argue is dispreferred but learnable. It is 
therefore desirable that our phonological theory have the ability to account for arbitrary but learnable patterns when 
they do arise. 
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correspondences between perceptually dissimilar sounds (in a given context) are ranked higher 

than constraints penalizing correspondences between similar sounds. This a priori ranking 

represents the default ranking for the *MAP constraints, but the default hierarchy can be 

overturned if contradicted by sufficient evidence in the learner’s input. 

I adopt Zuraw’s proposal that the *MAP constraints are constrained by a substantive bias 

based on the P-map. However, I follow Wilson (2006) in implementing this bias computationally 

via the prior probability distribution (henceforth just ‘prior’) of a maximum entropy (MaxEnt) 

model.5 Instead of the constraints having an a priori strict ranking, they are assigned individual a 

priori preferred weights. Intuitively, these weights bias the learner to consider changes between 

similar sounds to be more likely than changes between dissimilar sounds, consistent with the 

principle of minimal modification inherent in the P-map theory. Based on the difference in 

relative similarity between the sounds involved, *MAP(p, β) will have a higher preferred weight 

than *MAP(b, β). However, as we saw in (5), to have saltation it must be possible to subvert this 

preferred hierarchy; that is, it must be possible for MAP(b, β) to attain a higher weight than 

*MAP(p, β) despite the P-map bias. A virtue of the MaxEnt learning framework is that constraint 

weights can gradually shift away from their prior values during the learning process as the model 

receives input data.  

The next section discusses the details of the MaxEnt model. 

 

3. IMPLEMENTING THE MODEL. 

3.1. OVERVIEW OF MAXIMUM ENTROPY MODELS. MaxEnt models represent a general type of 

statistical model that has been used in a wide range of fields. They were first used to model 

phonological grammars by Goldwater and Johnson (2003) and have since been used in several 

other studies (e.g. Wilson 2006, Hayes & Wilson 2008, Hayes et al. 2009, Martin 2011, Hayes et 

al. 2012, Pater et al. 2012). As implemented here, the framework has a clear connection to OT 

(Prince & Smolensky 2004 [1993]) and Harmonic Grammar (Legendre et al. 1990, Smolensky & 

Legendre 2006), as has been discussed by others (Eisner 2000, Johnson 2002, Goldwater & 

Johnson 2003, Hayes et al. 2009, Culbertson et al. 2013). Since the model is essentially a 

                                                
5 The details of Wilson’s implementation and the implementation here, however, are quite different; see §8. 
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probabilistic instantiation of Harmonic Grammar, the framework is sometimes called 

Probabilistic Harmonic Grammar (PHG; e.g. Culbertson et al. 2013). 

For each input form, the MaxEnt model generates a probability distribution over the set of 

candidate output forms based on their violations of a set of weighted constraints. Specifically, for 

some input x, it assigns a probability to each output candidate y as in (6).  

(6)  Pr(y | x) =
exp(− wiCi (y, x))

i=1

m

∑
Z

,  where  Z = exp(− wiCi (y, x))
i=1

m

∑
y∈Y (x )
∑  

         

Based on (6), the method for calculating the probability of an output candidate y for an input 

x can thus be described as follows. First, for each constraint, multiply the weight wi of that 

constraint by the number of times the input/output pair violates the constraint, Ci(y, x), and then 

sum over all constraints C1...Cm. This summed value, ∑wiCi(y, x), is comparable to the Harmony 

value from Harmonic Grammar (Legendre et al. 1990, Smolensky & Legendre 2006, Pater 2009) 

and has also been called a Penalty score (Hayes & Wilson 2008). Raise e to the negative Penalty 

score and finally divide the result by the sum over all possible output candidates (all y in the set 

Y(x)) for that input x. The sum over all output candidates is typically represented as Z. 

The model is assumed to have a component comparable to GEN (i.e. Y(x) in the formula in 

(6)), which generates the set of output candidates for a given input form. The set of candidates is 

then evaluated on the basis of the grammar. In classical OT, candidates are evaluated based on a 

strict ranking of the constraints, such that one candidate is judged the winner if it is preferred by 

(i.e. has fewer violations of) the highest ranked constraint in the hierarchy (Prince & Smolensky 

2004 [1993]). Constraints lower in the hierarchy have an influence on the outcome only if all 

higher ranked constraints have no preference among the candidates (i.e. only if all candidates 

have the same number of violations for each of the higher ranked constraints). Only one 

candidate (or set of candidates with identical violation profiles) is declared the winner in 

classical OT; all other candidates are losers. Thus, classical OT is not an effective framework for 

modeling variation or gradient outcomes, in which a single input may have multiple possible 

outputs. 

The EVAL component of the MaxEnt model generates a probability distribution over all 

possible candidates for a given input, and unlike classical OT, the total probability may be 
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divided unequally across different candidates. If the constraint weights are sufficiently different 

from one another,6 the MaxEnt grammar will mimic the strict constraint rankings from classical 

OT, such that only one effective winner will emerge with a probability very close to 1.7 In fact, it 

is possible to generate a MaxEnt simulation for any categorical outcome analyzed with classical 

OT as long as there is a finite limit on the number of constraint violations (Johnson 2002). 

However, if the constraint weights are similar to each other, then multiple candidates will be 

assigned probabilities that are not vanishingly small. In such cases, the model predicts that there 

will be variation in which output will be chosen; and crucially for the current study, the predicted 

probabilities for the output candidates can be compared to real data collected from a corpus or an 

experiment. 

MaxEnt is one of several constraint-based models that have been proposed for handling 

phonological variation (e.g. see Anttila 1997, Ross 1996, Nagy & Reynolds 1997, Hayes & 

MacEachern 1998, Boersma & Hayes 2001, Boersma & Pater 2008). MaxEnt models, however, 

have two characteristics that distinguish them from many other approaches to modeling 

variation. First, MaxEnt models involve summing the violations of multiple weighted constraints 

(as in Harmonic Grammar; Legendre et al. 1990, Boersma & Pater 2008) rather than following a 

strict ranking hierarchy. As a result, MaxEnt models have the property of cumulative constraint 

interaction, often called ‘ganging’, whereby multiple violations of lower constraints can add up 

to overcome a violation of a constraint with a greater weight (Hayes & Wilson 2008, Pater 

2009). Second, MaxEnt models are particularly attractive because they are associated with a 

learning algorithm (Berger et al. 1996) that provably converges on the objectively optimal 

grammar, which in MaxEnt is defined as the set of constraint weights that maximizes the 

probability of the training data (taking into account the prior, see below). By comparison, it has 

been shown that the Gradual Learning Algorithm (GLA; Boersma & Hayes 2001) sometimes 

fails to converge on a grammar, even when a grammar exists that could, in principle, account for 

the data (Pater 2008).8 

                                                
6 To achieve this, constraint weights need to be spaced at roughly exponential increments, see Johnson 2002 and 
Goldwater & Johnson 2003. 
 
7 The probability can never actually reach 1 because other candidates must receive some probability, even if 
vanishingly small; in other words, the numerator in (6) can never reach 0 for any given candidate. 
8 A modification to the GLA by Magri (2012) allows it to successfully handle the case put forth by Pater (2008). 
However, in unpublished work, Bruce Hayes (personal communication) has discovered another case in which the 
GLA fails to converge, even when Magri’s modification is used. 
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3.2. LEARNING THE WEIGHTS. Given a set of constraints and the observed data, the learning 

problem for the MaxEnt model is to find the weights that maximize the probability of the 

observed data (thereby minimizing the probability of unobserved data). The probability of the 

observed data, D, is calculated by taking the product of the model-predicted conditional 

probabilities of each output observed during training given its input, {(y1 | x1) ... (yn | xn)}, as in 

(7).  

 

(7)     Pr(D) = Pr(yj | x j )
j=1

n

∏  

 

This calculation is computed on the basis of observed tokens, so 100 examples of the 

input/output pair (b | p) during training will have a greater effect on the model than only one 

example. Because probabilities are being multiplied, the Pr(D) calculated in (7) becomes 

extremely small, so in practice the calculation is done by taking the sum of the log probabilities 

of each output given its input, as in (8). 

 

 (8)   logPr(D) = logPr(yj | x j )
j=1

n

∑                           (equivalent to log (7)) 

 

The model also takes into account a regularizing bias term, the ‘prior’, during learning. The 

prior term is a Gaussian distribution over each constraint weight, defined in terms of a mean, µ, 

and a standard deviation, σ, as in (9). 

 

(9)     (wi −µi )
2

2σ i
2

i=1

m

∑  

 

 The result of (9) is subtracted from the probability calculated in (6). The µ for each 

constraint acts as its a priori ‘preferred’ weight, which is subtracted from the constraint’s learned 

weight, w; the difference in actual and preferred weight is then squared. Thus, as constraints vary 

more from their µ, the penalty imposed by the prior increases. The value of σ2 determines how 
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tightly each constraint’s weight is constrained to its µ. Because it is in the denominator, lower 

values of σ2 result in a greater penalty for weights that vary from their µ. Having low values of σ2 

therefore means that more data are required to move the weights away from µ during learning. 

Higher values of σ2 mean that the weights have more freedom to vary from their µ. In sum, the 

prior acts as a penalty that increases as constraint weights diverge from their a priori preferred 

weights. 

When the prior is uniform across all constraints (and σ2 is not set very high), the model 

prefers grammars in which weight is distributed among each of the constraints, and ample 

amounts of data are needed for constraints to reach relatively extreme weights. For this reason, 

Gaussian priors are commonly used in MaxEnt models as a way to prevent overfitting 

(discussed, e.g., by Goldwater & Johnson 2003). In the model presented here, constraints may 

each receive a different µ, so the prior also serves as a means of implementing a substantive 

learning bias (see §3.3).  

With the inclusion of a prior, the goal of learning is to choose the set of constraint weights 

that maximizes the objective function in (10), in which the prior term in (9) is subtracted from 

the log probability of the observed data (the function in (8)). 

 

(10)   [ logPr(yj | x j )]−[
(wi −µi )

2

2σ i
2 ]

i=1

m

∑
j=1

n

∑   

 

The search space of log likelihoods is provably convex, meaning that there is always one 

objective set of weights that will maximize the function in (10), and this set of weights can be 

found using any standard optimization strategy (Berger et al. 1996). Here, the model was 

implemented using the MaxEnt Grammar Tool,9 which uses the Conjugate Gradient algorithm 

(Press et al. 1992) to find the weights during learning. 

 

3.3. SETTING THE PRIOR. I implemented three versions of the model: one with a substantive 

bias based on the P-map, one in which all constraints have a preferred weight of 0, and one with 

no substantive bias, but a general preference for non-alternation. The latter two models will serve 

                                                
9 Software developed by Colin Wilson and Ben George, made available for public use by Bruce Hayes at 
http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/. 
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as controls for the substantively biased model. The basic architecture of the three models is the 

same. The only difference is how the prior is set in each model.  

 

SUBSTANTIVELY BIASED MODEL. The substantively biased version of the model was 

implemented by assigning each *MAP constraint an individual preferred weight (µ) based on the 

perceptual similarity of the pair of sounds specified by the constraint (for a similar use of prior µ 

values as a way to implement a substantive bias in the domain of syntax, see Culbertson et al. 

2013). For this implementation, two main issues needed to be resolved: (1) how to define 

perceptual similarity, and (2) how to generate the µ for each constraint based on the measure of 

similarity chosen. These issues are discussed in turn. 

First, determining how to define and measure perceptual similarity is not trivial. In reality, 

listeners probably take many factors into account when making such judgments (e.g. see Steriade 

2009 [2001], Mielke 2012, Cristia et al. 2013). Here, I use confusability as an approximation of 

perceptual similarity, where the confusability of two speech sounds is determined according to 

the results of standard identification experiments (e.g. Miller & Nicely 1955, Singh & Black 

1966, Wang & Bilger 1973, Cutler et al. 2004). In these experiments, participants listen to 

recordings of speech sounds (with or without noise) and identify the sounds that they hear in 

some target location. A confusion matrix can then be calculated based on the responses recorded 

for each sound. Even if somewhat coarse, confusability is a straightforward way of 

approximating perceptual similarity, and it works well for the purposes of this study.  

I used confusion data reported in Wang and Bilger 1973, whose participants were native 

English speakers. Specifically, I summed the values from Tables 2 and 3 of Wang and Bilger 

1973, where the target consonants were placed in CV (W&B: Table 2) and VC (W&B: Table 3) 

contexts. The stimuli were presented in noise, and the values from these two tables represent the 

summed values across all signal-to-noise ratios. Reasons for using these values, and potential 

implications of doing so, are discussed further in §6.2. 

The second consideration was how to go from the confusion probabilities (i.e. the results 

from perception experiments) to the preferred weights for the prior. To accomplish this, the 

confusion values were entered into a separate MaxEnt model intended only to generate the prior 

weights. Intuitively, one can think of this model as representing the learner’s experience 

perceiving speech sounds. For reference, the confusion values given to the model are provided in 
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Table 1. Each relevant *MAP constraint was included in the model, and violations were marked 

whenever the two sounds listed in the constraint were confused for one another. For instance, a 

violation was marked for *MAP(p, v) when [p] was confused for [v], or vice versa.10  

 

 
 Responses  Responses 
Stimulus p b f v Stimulus t d θ ð 

p 1844 54 159 26 t 1765 107 92 26 
b 206 1331 241 408 d 91 1640 75 193 
f 601 161 1202 93 θ 267 118 712 135 
v 51 386 127 1428 ð 44 371 125 680 

 

TABLE 1. Confusion values for the combined CV and VC contexts from Wang & Bilger 1973 
(Tables 2 and 3), which were used to generate the prior. Only the sound pairs relevant for the 
current study are shown here. 
 

 

The *MAP constraints then received weights based on how often the two sounds named in 

the constraint were confused for each other in the confusion experiment. The resulting weights 

are provided in Table 2. Sounds that are very confusable, and thus assumed to be highly similar, 

resulted in low weights whereas sounds that are dissimilar resulted in more substantial weights. 

For instance, [b] and [v] are very similar to each other, so *MAP(b, v) received a small weight of 

1.30. On the other hand, [p] and [v] are quite dissimilar, so *MAP(p, v) received a greater weight 

of 3.65. These weights were entered directly into the primary learning model’s prior as the 

preferred weights (µ) for the *MAP constraints. It is preferable to derive the prior weights 

directly from the confusion data in a systematic way, as was done here, rather than ‘cherry 

picking’ the set of prior weights that results in the best performance. The systematic approach 

taken here allows us to draw better conclusions about how the success (or failure) of the model 

relates to the relationship between perceptual similarity and the learning process. 

The σ2 was set to 0.6 for every constraint, which was the value that maximized the fit of the 

model’s predictions to the experimental results. Other values of σ2 are considered in §6.1. 

 

                                                
10 For the prior, µ was set to 0 and σ2 was set to 10,000. This value of σ2 is sufficiently high that the prior had very 
little influence; the weights were essentially free to be whatever they needed to be in order to best predict the 
confusion probabilities in the input data. 
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Labial sounds  Coronal sounds 

 Constraint  Prior weight (µ)  Constraint  Prior weight (µ)  
 *MAP(p, v)  3.65  *MAP(t, ð)  3.56  
 *MAP(f, v)  2.56  *MAP(θ, ð)  1.91  
 *MAP(p, b)  2.44  *MAP(t, d)  2.73  
 *MAP(f, b)  1.96  *MAP(θ, d)  2.49  
 *MAP(p, f)  1.34  *MAP(t, θ)  1.94  
 *MAP(b, v)  1.30  *MAP(d, ð)  1.40  

 

TABLE 2. Prior weights (µ) for *MAP constraints in the substantively biased model, based on 
confusion data from Wang & Bilger (1973). 
 

 

UNBIASED MODEL. The second version of the model, which I will call the ‘unbiased’ model, 

had no substantive bias. The unbiased model had a ‘flat’ prior: every constraint had the same µ 

(set to 0, where 0 means the constraint has no effect on the outcome) and σ2 (set to 0.6, i.e. the 

same value as in the biased model).11 It was otherwise identical to the substantively biased 

model. 

 

ANTI-ALTERNATION MODEL. In the unbiased model, the µ for every constraint was set to 0, 

but in the substantively bias model, each *MAP constraint had a non-zero weight. Thus, the 

unbiased model may not be the fairest comparison because it differed from the substantively 

biased model on two accounts: (1) not having a substantive bias, and (2) having faithfulness 

biased towards 0 rather than some positive weight. When we test the models below, we will see 

that this difference is indeed important.  

To address this issue, I implemented a third model, called the ‘anti-alternation model’, in 

which every *MAP constraint was assigned a prior weight of 2.27. This value is the mean of all 

the *MAP prior weights in the substantively biased model. The mean of the prior weights in the 

biased model was chosen in order to give the anti-alternation model the best chance of 

succeeding. In all other ways, the model was identical to the other two models. The anti-

                                                
11 In principle, a better comparison might involve fitting the unbiased model (and the anti-alternation model below) 
with the σ2 that maximizes its own performance rather using the σ2 that maximizes the performance of the 
substantively biased model. In practice, this turns out not to matter much; the unbiased model and the anti-
alternation model never approach the level of success that the substantively biased model achieves, regardless of 
which value of σ2 is used; see §6.1. 
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alternation model is similar to the substantively biased model in that all of the *MAP constraints 

have non-zero weights; but unlike the substantively biased model, those weights do not vary 

between the constraints according to perceptual similarity.  

Because the *MAP constraints are best conceptualized as output-output faithfulness 

constraints (Benua 1997) or paradigm uniformity constraints (Hayes 1997, Steriade 2000), 

having a non-zero prior for these constraints is akin to having a default preference to avoid any 

alternation at all. I return to this point in §9.  

 

4. THE EXPERIMENTAL DATA TO BE MODELED. The data to be modeled come from two 

artificial language learning experiments reported in White 2014. Here, I provide only an 

overview of the experiments and the results; the reader is referred to the original paper for 

greater detail on the methodology and the statistical analysis.  

 

4.1. EXPERIMENT 1. In Experiment 1, English-speaking participants were divided into two 

conditions. The Potentially Saltatory condition learned two potentially saltatory alternations, 

[p ~ v] and [t ~ ð], during training. Participants heard a singular nonce form (e.g. [luˈman]) 

followed by the corresponding plural form with an additional plural suffix -i (e.g. [luˈmani]); 

these forms were presented with singular and plural pictures, respectively. Half of the trials 

involved filler sounds with no change in the final consonant (e.g. [luˈman] … [luˈmani]), but the 

other half included final consonants demonstrating the crucial alternations (e.g. [kaˈmap] … 

[kaˈmavi]).  

After training, participants were tested using a forced-choice task. They were presented with 

novel singular words ending in trained sounds (e.g. [suˈlap]) and were asked to choose between 

two plural options: a non-changing plural form ([suˈlapi]) and a changing plural form ([suˈlavi]). 

Crucially, they were also tested on singular words ending in the phonetically intermediate sounds 

[b, f, d, θ], which were absent from training. The second group of participants (Control 

condition) had a similar experience; however, they learned alternations that were not potentially 
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saltatory ([b ~ v] and [d ~ ð]) and were tested on a set of untrained sounds, [p, f, t, θ], that were 

not phonetically intermediate between the alternating sounds in their condition. 

The crucial results are presented in Figure 2 (left side). As shown by the dark grey bars, 

participants in both conditions successfully learned the alternations presented during training; 

they correctly changed these sounds at test. Looking at the untrained sounds (light grey bars), we 

see that participants in the Potentially Saltatory condition frequently generalized to the 

intermediate sounds [b, f, d, θ], even though there was no evidence for such changes during 

training. In contrast, participants in the Control condition generalized to untrained sounds much 

less frequently compared to participants in the Potentially Saltatory condition. The greater 

generalization to untrained sounds in the Potentially Saltatory condition (where untrained sounds 

were phonetically intermediate between the alternating sounds) compared to the Control 

condition (where untrained sounds were not intermediate) suggests that participants were biased 

to avoid saltation. By changing untrained sounds in the Potentially Saltatory condition, 

participants could avoid a saltatory system; the trained alternations in the Control condition, on 

the other hand, were non-saltatory regardless of whether participants changed the untrained 

sounds. 

Finally, in the Potentially Saltatory condition, the results revealed a statistically significant 

preference for changing voiced stops ([b, d]; third and fourth bars) compared to changing 

voiceless fricatives ([f, θ]; fifth and sixth bars). We will return to this difference when we 

compare the model predictions to the experimental results in §5.2. 
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FIGURE 2. Experimental results from White 2014 for Experiment 1 (left side) and Experiment 2 
(right side), according to condition. Bars indicate percentage of trials in which the changing 
option was chosen according to the final sound of the singular form. Errors bars show standard 
error of the mean. 
 

 

4.2. EXPERIMENT 2. Participants in Experiment 2 were likewise divided into two conditions. 

In the Saltatory condition, participants learned the same alternations as in the Potentially 

Saltatory condition of Experiment 1 (i.e. [p ~ v] and [t ~ ð]), but they additionally received 

explicit training that the intermediate voiced stops [b, d] did not alternate. Thus, because these 

participants were learning alternations with non-alternating intermediate sounds, they were 

tasked with learning an explicitly saltatory system. Participants in the Control condition learned 

the same alternations as those in the Control condition of Experiment 1 (i.e. [b ~ v] and [d ~ ð]), 

but they were additionally trained that the non-intermediate voiceless stops [p, t] did not 

alternate. The results are shown in Figure 2 (right side). 

Participants were once again successful at learning the alternations presented during training 

(indicated by the dark grey bars). The crucial results in Experiment 2 were the stops that 

participants were trained should not change (indicated by the cross-hatched bars). Participants in 

the Control condition only rarely changed the non-intermediate [p, t] in error (7% of trials on 
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average), but participants in the Saltatory condition were more likely to change intermediate [b, 

d] in error (21% of trials), in spite of their training. The results once again suggest an anti-

saltation bias: participants in the Saltatory condition found it difficult to learn that intermediate 

sounds did not alternate. Finally, the untrained fricatives in Experiment 2 (light grey bars) 

replicated the findings from Experiment 1; these sounds were changed more often in the 

Saltatory condition than in the Control condition. 

In the next section, we test the three models (i.e., the substantively biased, unbiased, and 

anti-alternation models) by comparing their predictions to the experimental results. 

 

5. TESTING THE MODELS. To assess the MaxEnt models’ predictions, the models were 

provided the same training data as the experimental participants, summarized in Table 3. Recall 

that each model was also provided with a set of constraints (two markedness constraints and a set 

of relevant *MAP constraints), and one of three priors, as discussed in §3. Given the training data 

and the prior, each model learned a grammar (i.e. a set of weights for each constraint; see §3.2), 

and was then tested on the same test items seen by the experimental participants. The resulting 

model predictions (discussed in the following sections) were then compared to the aggregate 

experimental results to determine how well each model approximated human performance.  

 

 
 Experiment 1  Experiment 2 
 Potentially 

Saltatory condition 
 Control 

condition 
 Saltatory  

condition  
Control 

condition 
 18 p ⟶  v  18 b ⟶  v  18 p ⟶  v  18 b ⟶  v 
 18 t ⟶  ð  18 d ⟶  ð  18 t ⟶  ð  18 d ⟶  ð 
     9 b ⟶  b  9 p ⟶  p 
     9 d ⟶  d  9 t ⟶  t 

 

TABLE 3. Overview of training data for the MaxEnt model, based on the experiments in White 
2014. 
 

 

5.1. GENERATING THE MODEL PREDICTIONS. During learning, the model considered all 

obstruents within the same place of articulation as possible outputs for a given input. For 
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instance, for input /p/, the model considered the set {[p], [b], [f], [v]} as possible outputs. In the 

observed training data, however, each input had only one possible output because there was no 

free variation in the experimental training data (e.g. in Experiment 1 singular-final [p] or [b], 

depending on condition, changed to [v] 100% of the time in the plural). Thus, during learning the 

model was trying to account for the fact that the observed output was the winner and the other 

three possible outputs were losers. At test, the model only considered the relative probability of 

two possible outputs – that is, the two outputs that the experimental participants considered in the 

forced-choice task. The goal was to put the model and the participants in the same situation:  

during training, neither the participants nor the model knew the format of the test phase, so they 

had to consider all possible outputs for each input. But at test, the model and participants alike 

were forced to choose between only two possible outputs. 

As an example, consider how the predictions were generated for the substantively biased 

model in Experiment 1. Table 4 shows how the constraint weights changed from their prior 

weights as a result of the training data in Experiment 1.  

In the Potentially Saltatory condition (training = p ⟶ v; t ⟶ ð), we see that both 

markedness constraints, *V[–voice]V and *V[–cont]V, pick up weights so that voiceless stops 

will be changed to voiced fricatives. Likewise, the weights for *MAP(p, v) and *MAP(t, ð) are 

substantially reduced because the training data provide evidence that those mappings indeed 

occur. Other *MAP constraints involving [p] and [t] (i.e. *MAP(p, b), *MAP(t, d), *MAP(p, f), 

*MAP(t, θ)) have modest increases in their weights because they all play a role (during learning 

though not at test, where only two outcomes are possible) in ensuring that [p] and [t] are mapped 

to [v] and [ð], respectively, rather than to some other sound ([b], [f], [d], or [θ]). Weights for the 

remaining *MAP constraints remain at their prior weights because they have no effect on the [p] 

⟶ [v] or [t] ⟶ [ð] outcomes. 

In the Control condition (training = b ⟶ v; d ⟶ ð), the markedness constraint *V[–cont]V 

gets a substantial increase in weight to motivate spirantization. The markedness constraint    

*V[–voice]V receives a small increase in weight due only to its limited role in preventing [b] and 

[d] from changing into [p] and [t], respectively. *MAP(b, v) and *MAP(d, ð) have substantially 

reduced weights (almost to 0) because the training data indicate that such mappings are allowed. 

Once again, other *MAP constraints involving [b] or [d] receive modest increases in their weights 

so that [b] and [d] will be mapped to [v] and [ð], respectively, rather than to some other sound. 
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The weights of the remaining *MAP constraints, which have no effect on the outcomes of the 

training data, remain at their prior values.  

 

 

Constraint  Prior weight  

Post-learning weight  
Potentially Saltatory 

condition  Control condition 
*V[–voice]V  0  2.20  0.57  
*V[–cont]V  0  1.86  1.80  
*MAP(p, v)  3.65  2.17  3.65  
*MAP(t, ð)  3.56  2.22  3.56  
*MAP(p, b)  2.44  2.77  2.48  
*MAP(t, d)  2.73  3.02  2.76  
*MAP(p, f)  1.34  1.90  1.34  
*MAP(t, θ)  1.94  2.34  1.94  
*MAP(b, v)  1.30  1.30  0.15  
*MAP(d, ð)  1.40  1.40  0.25  
*MAP(f, v)  2.56  2.56  2.56  
*MAP(θ, ð)  1.91  1.91  1.91  
*MAP(b, f)  1.96  1.96  2.25  
*MAP(d, θ)  2.49  2.49  2.70  

 

TABLE 4. Prior constraint weights and post-learning weights (substantively biased model) in the 
Potentially Saltatory and Control conditions of Experiment 1. 

 

 

From the post-learning weights, the model calculates the predicted probability of each 

output candidate at test, given each input. These probabilities are calculated as described in §3.1. 

Representing the calculations in an OT-style tableau highlights the MaxEnt grammar’s similarity 

to OT and Harmonic Grammar. A couple of examples are given in (11) for inputs /VpV/ and 

/VbV/ in the Potentially Saltatory condition of Experiment 1. Constraint weights are taken from 

Table 4. 

 

(11)  Calculating predicted probabilities in tableaux 

 a. Input /VpV/ in Experiment 1, Potentially Saltatory condition 
         

/VpV/ 
*V[−voice]V 

2.20 
*MAP(p, v) 

2.17 
*V[−cont]V 

1.86 
*MAP(b, v) 

1.30 
Penalty 
score e (–penalty) 

Predicted 
prob. 

   VvV  1   2.17 .1142 .87 
    VpV 1  1  4.06 .0172 .13 
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b. Input /VbV/ in Experiment 1, Potentially Saltatory condition 

 

 

The predicted probabilities of each output candidate can then be compared to the 

experimental results. In the following sections, we will take a detailed look at the predictions of 

each of the three models (substantively biased, unbiased, and anti-alternation) for Experiment 1 

and Experiment 2. The predictions for each model are shown in Figure 3, superimposed on the 

experimental results for easy comparison.12 For reference, the prior and post-learning weights for 

each model (like those presented in Table 4) are provided in the Supplementary Materials, along 

with greater discussion of why the weights changed as they did. 

 

5.2. EXPERIMENT 1. Based on the results from Experiment 1 (§4.1), there are three main 

patterns that the learning model should be able to capture. First, participants were successful at 

learning the alternations that they were trained on (i.e. [p ~ v] and [t ~ ð] in the Potentially 

Saltatory condition; [b ~ v] and [d ~ ð] in the Control condition). Second, participants 

generalized to untrained sounds more often in the Potentially Saltatory condition, where the 

untrained sounds were phonetically intermediate, than in the Control condition where they were 

not intermediate. Finally, in the Potentially Saltatory condition, there was a significant 

preference to change the voiced stops [b, d] compared to the voiceless fricatives [f, θ], even 

though neither group was presented during training. 

Looking at the predictions for Experiment 1 (Figure 3, left side), we see that each of the 

models predicts a comparably high rate of success on the alternations that were presented during 

training (indicated by the dark grey bars). The more interesting comparison comes from looking 

at the models’ predictions for the untrained sounds (light grey bars). The three models will be 

considered in turn. 

                                                
12 I would like to thank Jennifer Culbertson for kindly sharing the R code that was used (with modification) to make 
the plots in Figure 3, which are based on similar plots found in Culbertson et al. 2013. 

/VbV/ 
*V[−voice]V 

2.20 
*MAP(p, v) 

2.17 
*V[−cont]V 

1.86 
*MAP(b, v) 

1.30 
Penalty 
score e (–penalty) 

Predicted 
prob. 

   VvV    1 1.30 .2725 .64 
    VbV   1  1.86 .1557 .36 
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SUBSTANTIVELY BIASED MODEL. The substantively biased model correctly predicts greater 

generalization to untrained sounds in the Potentially Saltatory condition than in the Control 

condition. In the Potentially Saltatory condition, the trained alternations ([p] ⟶ [v]; [t] ⟶ [ð]) 

motivate an increase in the weights of both markedness constraints, *V[−cont]V and 

*V[−voice]V. These two markedness constraints also motivate changing the intermediate sounds 

[b, d] and [f, θ], respectively. The weights of the *MAP constraints protecting the intermediate 

sounds from changing remain at their fairly low prior weights since these sounds did not appear 

during training. Therefore, we see a large amount of generalization to intermediate sounds.  

In the Control condition, the model predicts much less generalization to untrained sounds. 

The trained alternations (b ⟶ v; d ⟶ ð) cause a large increase in the weight of *V[−cont]V, 

but only a tiny increase for *V[−voice]V. Because *V[−voice]V has a low weight, we see little 

generalization to [f] ⟶ [v] or [θ] ⟶ [ð]. Moreover, because *MAP(p, v) and *MAP(t, ð) have 

large prior weights, we see little generalization to [p] ⟶ [v] or [t] ⟶ [ð]. 

It is worth emphasizing that the substantively biased prior plays a key role in causing the 

saltation avoidance pattern in the model’s predictions. In the Potentially Saltatory condition, the 

high prior weights of *MAP(p, v) and *MAP(t, ð) mean that the two markedness constraints must 

receive substantial weights in order for the trained alternations to be learned. This, coupled 

with the relatively low prior weights of the *MAP constraints protecting the intermediate 

sounds, results in a large amount of generalization. In the Control condition, the high prior 

weights of *MAP(p, v) and *MAP(t, ð) result in little generalization to those sounds. The 

consequence is asymmetric generalization that is consistent with the P-map: alternation between 

dissimilar sounds is generalized to similar sounds, but not vice versa.  

Finally, the model also accounts for the preference observed in the Potentially Saltatory 

condition for spirantizing intermediate stops (i.e. [b ~ v] and [d ~ ð]) compared to voicing 

intermediate fricatives ([f ~ v] and [θ ~ ð]). This difference falls out directly from the P-map 

prior. Taking the labials as an example: because [b] and [v] are more perceptually similar than [f] 
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and [v], *MAP(b, v) has a lower prior weight than *MAP(f, v). As a result, changing [f] to [v] 

garners a greater penalty than changing [b] to [v], leading to the difference observed.  

 

UNBIASED MODEL. Looking at the unbiased model’s predictions, we see first of all that the 

predictions are identical for labials and coronals, and that they are identical for voiced stops and 

voiceless fricatives in the Potentially Saltatory condition. Because the model does not have 

access to perceptual similarity, there is no a priori difference between, for instance, the 

alternations [b ~ v] and [f ~ v]. As a result, the model is unable to account for the significant 

difference between voiced stops and voiceless fricatives observed in the Potentially Saltatory 

condition.  

Perhaps the most striking aspect of the predictions is how much the model overestimates the 

amount of generalization to untrained sounds in the Control condition. In fact, the model predicts 

more overall generalization to untrained sounds in the Control condition than in the Potentially 

Saltatory condition, opposite of the experimental results. This extreme amount of 

overgeneralization, however, is primarily due to the fact that the *MAP constraints all have a 

prior weight of 0 rather than the lack of substantive bias per se. Because the untrained sounds are 

absent in training, there is no reason to raise the weights of the *MAP constrains protecting these 

sounds, so the weights remain at 0. With this in mind, let us turn to the anti-alternation model, in 

which the *MAP constraints are all set with a non-zero prior weight, which is more comparable 

to the prior weights in the substantively biased model. 

 

ANTI-ALTERNATION MODEL. The anti-alternation model also makes no distinction between 

labials and coronals; moreover, it is unable to account for the greater preference seen in the 

Potentially Saltatory condition for changing intermediate voiced stops compared to intermediate 

voiceless fricatives. Both outcomes follow from the fact that all of the *MAP constraints have the 

same prior weights. 

The most critical problem of the model is that, like the unbiased model, it predicts the 

incorrect pattern of generalization for untrained stops. Specifically, it predicts more 

generalization in the Control condition (where untrained stops are not phonetically intermediate) 

than in the Potentially Saltatory condition (where they are phonetically intermediate), which is 

the opposite of the experimental results. This problem is once again due to the fact that the *MAP 
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constraints have the same prior weights. Without the P-map bias, which assigns *MAP(p, v) a 

higher prior weight than *MAP(b, v), the model lacks the a priori knowledge that [b ~ v] is a 

more likely alternation than [p ~ v].  

FIGURE 3. Predictions of the substantively biased, unbiased, and anti-alternation models 
superimposed on the experimental results, according to experiment and condition. 
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5.3. EXPERIMENT 2. Recall that in Experiment 2, participants were trained on the same 

alternations as in Experiment 1 (Saltatory condition: p ⟶ v and t ⟶ ð; Control condition: b ⟶ 

v and d ⟶ ð), but they were additionally trained that certain stops did not alternate (Saltatory 

condition: b ⟶ b and d ⟶ d; Control condition: p ⟶ p and t ⟶ t). Based on the experimental 

results (§4.2), there are two main patterns that the learning model should be able to capture. First, 

participants in the Saltatory condition were more likely than participants in the Control condition 

to change the trained non-alternating stops in error. Second, generalization to untrained fricatives 

was greater in the Saltatory condition than in the Control condition, replicating the basic effect 

from Experiment 1.  

Looking at the predictions (Figure 3, right side), we see that the models have comparable 

predictions on the trained alternations (dark grey bars); therefore, we will focus on the trained 

non-alternating sounds (cross-hatched bars) and the untrained sounds (light grey bars). Each of 

the three models will again be considered in turn.  

 

SUBSTANTIVELY BIASED MODEL. Consistent with the experimental results, the substantively 

biased model predicts that intermediate [b, d] in the Saltatory condition will be changed in error 

more frequently than [p, t] in the Control condition (Figure 3a, cross-hatched bars). This 

difference can be directly traced to the P-map bias implemented in the prior. In both conditions, 

the alternations learned during training (Saltatory condition: p ⟶ v and t ⟶ ð; Control 

condition: b ⟶ v and d ⟶ ð) lead to an increase in the weight of *V[−cont]V. However, the 

increased weight of *V[−cont]V also motivates spirantization of the non-alternating stops seen 

during training. The only way to protect these stops from changing is to raise the weights of the 

relevant *MAP constraints even higher. In the Control condition, examples of non-changing [p] 

and [t] in training lead to increases in the weights of *MAP(p, v) and *MAP(t, ð); since these 

*MAP already have high prior weights, it is easy to reach a sufficiently high weight to (mostly) 

overcome the rising weight of *V[−cont]V. In the Saltatory condition, cases of non-changing [b] 

and [d] in training also lead to increased weights for the relevant *MAP constraints, *MAP(b, v) 

and *MAP(d, ð) in this case. However, because these *MAP constraints have low prior weights, 
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their weights do not reach a sufficiently high level to fully protect the intermediate stops, 

resulting in a large number of errors.  

Additionally, as in Experiment 1, the model predicts a greater tendency to change untrained 

fricatives ([f] and [θ]) in the Saltatory condition than in the Control condition, consistent with the 

experimental results.13 

 

UNBIASED MODEL. Unlike the substantively biased model, the unbiased model is not able to 

account for the basic anti-saltation effect. Specifically, it predicts more errors on voiceless stops 

in the Control condition than on voiced stops in the Saltatory condition, contrary to the 

experimental results (Figure 3b, cross-hatched bars). The model also overgeneralizes to 

untrained fricatives, just as it did for Experiment 1.  

As in Experiment 1, the model’s failures can be attributed to the fact that all *MAP 

constraints have a prior weight of 0. For the untrained fricatives, the weight of the relevant *MAP 

constraints never have a reason to rise above 0, leading to overgeneralization (i.e. the same 

problem as in Experiment 1). The reason that the model predicts too many errors for voiceless 

stops in the Control condition is somewhat subtler. Using the labials as an example, the only 

constraint that can motivate the [b] ⟶ [v] change found in the training data is *V[–cont]V; 

however, raising this constraint also causes [p] to change. The only way to protect [p] from 

changing is to increase the weight of *MAP(p, v). But because all of the constraints start at 0, the 

model is unable to raise the weight of *V[–cont]V enough to motivate the [b] ⟶ [v] alternation 

while also raising the weight of *MAP(p, v) enough to protect [p] from changing. *MAP(p, v) 

would need to be raised far above *V[–cont]V in order to protect [p]. By contrast, in the 

substantively biased model, *MAP(p, v) has a high prior weight, so achieving the necessary 

dispersion of the weights is possible.  

 
                                                
13 One point of concern is that the model consistently underestimates the performance on trained alternations. This is 
especially noticeable in the Control condition of Exp. 2, but it holds to a lesser extent in the other conditions as well. 
Note that the problem is not limited to the substantively biased model; rather, it is true of all three models. Two 
factors may be relevant here. First, White’s (2014) experiments required participants to reach an 80% accuracy 
criterion on trained items before moving into the test phase, but this criterion is not taken into account in the model. 
This aspect of the experimental design may have artificially increased accuracy on trained alternations. Second, it is 
possible that learners have a regularization bias, biasing them towards applying processes 100% or 0% of the time, 
which is not taken into account by this model (but see Culbertson et al. 2013 for an implementation of a 
regularization bias in a MaxEnt model). These ideas are speculative at this point, and a more complete 
understanding of the issue is left for future research. 
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ANTI-ALTERNATION MODEL. The predictions of the anti-alternation model provide a good 

overall fit to the results from the Saltatory condition. However, like the unbiased model, the anti-

alternation model fails to account for the crucial DIFFERENCE in the number of errors observed 

for trained non-alternating stops in the two conditions. Specifically, it predicts slightly more 

errors on the voiceless stops [p, t] in the Control condition than on the intermediate voiced stops 

[b, d] in the Saltatory condition (Figure 3c, cross-hatched bars). In the experimental results, there 

were very few such errors in the Control condition. 

The reason for the anti-alternation model’s failure once again stems from the model’s lack 

of substantive bias. In the Control condition of Experiment 2, the model must account for [b] ⟶ 

[v] changes while also accounting for the fact that [p] is not spirantized. To do so, the weight of 

*V[–cont]V needs to be moderate, the weight of *MAP(b, v) needs to be low, and the weight of 

*MAP(p, v) needs to be high. In the substantively biased model, the prior weights make it easy to 

reach this arrangement: *MAP(b, v) already has a low prior weight and *MAP(p, v) already has a 

high prior weight. In the anti-alternation model, on the other hand, the prior weights for *MAP(b, 

v) and *MAP(p, v) are identical, which hinders the model’s ability to reach the relative weighting 

necessary to account for the data.  

 

5.4. OVERALL MODEL PERFORMANCE. As we observed in the previous sections, only the 

substantively biased model accounts for all of the qualitative differences found in the 

experimental results. How well do the models perform overall? We can consider the overall fit of 

the models by plotting the individual observations from Experiment 1 and Experiment 2 against 

the predictions of each model, as shown in Figure 4. Each point in the figure represents one 

observation, with the model prediction (x-axis) plotted against the mean experimental result 

across all participants (y-axis). For example, one point represents the mean percentage of [p] ⟶ 

[v] OBSERVED in the Control condition of Experiment 1 plotted against the PREDICTED percentage 

of [p] ⟶ [v] for that condition. Table 5 further shows the r2 and log likelihood for each model, 

fitting the model predictions to the experimental results. 

Overall, we see that the predictions of the substantively biased model produce an excellent 

fit to the observed experimental data, accounting for about 94% of the overall variance (r2 = .94). 

Recall that the prior weights (µ) used in the substantively biased model were derived directly 

from the confusion data; these values were not fitted to produce the best outcome! In 
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comparison, the unbiased model’s predictions result in a very poor fit to the data (r2 =.25). The 

anti-alternation model’s predictions result in a better fit to the data (r2 =.67) than the unbiased 

model, but its performance is nevertheless much worse than the substantively biased model. Log 

likelihood shows the same pattern: the substantively biased model predicts the greatest likelihood 

of the data, followed by the anti-alternation model, and then the unbiased model. 

Looking at Figure 4, it appears that the anti-alternation model particularly falls short 

(relative to the substantively biased model) when it comes to differentiating the values in the 

middle part of the scale. Indeed, if we consider only the middle two-thirds of the experimental 

results (those with percentages falling between 10% and 90% changed), the r2 value of the 

substantively biased model remains high (r2 = .91), but the fit of the anti-alternation model 

declines drastically (r2 = .36), suggesting that the distinction between these models is even 

greater for the subset of data with intermediate values.  

 

 

FIGURE 4. Predictions of each model plotted against the experimental results, for each of the 
observations above. Fitted regression lines are also included. 
 

 

 

Model r2  Log likelihood 
Substantively biased .94  –1722 
Unbiased .25  –2827 
Anti-alternation .67  –1926 

 

TABLE 5. Proportion of variance explained (r2) and log likelihood, 
fitting each model’s predictions to the experimental results. 
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6. CONSIDERING OTHER POSSIBILITIES. 

6.1. EFFECT OF DIFFERENT σ2 VALUES. As implemented, the only free parameter in the 

model is the squared standard deviation, σ2, of the prior distribution for each constraint. Recall 

that the value of σ2 determines how tightly constraints are bound to their preferred weights (i.e. 

the µ of the prior distribution). Lower values of σ2 mean that more data are required to pull the 

weights away from µ, whereas higher values of σ2 mean that the weights have more freedom to 

change in light of the training data.  

I had no a priori assumptions about how to set σ2, so several values for σ2 were tested. To 

get the predictions reported in §5, σ2 was set to 0.6, the value that maximized the proportion of 

variance explained by the substantively biased model (r2) when fitted to the experimental results. 

But it is worth considering how different values of σ2 affect each of the models’ performance. 

Figure 5 shows the proportion of variance explained (r2) by each of the three models as a 

function of different values for σ2. The most striking aspect of the figure is that for all but the 

most extreme values of σ2, the substantively biased model outperforms the anti-alternation model 

by a considerable margin, and it outperforms the unbiased model by an even greater margin. 

Thus, the overall conclusion that the substantively biased model outperforms the other models is 

not dependent on choosing any particular value for σ2. 

Looking at the substantively biased model, we see that the model performs best between 

the σ2 values of 0.5 and 0.7, the range at which r2 reaches a virtual plateau around .94. The 

reason is that these values of σ2 represent the ‘Goldilocks’ range that is ‘just right’ (at least for 

this particular learning scenario): the values are low enough that the prior can still have a 

substantial effect on the outcome but high enough that the training data also have a substantial 

effect. As the value of σ2 decreases from 0.5, we see that the model’s performance begins to 

drop, with the drop becoming more abrupt as the value of σ2 decreases to 0.2 and below. This 

decrease in performance occurs because as σ2 drops, the prior becomes too strong such that the 

training data have little effect on the constraint weights. On the other side, as the value of σ2 

increases from 0.8 and beyond, the model’s performance continues to decline at a gradual rate. 

At an extreme value of 100,000, the prior has very little practical effect on the constraint 

weights, leaving the weights to be almost entirely dictated by the training data. As a result, all 

three models converge at similar predictions and thus have very similar r2 values. 
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FIGURE 5. Proportion variance explained (r2) by the substantively biased model, the anti-
alternation model, and the unbiased model, according to the value of σ2. 
 

 

6.2. EFFECT OF DIFFERENT CONFUSION DATA USED TO DERIVE THE PRIOR. Given that the 

prior weights are calculated directly from confusion probabilities, the prior weights, and thus the 

model’s performance, will vary depending on which confusion data are used as input. Implicit in 

this design is the prediction that real language learners will learn slightly differently depending 

on their own perceptual experience and linguistic background. This strikes me as a reasonable 

assumption. 

For the model predictions reported above, I added together the confusion data listed in 

Table 2 and Table 3 from Wang and Bilger 1973 (henceforth WB). These data were chosen for 

several reasons. First, WB’s study included all of the crucial consonants tested in White 2014 

(i.e. [p, b, f, v, t, d, θ, ð]). Second, WB’s participants were native English speakers, like those in 

White 2014. Third, the consonants were tested in CV syllables (WB:Table 2) and VC syllables 

(WB:Table 3). The target sounds in White 2014 were located in a VCV context, so I added the 

data from the CV table and the VC table as a compromise (there was no VCV context collected 

in WB). Lastly, WB presented the stimuli in noise; the data from WB’s Table 2 and Table 3 were 
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summed across all of the signal-to-noise ratios (SNRs) that they tested (i.e. six SNRs ranging 

from –10 to +15).  

Even though the experimental stimuli in White 2014 were presented without noise, I chose 

to use confusion data from experiments with noise for two reasons. First, the target sounds are all 

phonemes in English; thus, in clear speech, there are often too few confusions to reliably make 

assumptions about the relative similarity between sounds. For example, Singh and Black (1966) 

collected confusion data for English consonants in a VCV context without noise (i.e. the precise 

conditions in the experiments), but native English listeners made very few errors in that scenario 

(e.g. there were zero errors when the stimulus was [p] or [b]). Thus such data are not useful for 

generating the prior weights because they cannot differentiate pairs of sounds according to their 

similarity.  

Second, it is reasonable to assume that experimental participants use their overall 

experience as listeners throughout their lifetime as the basis of their P-map. In real life, people 

mostly hear speech in noisy environments. Only rarely do people hear speech that is comparable 

to clear, carefully pronounced laboratory speech. Thus, using confusion data in noise as the basis 

of the prior is arguably more appropriate at any rate. 

Despite these considerations, the reader may be curious how dependent these results are on 

using any particular set of confusion data. To address this concern, I ran several versions of the 

substantively biased model, each with different confusion matrices used as input for the prior. 

These models are summarized in Table 6. Note that confusion data from WB without noise are 

also included in this table. In that case, WB tested stimuli of different volumes (ranging from 20 

dB to 115 dB) without noise. There were enough errors (due to the stimuli at lower volumes) to 

differentiate the sounds, so these matrices are included in Table 6.  

As expected, model performance varies according to the precise confusion data used as the 

basis of the prior. Again, it is arguably a good property of the model that its predictions vary 

depending on its perceptual ‘experience’. Crucially, even as different confusion matrices are 

used to index perceptual similarity, the model’s performance remains high. In particular, 

regardless of which confusion matrix is used, the substantively biased model always outperforms 

the unbiased and anti-alternation models: the lowest r2 for the substantively biased model is .77 

compared to .25 for the unbiased model and .67 for the anti-alternation model.  
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In sum, I conclude that although the precise predictions change depending on which 

confusion data are used to generate the prior, the overall success of the model is not dependent 

on using any particular confusion matrix. 

 

 
 Source  Table #  Context  In noise?  r2  
 WB 1973  2–3a  CV and VC  white noise  .94  
 WB 1973  2  CV  white noise  .93  
 WB 1973  3  VC  white noise  .92  
 WB 1973  6–7  CV and VC  none  .93  
 WB 1973  6  CV  none  .82  
 WB 1973  7  VC  none  .96  
 MN 1955  2–6  CV  white noise  .94  
 C-etal 2004   ----b  CV and VC  babbled noise  .82  
 C-etal 2004  ----  CV  babbled noise  .79  
 C-etal 2004  ----  VC  babbled noise  .77  
 Unbiased model (for comparison)  .25  
 Anti-alternation model (for comparison)  .67  

 

TABLE 6. Performance of models (r2) using different confusion data as the basis for the prior. 
The shaded lines represent the models reported above: the substantively biased model (top line) 
and the unbiased and anti-alternation models (bottom lines). In all models, σ2 is set to 0.6. WB = 
Wang & Bilger 1973; MN = Miller & Nicely 1955; C-etal = Cutler et al. 2004. 
 
a Where multiple table numbers are given, the values were summed across those tables. 
b The confusion matrices used from Cutler et al. 2004 are not taken from those reported in the 
paper, which only include the results for one of the SNRs that they tested. Instead, the data were 
taken from the supplemental webpage for their article, available (June 2013) at 
http://www.mpi.nl/world/persons/private/anne/materials.html. The matrices available at that 
webpage include data summed across all SNRs tested. 
 

 

 

6.3. FEATURE-BASED CORRESPONDENCE CONSTRAINTS INSTEAD OF *MAP. Thus far, I have 

assumed *MAP constraints banning correspondence between specific segments, and I have used 

these constraints as the basis for implementing the substantive bias. However, it is possible to 

implement the same kind of substantive bias using feature-based correspondence constraints (e.g. 

traditional IDENT constraints). Under such a scheme, constraints banning changes of more salient 
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features could be assigned higher prior weights than those banning changes of less salient 

features. Do we need the greater specificity of the *MAP constraints?  

To address this question, I replaced the *MAP constraints with two IDENT constraints:  

IDENT(voice) and IDENT(continuant). These constraints were assigned prior weights by modeling 

the confusion data from Wang & Bilger 1973, following the same procedure described for the 

*MAP constraints in §3.3. The resulting prior weights (µ) were 2.05 for IDENT(voice) and 1.28 

for IDENT(continuant); these weights reflect the fact that voicing differences were more salient in 

the Wang & Bilger confusion data overall compared to continuancy differences. 

I tested the model on the same input forms from Experiments 1 and 2 used above. Figure 6 

shows the model’s predictions for all experimental conditions compared to the observed 

experimental results. Overall, the fit of the model’s predictions to the experimental data (r2 = .62, 

log likelihood =  –2055) was much worse compared to the predictions of the substantively biased 

model with *MAP constraints (see Table 5).  

The reason for the model’s poor performance is not surprising. In the Potentially Saltatory 

condition of Experiment 1 and the Saltatory condition of Experiment 2, the trained alternations 

(p ⟶ v; t ⟶ ð) lower the weights of both IDENT(voice) and IDENT(continuant) to near 0 while 

raising the weights of the markedness constraints *V[–voice]V and *V[–cont]V. Because the 

markedness constraints also motivate changing the intermediate sounds [b, d, f, θ] and the 

correspondence constraints are too weak to protect these sounds from changing, the model 

overgeneralizes to untrained sounds (Exp. 1 and 2) and predicts far too many errors in the 

Saltatory condition of Experiment 2. This problem is the same one that causes classical OT to be 

unable to generate saltation (as discussed in §2): without expanding the constraint set beyond 

traditional feature-based IDENT constraints, [p] ⟶  [v] necessarily implies [b] ⟶  [v].  
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FIGURE 6. Predictions of the substantively biased model with IDENT constraints instead of *MAP 
constraints, plotted against the experimental results. A fitted regression line is also included. 
 

 

7. LEARNING A SALTATORY SYSTEM. It is clear from the experimental work cited above 

(White 2014, White & Sundara 2014) that human learners have a bias against saltatory 

alternations – they avoid them when faced with ambiguous data and they make errors when 

forced to learn explicit saltation. We have also seen that a MaxEnt learning model with a bias 

based on the P-map exhibits similar behavior when presented with the same training data. 

However, saltations are attested in real languages (Hayes & White 2015), so it must be possible 

for children to learn such a system successfully. We must therefore ensure that the model can 

eventually learn a saltatory system, even if such a system is initially dispreferred. 

Let us first consider in greater detail how the constraint weights change throughout the 

learning process. For simplicity, I will consider only the *MAP constraints for labials, but the 

ones for coronals behave similarly. 

The *MAP constraints begin in a P-map-compliant orientation because their prior weights 

are calculated on the basis of perceptual confusability. For instance, *MAP(p, v) has a hefty 

weight (3.65) because [p] and [v] are quite dissimilar, *MAP(p, b) has a medium weight (2.44), 

and *MAP(b, v) has a small weight (1.30) because [b] and [v] are very similar. Recall that in 

order to have a saltation, these constraints must eventually subvert the P-map-compliant 

hierarchy such that [p] ⟶ [v] results in a smaller penalty relative to [b] ⟶ [v]. Indeed, by taking 

a look at the weights after the model receives the relatively modest amount of training on explicit 

saltation from Experiment 2 (i.e. 18 p ⟶ v, 18 t ⟶ ð, 9 b ⟶ b, 9 d ⟶ d), we see that the 

weights have just reached a non-P-map-compliant orientation (see Table 7; the relevant rows are 
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shaded). Due to the examples of [p] ⟶ [v] in the training data, the weight of *MAP(p, v) begins 

to plummet (3.65 ⟶ 1.96). At the same time, the initially low weight of *MAP(b, v) is bolstered 

(1.30 ⟶ 2.02) by the examples of unchanging [b] in the data. Although *MAP(p, v) had a higher 

weight than *MAP(b, v) in the prior (3.65 vs. 1.30), their weights have now become quite similar 

(1.96 vs. 2.02) based on evidence from the training data. The weight of *MAP(p, b) is also 

increased (2.44 ⟶ 2.94), helping to ensure that [p] changes all the way to [v] rather than 

stopping at intermediate [b].  

At the stage of learning based just on the training data from Experiment 2, the grammar is 

clearly in a transitional state, and this transitional state illustrates why the learner exhibits the 

anti-saltation learning bias that we see with experimental participants. The training data in 

Experiment 2, though few in number, are entirely consistent with a saltatory pattern. However, 

because the model must work against a prior that biases it towards non-saltatory outcomes, the 

limited amount of training data encountered by the model is not sufficient to completely subvert 

the constraint hierarchy implicit in the P-map prior. Thus, even though there is no variation in the 

training data, the ongoing influence of the prior leads the model to predict errors that are 

comparable to those made by human learners in the experiment. 

 

 

Constraint  Prior weight  
After training data from 

Experiment 2  
After 1000 training data 

of each type 
*V[–voice]V  0  2.45  4.82 
*V[–cont]V  0  1.05  0.30 
*MAP(p, v)  3.65  1.96  0 
*MAP(b, v)  1.30  2.02  4.75 
*MAP(p, b)  2.44  2.94  4.62 
*MAP(p, f)  1.34  1.74  1.75 
*MAP(b, f)  1.96  2.02  2.29 
*MAP(f, v)  2.56  2.56  2.56 

 

TABLE 7. Weights for the markedness constraints and the *MAP constraints (labials only) over 
the course of learning. 
 

 

Can the model fully overcome the prior? To test whether the model can successfully reach 

the desired final state (i.e. if it can learn complete, categorical saltation), I trained the model with 



 

 

40 

the following input: 1000 cases of [p] ⟶ [v], 1000 cases of [t] ⟶ [ð], 1000 cases of unchanging 

[b], and 1000 cases of unchanging [d]. Thus, the type of input was comparable to Experiment 2, 

but the amount of training data was much more extensive, representing the large amount of input 

a real child would receive.  

The resulting constraint weights are given in the right column of Table 7. The weights of the 

*MAP constraints continue to move in the same direction. With this much training data, the 

relevant constraints manage to completely subvert the default hierarchy imposed by the P-map: 

*MAP(p, v) reaches a weight of 0 (i.e,. it has no effect on the outcome) whereas *MAP(b, v) and 

*MAP(p, b) reach substantial weights of 4.75 and 4.62, respectively. The large amount of input 

that goes against the prior leads the model to gradually overcome the prior’s influence as it 

works to successfully account for the observed data. 

Ideally, the resulting model should predict [p] ⟶ [v] and [t] ⟶ [ð] nearly 100% of the time, 

and also that [b] and [d] remain unchanged nearly 100% of the time. The results actually 

predicted by the model are given in Table 8. 

 

 
Labials  Coronals 

 Outcome  Prediction (in %)   Outcome  Prediction (in %) 
 p ⟶ v  99.4    t ⟶ ð  99.4  
 p ⟶ p  0.6    t ⟶ t  0.6  
 b ⟶ v  1.2    d ⟶ ð  1.1  
 b ⟶ b  98.8    d ⟶ d  98.9  

 

TABLE 8. Model predictions when provided with 1000 cases of each observation during training, 
showing that the model can learn a saltatory system. 

 

 

The model predicts that the saltatory system will indeed be learned successfully, with 

virtually equal predictions for the labials and coronals. Only 0.6% of the time does the model 

predict a mistake on the saltatory change, which is low enough to be due to occasional speech 

errors.14 Likewise, the model predicts that the intermediate sounds will be changed in error only 

1.2% of the time for labials and 1.1% of the time for coronals. Again, this is low enough that 
                                                
14 With even more training data, this percentage would get even lower, but never down to 0%. It is not possible for 
an output to have a prediction that is truly 0% in MaxEnt; it can, however, reach such a low number that the 
predicted probability is practically 0% (i.e. so low that the output might never occur in a lifetime). 



 

 

41 

such errors could be considered speech errors. Bolognesi (1998:36) reports that native speakers 

of Campidanian Sardinian do occasionally spirantize intervocalic voiced stops (in error), but that 

such errors occur only rarely.  

As a final note, there is a plausible connection between learnability and typology: learning 

biases may serve as a subtle force pushing language change in certain directions over time (e.g. 

see Moreton 2008, Culbertson et al. 2013). We can hypothesize that the dispreferred status of 

saltation during learning plays a role in its apparent cross-linguistic rarity and instability (though 

other factors, such as strength of phonetic precursors, likely play a role as well; e.g. see Moreton 

2008, Hayes & White 2015). However, if the bias can be overcome given sufficient input, as we 

saw in this section, then we might wonder why the bias is not ALWAYS overcome in the real 

world, given that children learning a language have large amounts of input. This question faces 

many Bayesian models that implement ‘soft’ learning biases via a prior. The answer most likely 

lies in gaining a better understanding of how the model of an individual learner should be 

integrated within a larger model of language learning and language change within a speech 

community over time. These issues must be left for future work.  

 

8. COMPARISON WITH WILSON’S (2006) IMPLEMENTATION. The approach to biased 

phonological learning taken here follows the general approach taken by Wilson (2006):  use the 

prior of the MaxEnt model to implement a substantive bias. However, our approaches differ in 

the details of the implementation. 

Wilson was interested in predicting different rates of velar palatalization (i.e. [k] ⟶ [tʃ] and 

[ɡ] ⟶ [dʒ]) depending on whether the following vowel was [i], [e], or [a]. Perceptually, [k] and 

[tʃ] are most similar before [i] and least similar before [a]. In addition, [ɡ] and [dʒ] are less 

similar than [k] and [tʃ], all else being equal. Typological observations are consistent with the 

predictions of the P-map: velar palatalization is most common before high vowels and least 

common before low vowels; it is also more likely to affect [k] than [ɡ].  

Wilson implements the substantive bias by setting different σ2 values for the various 

markedness constraints he uses to motivate palatalization. In the current paper, by contrast, recall 

that the substantive bias was implemented by setting a different µ for each faithfulness constraint 
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(i.e. *MAP constraint). For clarity, I will refer to these two implementations as ‘Wilson’s model’ 

and the ‘biased *MAP model’, respectively. 

Wilson included 12 markedness constraints in his model. These markedness constraints 

motivate palatalization by penalizing sequences of [k] or [ɡ] followed by a specific vowel (i.e. 

*ki, *ke, *ka, *ɡi, *ɡe, *ɡa) or a general class of vowels (i.e. *kV[–low], *kV[–high], *kV, *ɡV[–low], 

*ɡV[–high], *ɡV). The µ for each of these constraints was set at 0. The σ2 for each constraint was 

calculated based on the perceptual similarity between the penalized input consonant and the 

palatalized output consonant that would result; for example, the σ2 for *ki was calculated based 

on the similarity of [k] and [tʃ] before [i].15 The resulting set of σ2 values determined how easily 

the weight for each markedness constraint could be moved from 0. For example, *ki received a 

relatively high σ2 whereas *ka received a lower σ2 because [k] and [tʃ] are more similar before [i] 

than before [a]. As a result, the weight of *ki could rise more quickly in the face of training data 

relative to the weight of *ka, which would ultimately result in a greater tendency to palatalize 

underlying /ki/ compared to /ka/ assuming equal input data. Wilson’s model also contained two 

faithfulness constraints, one penalizing changes to /k/ and one penalizing changes to /ɡ/, which 

were assigned high (but otherwise fairly arbitrary) values for µ and σ2.  

An important issue for modeling Wilson’s experimental results was predicting 

generalization, for instance that participants who learned palatalization before mid vowels would 

generalize to the high vowel context but not vice versa. Generalization in the model was driven 

by the set of markedness constraints targeting [k] or [ɡ] in general contexts, such as *kV[–low]. 

With a Gaussian prior, MaxEnt models prefer to spread responsibility between several 

constraints rather than putting all of the weight onto a single constraint. For instance, cases of 

/ke/ ⟶ [tʃe] in training would boost the weight of the general constraint *kV[–low]  in addition to 

the more specific constraint *ke. As a result, rates of /ki/ ⟶ [tʃi] would be increased at test even 

if /ki/ never appeared during training. 

To see if the biased *MAP approach can also account for Wilson’s experimental results, I 

ran a version of the model equipped with constraints relevant to Wilson’s palatalization 

                                                
15 Perceptual similarity was calculated by Wilson using the generalized context model of classification (GCM; 
Nosofsky 1986), taking into account featural similarity, acoustic similarity (peak spectral frequency), confusability 
(based on confusion data from Guion 1998), and overall response bias. See Wilson 2006 for a detailed account. 
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experiment. The constraint set and prior weights are shown in Table 9. The model contained two 

markedness constraints to motivate palatalization, *kV and *ɡV, which penalize [k] or [ɡ], 

respectively, when they occur before a vowel. It also contained a set of *MAP constraints 

banning palatalization in the phonological contexts relevant for Wilson’s experiment (i.e. before 

the vowels [i, e, a]). In total, the model had 8 constraints compared to Wilson’s 14 constraints. 

 

 
 Constraint  Prior weight (µ)  
 *kV  0  
 *ɡV  0  
 *MAP(k, tʃ)/_i  0.21  
 *MAP(k, tʃ)/_e  0.98  
 *MAP(k, tʃ)/_a  1.87  
 *MAP(ɡ, dʒ)/_i  1.22  
 *MAP(ɡ, dʒ)/_e  1.66  
 *MAP(ɡ, dʒ)/_a  2.27  

 

TABLE 9. Prior weights (µ) for *MAP constraints based on confusion data in Guion (1998). 

 

 

To get the prior weights for the *MAP constraints, I used the confusion data from Guion 

1998, reported also in Wilson 2006; these are the same confusion data used by Wilson. Guion 

reports confusions for [k], [tʃ], [ɡ], and [dʒ] before [i] and [a]. Following Wilson, I interpolated 

to get values for the pre-[e] context; specifically, I took the average number of confusions for the 

relevant sounds when they occurred before [i] and [a]. Running these through a MaxEnt model, 

as described in §3.3, resulted in the weights in Table 9, which were entered as the prior µ values 

for the constraints in the learning model. We can see that the weights reflect the expected 

similarity relationships: the velar and palatalized sounds are more similar before [i] and least 

similar before [a], and [k] and [tʃ] are more similar than [ɡ] and [dʒ]. All constraints were 

assigned a σ2 of 0.6, the same value used in the models reported in §5. 

The overall proportion of variance explained by the biased *MAP model’s predictions (r2) is 

reported in Table 10 for each of Wilson’s four conditions (critical test items). The r2 values 
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reported by Wilson for his substantively biased model are also provided for comparison. Overall, 

the predictions of the biased *MAP model represent an excellent fit to Wilson’s experimental 

results; the model actually outperforms Wilson’s model in three of the four conditions. The 

exception is in the Mid condition of Experiment 1, where the biased *MAP model’s predictions 

provide a poor fit to the experimental results. However, as others have pointed out (e.g. Moreton 

& Pater 2012), Wilson’s results in this condition are problematic. Participants who learned 

palatalization before mid vowels generalized to the high vowel context (as predicted), but also to 

the low vowel context. Generalization to the low vowel context was unexpected; it is 

inconsistent with predictions based on typology and the P-map, and participants were even 

trained that palatalization should not occur before low vowels. It remains unclear why the results 

in this condition turned out this way, and thus whether the model SHOULD be matching those 

particular results at all. The biased *MAP model was, however, successful at predicting the 

HYPOTHESIZED results in the Mid condition.  

 

 
 

Condition 
 r2 reported for 

Wilson’s model  
r2 for the biased 

*MAP model 
 Exp. 1 – High condition  .76  .92 
 Exp. 1 – Mid condition  .58  .12 
 Exp. 2 – Voiceless condition  .48  .97 
 Exp. 2 – Voiced condition  .69  .93 

 

TABLE 10. Proportion of variance accounted for (r2) by Wilson’s (2006) substantively biased 
model and by the substantively biased *MAP model, when the model predictions are fitted to 
Wilson’s experimental results (critical test items). 
 

 

In sum, these findings suggest that the approach taken here to implementing the substantive 

bias, though different than Wilson’s approach, is nevertheless successful at capturing the overall 

observations about velar palatalization presented in Wilson 2006. The biased *MAP model 

outperforms Wilson’s model in three of four conditions (the last of which had curious results), 

and it does so with fewer constraints. Finally, it is worth noting that Wilson’s implementation of 

the substantive bias as a property of the markedness constraints requires an extension of the 

traditional role of markedness. In Wilson’s model, the markedness constraints must access more 
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than just surface characteristics; they must also have access to the perceptual relationship 

between the faithful candidate (meaning they must first know which candidate is faithful) and 

one of the competitor candidates (cf. targeted constraints, Wilson 2001). In contrast, by putting 

the bias on the faithfulness side, as in the biased *MAP model, this perceptual relationship is 

assessed by constraints that already evaluate correspondence relationships between two 

segments. 

 

9. THE INITIAL STATE. The initial state refers to the (presumably innate) state of the child’s 

grammar before any learning occurs. In a MaxEnt model, the prior is often taken to represent the 

initial state (e.g. see Goldwater & Johnson 2003), so it is worth considering what the model 

presented here assumes about the initial state of the grammar. Of course, the prior in a MaxEnt 

model is not merely an ‘initial’ state. It represents a bias that continues to affect learning 

throughout the lifetime, as opposed to a default setting that has no lasting effect once learning 

has commenced (cf. the Gradual Learning Algorithm; Boersma & Hayes 2001). 

Previous researchers have argued that in the initial state, it must be the case that markedness 

outranks faithfulness (Gnanadesikan 1995, Smolensky 1996, Prince & Tesar 1999, Boersma & 

Levelt 2000, Curtin & Zuraw 2002, Hayes 2004; but cf. Hale & Reiss 1996). As these 

researchers point out, a major argument for having MARKEDNESS >> FAITHFULNESS in the initial 

grammar is that children’s early, non-adultlike productions appear to reflect principles of 

markedness, which would be difficult to explain if faithfulness were highly ranked in the 

grammar.  

In the substantively biased instantiation of the model reported above, markedness 

constraints were set with a µ of 0 whereas the *MAP correspondence constraints were all set with 

non-zero prior weights. This choice does appear to bear some importance for the model’s 

performance. Raising the µ of the markedness constraints to be higher than the highest *MAP µ 

causes problems; specifically, the weights of the markedness constraints never have a reason to 

decrease so the model overgeneralizes.  

This dilemma, however, is easily resolved by assuming that the *MAP constraints are 

evaluated as output-output correspondence constraints (Benua 1997). All of the experiments 

considered here involved alternations in a paradigm (singular/plural forms of nouns), meaning 

that paradigm uniformity (Steriade, 2000) is relevant. Thus, the *MAP constraints can be 
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evaluated as output-output constraints (*MAP-OO) rather than input-output constraints (*MAP-

IO). Moreover, as mentioned in §2.1, we may have independent reasons for favoring *MAP-OO 

to *MAP-IO. *MAP constraints must have access to the perceptual similarity of the two forms in 

correspondence, and it seems conceptually odd to calculate the perceptual similarity between an 

abstract underlying form and a surface form (see Zuraw 2013). 

Several people have claimed that OO-faithfulness constraints are highly ranked in the initial 

state because there appears to be a natural bias in favor of consistent paradigms. Hayes (1997:46) 

argues that OO-faithfulness constraints (which he calls Paradigm Uniformity constraints) are 

undominated in the initial state, appealing to evidence that language change tends to go in the 

direction of paradigm leveling (see McCarthy 1998 for a similar view). Moreover, Tessier (2006, 

2012) and Do (2013) showed that children are biased towards non-alternation, suggesting that 

OO-faithfulness is highly ranked in their grammars.  

The modeling presented here provides further evidence supporting the role of paradigm 

uniformity as a learning bias. Recall that the anti-alternation model (in which the *MAP 

constraints all had equal, non-zero weights) outperformed the unbiased model (in which the 

*MAP constraints, like the markedness constraints, had a prior weight of 0) by a considerable 

margin. Thus, just having a bias against any alternation at all greatly improved the model’s 

performance. However, the substantively biased model performed even better than the anti-

alternation model, suggesting that the substantive P-map bias improved the model over and 

above just having a bias against alternations more generally.  

In conclusion, the account of acquisition proposed here could be summarized as follows. 

Children begin hearing speech sounds at birth (if not before). After months of experience hearing 

speech sounds in many environments, they begin to fill in their own P-map with knowledge 

about the relative similarity of pairs of speech sounds. Some may hold that this knowledge is 

innate, but that assumption is likely not necessary; though the construction of a P-map is likely 

universal, the precise contents of the P-map need not be. After building a lexicon during the first 

year of life, infants begin learning morphology and start learning that the same lexical items can 

appear in multiple morphophonological contexts – that is, they start learning paradigms. At this 

point, they already have a natural preference for paradigm uniformity (i.e. *MAP-OO constraints 

will be preferentially ranked high as they are induced). These *MAP-OO constraints will receive 
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prior weights according to the P-map that has developed from the child’s perceptual experience. 

These weights can then be altered through learning just like the weights of other constraints. 

 

10. CONCLUSION. To summarize, we have seen that saltation is problematic for traditional 

phonological frameworks. First, saltation is attested in real languages, so it must be possible for 

children to learn a saltatory system. Any theory that cannot generate saltations, such as classical 

OT, cannot account for the existence of these patterns. Second, artificial grammar experiments 

have demonstrated that learners are biased against saltatory patterns when learning phonological 

alternations, both in terms of how they generalize (White 2014, Exp. 1) and how they learn 

explicit saltation (White 2014, Exp. 2).  

In light of these observations, phonological theory must be able to account for both the 

existence and the dispreferred status of saltation. Here, I have outlined a framework with the 

following components, which together allow the model to succeed.  

1) *MAP CONSTRAINTS: Saltation is not derivable with only traditional IDENT constraints. 

The family of *MAP correspondence constraints, adopted from Zuraw (2007, 2013), allows 

saltation to be learned by making it possible for correspondences between dissimilar sounds to be 

preferred over correspondences between similar sounds. The *MAP constraints also provide a 

straightforward way of implementing the P-map bias, which serves to constrain their behavior. 

2) P-MAP BIAS: A learning bias based on Steriade’s (2009 [2001]) P-map and the principle 

of minimal modification accounts for the saltation avoidance effect observed in the experiments. 

In particular, it explains why learners would generalize alternations to phonetically intermediate 

sounds, but not to other nearby sounds. It also accounts for why learners erroneously change 

intermediate sounds when learning explicitly saltatory alternations.  

3) MAXENT LEARNING: The architecture of the MaxEnt learning model is the final crucial 

component. The prior term serves as an effective vehicle for implementing the P-map bias 

computationally. Recall that the prior values used to implement the bias were generated directly 

from experimental confusion data, without being arbitrarily manipulated by hand. From there, 

the learning process itself is the reason why the model initially exhibits a bias (due to the prior), 

but is also able reach the final state of (effectively) categorical saltation after sufficient amounts 

of training data have been observed (§7). The MaxEnt framework allows the prior to be 
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overturned GRADUALLY through learning, much in the same way that (we can hypothesize) the 

child would learn saltation. 

Looking at the predictions and results from both experiments, the anti-alternation model 

performs much better than the unbiased model, suggesting that just having non-zero prior 

weights for the *MAP constraints (i.e. a general bias in favor of paradigm uniformity) provides 

some benefit. However, the substantively biased model performs much better than the anti-

alternation model, indicating that the P-map bias plays a role above and beyond a general bias 

against alternation. Crucially, only the substantively biased model correctly predicted the basic 

anti-saltation effect in White’s (2014) Experiments 1 and 2. Overall, these findings support the 

view that substantive bias plays a role in the learning of phonological alternations. The 

substantively biased model proposed here puts forth a hypothesis about how we should represent 

this role within phonological theory. The model also provides an implemented framework that 

can be used in future studies to further explore the role that perceptual similarity plays in 

phonological learning.  
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