UNIVERSAL BIASES IN PHONOLOGICAL LEARNING

ACTL SUMMER SCHOOL, DAY 2

JAMIE WHITE (UCL)

NATURALNESS AND COMPLEXITY IN VOWEL HARMONY

SIMPLICITY VS. PHONETIC NATURALNESS IN VOWEL HARMONY

Simplicity hypothesis:

- 1. $X_{\alpha} ... X$ \rightarrow $X_{\alpha} ... X_{\alpha}$ \rightarrow easy to learn
- 2. $X_{\alpha,\beta}...X$ \rightarrow $X_{\alpha,\beta}...X_{\alpha}$ \rightarrow hard to learn

(Phonetic) Naturalness hypothesis:

- 3. $X_{\alpha}...X$ \rightarrow $X_{\alpha}...X_{\alpha}$ \rightarrow easy to learn
- 4. $X_{q}...X \rightarrow X_{q}...X_{-q} \rightarrow hard to learn$

DESIGN

Learned one of three languages:

- 1. Vowel Harmony (VH): Front stem vowel → front suffix; back stem vowel → back suffix.
- 2. Vowel Disharmony (DH): Front stem vowel → back suffix; back stem vowel → front suffix.
- **3.** Arbitrary (ARB): Stem vowel $[i, æ, v] \rightarrow$ front suffix; stem vowel $[i, u, a] \rightarrow$ back suffix.

Predictions for learning

- Simplicity: VH, DH > ARB
- Phonetic naturalness: VH > DH, ARB
- Both together: VH > DH > ARB

Participants

• 30 American English speakers; 10 per group (N.B. this is low!)

Stimuli

- CVC stems:
 - Front vowels [i, I, æ]
 - Back vowels [u, σ, α]
 - Wide variety of Cs
- –VC suffixes:
 - [εk] ~ [Λk]
- Stimuli were spliced (controls for coarticulation).

Procedure

- Participants told that they would be hearing singular-plural pairs in a novel language.
- **1. Listening phase** (18 trials x 2 reps, all 'correct')

```
[gip] ... (.3 sec silence) ... [gip\epsilonk]
```

2. Learning phase (36 trials x 2 reps, half 'correct/incorrect', half old/novel)

```
[gip] ... [gip\epsilon k] ... Correct plural? \rightarrow Feedback
```

3. Test phase (36 trials x 2 reps, half 'correct/incorrect', all novel)

```
[fig] ... [figɛk] ... Correct plural? (No feedback)
```

Pycha, Nowak, Shin & Shosted 2003, WCCFL

RESULTS

Pycha, Nowak, Shin & Shosted 2003, WCCFL

A MORE IMPLICIT TASK

Participants were familiarized to a novel 'accent' of French containing vowel harmony.

Familiarized to one of 3 'accents':

- Harmonic French: Front vowels are rounded after front rounded vowels, and unrounded after front unrounded vowels.
- **Disharmonic French**: Front vowels are unrounded after front rounded vowels, and rounded after front unrounded vowels.
- Mixed French: Front high vowels as in Harmonic French. Front mid vowels as in Disharmonic French.

Participants then tested to see what they have learned about the speaker's 'accent'.

Skoruppa & Peperkamp 2011, Cognitive Science

DESIGN

Table 2
Sample harmonic and disharmonic French words with mid and high target vowels as realized in Experiments 1 and 2

	Exp. 1				Exp. 2	
Word Type	Harmonic French		Disharmonic French		Mixed French	
Harmonic Mid High	pudeur eunuque	[ønyk]	pudère eunique	[øn <mark>i</mark> k]	pudeur eunique	[øu <mark>i</mark> k] [bλqœʀ]
Disharmonic Mid High	liquère laitie	[lɛt <mark>i</mark>] [lik <mark>ɛ</mark> ʁ]	liqueur laitue	[likæʁ]	liquère laitue	[lɛty] [lik <mark>ɛ</mark> ʁ]

Note. Modified words are shown in boldface.

Predictions for learning (same as in Pycha et al. 2003)

- Simplicity: Harmonic , Disharmonic > Mixed
- Phonetic naturalness: Harmonic > Disharmonic , Mixed
- Both together: Harmonic > Disharmonic > Mixed

Skoruppa & Peperkamp 2011, Cognitive Science

Participants

90 European French speakers (30 per group)

Stimuli

- 304 target words (2+ syllables) selected from the Lexique corpus.
- All contain two adjacent syllables with front vowels.
- Half (152) harmonic in standard French (i.e. both front vowels rounded or unrounded).
- Half (152) disharmonic in standard French.
- · Test stimuli matched for frequency, n. of phonemes, etc.

Procedure

 Participants told to memorize the content of the story while ignoring the speaker's accent.

1. Exposure phase

- 4 stories written such that each exposure item (304 in total) occurred at least once.
- Participants listened to each story twice; answered two multiplechoice Qs after each to check for attention.

Examples:

Standard French (not heard): Sans **pudeur**, il se versa un verre de **liqueur**.

Harmonic French: Sans **pudeur**, il se versa un verre de **liquère**.

Disharmonic French: Sans pudère, il se versa un verre de liqueur.

Mixed French: (mid vowels: harmonic; high vowels: disharmonic)

Skoruppa & Peperkamp 2011, Cognitive Science

Procedure

2. Test phase

- Each participant heard 30 pairs of target items (10 from exposure, 20 novel).
- Pairs consisted of one harmonic item and one disharmonic item (e.g. liquère – pudère).
 - Both nonwords in Standard French.
 - One legal in Harmonic French; one legal in Disharmonic French.
 - Order counterbalanced.
- Task: Select whether the 1st word or 2nd word is pronounced in the same accent as exposure (button press).

RESULTS

Skoruppa & Peperkamp 2011, Cognitive Science

ON THE HORIZON

Recent work by Sharon Peperkamp and Alexander Martin (presented at 2015 DGfS):

- Artificial grammar study (similar to Pycha et al. 2003).
- Participants trained, then tested before and after sleep.
- Vowel harmony pattern, but not vowel disharmony pattern, retained after sleep.

Stay tuned!

NATURAL CLASSES AND FEATURE-BASED LEARNING

FEATURES?

Assume exposure to input like this:

- [kap] 'cow' [kabe] 'cows'
- [fat] 'sheep' [fade] 'sheep (pl.)'
- [vak] 'goat' [vage] 'goats'

Do people learn this:

$$p \rightarrow b/a$$
 e

$$t \rightarrow d/a e$$

$$k \rightarrow g/a$$
 e

Or this:

$$[-cont] \rightarrow [+voice] / [+syll] [+syll]$$

What if they only get exposed to: Or only to:

- [kap] 'cow' [kabe] 'cows'
- [vak] 'goat' [vage] 'goats'

[kap] 'cow' [kabe] 'cows'

FEATURES?

Questions:

- Is there any psychological reality to the notion of the feature?
- If so, when and how is it used during learning?
- Do learners tend towards maximal generalization, or more towards minimal generalization?

EXP 1

Participants familiarized to one of two artificial languages:

- Language A: allophonic intervocalic fricative voicing.
- Language B: allophonic intervocalic stop voicing.

Exposure phase: heard determiner + noun phrases paired with pictures on the screen.

- Determiner: either nel (meaning 'two') or ra (meaning 'three')
- Noun: CVCV or CVCVC

Asked to memorize as many words as possible.

Participants = 12, 6 per counterbalancing group

DESIGN

Table 2. Phrases in Languages A and B used in exposure phase of Experiment 1

	Language A	A: fricative voicing	Language B: allophonic stop voicing		
'rabbit' 'flower' 'apple' 'fork'	nεl pemu∫ nεl bovi nεl kelaf nεl ginel	ra pemu∫ ra bovi ra kelaf ra ginel	nɛl pemu∫ nɛl povi nɛl kelaf nɛl kinel	ra bemu∫ ra bovi ra gelaf ra ginel	
'hat' 'tree'	nɛl timu	ra daru	nɛl timu	ra daru	
'cat' 'nose' 'bottle' 'house'	nel foʒam nel fulek nel ∫agip nel ∫ubo	ra voʒam ra vulek ra ʒagip ra ʒubo	nɛl foʒam nɛl vulek nɛl ∫agip nɛl ʒubo	ra foʒam ra vulek ra ∫agip ra ʒubo	
ʻballoon' ʻsnail'	nɛl sano	ra zelum	nɛl sano	ra zelum	

PROCEDURE

Exposure phase:

 20 phrases, presented 16 times each (non-dentals) or 8 times each (dentals).
 Semi-random order.

[ra bovi]

Test phase (identical for both lang.)

- Hear a phrase from exposure, followed by the corresponding phrase with a change in voicing.
- Task: Is it the same or different object?
- First tested on old items (12 test, 6 filler), then novel items (48 test, 24 filler).

...[nɛl povi]

(✓ Language B)

(✓ Language A)

RESULTS

EXP 3

Same design, except with highly unnatural alternations.

Table 5. Phrases in Languages A and B used in exposure phase of Experiment 3

	Language	C:	Language D:	
	$/p/ \rightarrow [3]$)	$/\int/ \rightarrow [b]$	
	$/p/ \rightarrow [3]$ $/g/ \rightarrow [f]$ $(/z/ \rightarrow [t])$	\ / V_V	$ \frac{\int / \to [b]}{\sqrt{v} \to [k]} / \sqrt{(d/ \to [s])} $	/_V
	$(/z/ \rightarrow [t])$	J	(/d/ → [s]) J	
'rabbit'	nεl pemu∫	га зети∫	nεl pemu∫	ra pemu∫
'flower'	nɛl bomi	ra bomi	nεl ∫omi	ra bomi
'apple'	nεl kela	ra kela	nεl vela	ra kela
'fork'	nel girel	ra firel	nel girel	ra girel
'balloon'	nɛl doba		nɛl doba	
'tree'		ra tinır		ra tirur
'cat'	nɛl goʒa	ra foʒa	nɛl foʒa	ra foʒa
'nose'	nɛl vusen	ra vusen	nɛl vusen	ra kusen
'bottle'	nɛl ∫anip	ra ∫anip	nɛl ∫anip	ra banip
'house'	nɛl puko	ra zuko	nel zuko	ra zuko
'hat'	nɛl zifu		nɛl zifu	
'snail'		ra setum		ra setum

EXP 3 RESULTS

FOLLOW-UP STUDY

Same design and stimuli as Exp. 1 & Exp. 3 in previous study.

Change in task:

Same Exposure Phase.

[ra bovi]

- Different Test Phase:
 - Participants presented with one item/picture.
 - Then, presented with corresponding picture.
 - Task: produce the correct phrase for the picture.
 - Productions recorded, then coded.

[ra bovi] ...

??

STIMULI

Natural rules

	Nat_A: allophonic fricative voicing		Nat_B: allophonic stop voicing	
'rabbit'	nεl pemu∫	ка реши∫	nɛl pemu∫	ка решп∫
'flower'	nel bovi	ка povi	nel povi	ка povi
'apple'	nel kelaf	ва kelaf	nɛl kelaf	ка gelaf
'fork'	nel ginel	Ra ginel	nel kinel	Ra ginel
'hat'	nεl timu		nel timu	
'tree'		Ra qarn		Ra qarn
'cat'	nɛl foʒam	ва vozam	nɛl foʒam	ва fo3am
'nose'	nel fulek	Ra vulek	nel vulek	Ra vulek
'bottle'	nεl ∫agip	ва zagip	nɛl ∫agip	ва ∫agip
'house'	nεl ∫ubo	ка Зпро	nel zubo	ка зиро
'balloon'	nel sano		nel sano	
'snail'		ка zelum		ка zelum

Unnatural rules

	T.T		II D		
	Unnat_A:		Unnat_B:		
	$/p,g,z/ \rightarrow [3,f,t] / V_V$		$/\int, v, d/ \rightarrow [b, k, s] / V_V$		
'rabbit'	nɛl pemu∫	ка Зеши∫	nɛl pemu∫	ka bemu∫	
'flower'	nel bomi	ка bomi	nɛl ∫omi	ка bomi	
'apple'	nɛl kela	ва kela	nɛl vela	ва kela	
'fork'	nel girel	Ra tītel	nel girel	Ra girel	
'balloon'	nel doba		nel doba		
'tree'		Ra tirnr		Ra tiRAR	
'cat'	nel goza	ка боза	nɛl foʒa	ка боза	
'nose'	nel vusen	ka vusen	nel vusen	ва kusen	
'bottle'	nεl ∫anip	ва ∫anip	nɛl ∫anip	ка рапір	
'house'	nel puko	ка 3uko	nel zuko	ка Зико	
'hat'	nel zifu		nel zifu		
'snail'		ва setum		ка setum	

Participants: 32 (16 for natural, 16 for unnatural)

25

RESULTS

(N.B. Virtually no generalization to untrained dental sounds.)

BACK TO VOWEL HARMONY

EXP. 1 - DESIGN

Participants exposed to artificial language with back harmony:

- CVCV stem.
- [-mi] or [-mu] suffix, depending on stem vowels.
- Stem consonants: [p, b, t, d, k, g, m, n]
- Stem vowels: [i, u, e, o, æ, a]
- E.g.: [bidimi], [madumu]

DESIGN

Four exposure groups:

- Mid Hold-out
 - Stem vowel inventory = [i, u, æ, a]; mid vowels [e, o] missing.
 - All forms harmonic.
- Mid Hold-out Control
 - Same inventory.
 - Mix of harmonic and disharmonic stems only (half of each).
- Low Hold-out
 - Stem vowel inventory = [i, u, e, o]; mid vowels [æ, a] missing.
 - All forms show harmony.
- Low Hold-out Control
 - Same inventory.
 - Mix of harmonic and disharmonic stems only (half of each).

PROCEDURE

Exposure phase

- Instructions: pay attention; don't worry about memorizing.
- 24 stems, followed by stem+suffix. (e.g. [bidi] ... [bidimi])
- For controls: 48 stems (no suffixed forms).
- 5 repetitions for each item.

Test phase

- Presented with stem, then two possible suffixed options.
 - E.g.: [bidi] ... [bidimi] [bidimu]
- Task: Choose the word belonging to the language (button press).
- 36 trials, including Old Stems, New Stems, and New Vowel Stems.
- Stimuli spliced (same stem recording in both suffixed options).

EXP. 1 - RESULTS

Finley & Badecker 2009, Journal of Memory and Language

WHY NOT GENERALIZE TO LOW VOWELS?

Possibility #1:

 Substantive bias against extending back harmony to low vowels.

Possibility #2:

 Those in the Low Hold-out condition learned round harmony, not back harmony.

Possibility #3:

Phonetic interpolation hypothesis.

EXP. 2 - DESIGN

Same as Experiment 1, except:

High Hold-out condition, instead of Low Hold-out.

If it is just phonetic interpolation, then the High Hold-out condition should be just like the Low Hold-out condition:

I.e. No generalization from Mid/Low vowels to novel High vowels.

EXP. 2 - RESULTS

Finley & Badecker 2009, Journal of Memory and Language

INFANT ARTIFICIAL PHONOTACTIC LEARNING

EXP. 2 (I'M SKIPPING 1) - DESIGN

Participants: 30 infants (9-month-olds).

Familiarized to CVCCVC nonce words with one of two phonotactic restrictions:

- [-voice] stops in onset; [+voice] in coda. (ok: todkad, *dakdot)
- [+voice] stops in onset; [-voice] in coda. (ok: dakdot, *todkad)

Basic idea:

- Train infants on a novel phonotactic pattern.
- Then, play them a stream of speech with nonce words that conform or do not conform to the pattern.
- See if they differentiate the conforming vs. non-conforming words.

HEADTURN PREFERENCE PROCEDURE

PROCEDURE

Pattern induction phase (2 min.)

 30 conforming nonce forms played repeatedly through both speakers.

Segmentation phase (1 min.)

- Listened to 4 new nonce words (2 conforming, 2 non-conforming) presented as a continuous speech stream.
- E.g.: kibpugbupgokpagkobgikbapbupgokkibpug...
- Stimuli synthesized; no acoustic cues for word boundaries.

Test phase (12 trials)

- 4 words from segmentation; 3 blocks of repetitions.
- Center light flashes until infant looks. Then one side light flashes.
- Once infant looks, a test item is played until infant looks away for more than 2s.

RESULTS

Saffran & Thiessen 2003, Dev. Psych.

EXP. 3

Same design as Exp. 1, except with phonotactic generalizations that do not follow natural classes:

- [p, d, k] only in onset; [b, t, g] only in coda.
- Or the opposite pattern.

Participants: 30 new 9-month-olds

RESULTS

Saffran & Thiessen 2003, Dev. Psych.

REFERENCES

- Finley, Sara, & William Badecker. (2009). Artificial language learning and feature-based generalization. *Journal of Memory and Language*, *61*, 423–437.
- Peperkamp, Sharon, & Emmanuel Dupoux. (2007). Learning the mapping from surface to underlying reperesntations in an artificial language. In J. Cole & J. Hualde (eds.), *Laboratory Phonology 9* (pp. 315–338). Berlin: Mouton de Gruyter.
- Peperkamp, Sharon, Katrin Skoruppa, & Emmanuel Dupoux. (2006). The role fo phonetic naturalness in phonological rule acquisition. In D. Bamman, T. Magnitskaia, & C. Zaller (eds.), *Proceedings o fhte 30th Annual Boston University Conference on Language Development* (pp. 464–475). Somerville, MA: Cascadilla.
- Pycha, A., Nowak, P., Shin, E., & Shosted, R. (2003). Phonological rule-learning and its implications for a theory of vowel harmony. In G. Garding & M. Tsujimura (eds.), *Proceedings of the 22nd West Coast Conference on Formal Linguistics* (pp. 533–546). Somerville, MA: Cascadilla.
- Saffran, Jenny R., & Erik D. Thiessen. (2003). Pattern induction by infant language learners. *Developmental Psychology*, 39, 484–494.
- Skoruppa, Katrin, & Sharon Peperkamp. (2011). Adaptation to novel accents: Feature-based learning of context-sensitive phonological regularities. *Cognitive Science*, *35*, 348–366.