#### NELS 48, Iceland

Preference for locality is affected by the prefix/suffix asymmetry: Evidence from artificial language learning

James White (UCL)

René Kager (Utrecht University)

Tal Linzen (LSCP/IJN/ENS/EHESS/CNRS)

Giorgos Markopoulos (Aristotle University of Thessaloniki) Alexander Martin (LSCP/DEC/ENS)

Andrew Nevins (UCL)

Sharon Peperkamp (LSCP/ENS/EHESS/CNRS)

Krisztina Polgárdi (Hungarian Academy of Sciences) Nina Topintzi (Aristotle University of Thessaloniki)

Ruben van de Vijver (Düsseldorf University)

## Macro goals

- Addressing two larger issues in the artificial grammar learning (AGL) enterprise.
  - Replicability across labs and populations.
  - Influence of L1 biases (in addition to universal biases) on AGL results.
- Network of researchers across countries/L1s:
  - Dutch (Kager; Utrecht)
  - English (Nevins, White; UCL)
  - French (Linzen, Martin, Peperkamp; ENS)
  - German (van de Vijver; Düsseldorf)
  - Greek (Markopoulos, Topintzi; Aristotle U. of Thessaloniki)
  - Hungarian (Polgárdi; Hungarian Academy of Sciences)

## Today's study

When learning novel vowel co-occurrence restrictions...

- 1. To what extent are learners biased towards local restrictions vs. non-local ones?
- 2. How is the preference for locality influenced by prosodic structure?
  - Word structure (prefix-suffix asymmetry)
  - Stress / prominence

## Background

## Locality

- Robust bias towards locality when learning cooccurrence restrictions. (Finley 2011, 2015; McMullin & Hansson 2014; McMullin 2016)
- True even when learning consonant harmony, which is often non-local in natural languages (McMullin & Hansson 2014; Finley 2015; McMullin 2016)
- McMullin & Hansson 2014:

$$CVS_{x}VCV-S_{x}V \implies CVCVS_{x}V-S_{x}V, \quad S_{x}VCVCV-S_{x}V$$
$$CVCVS_{x}V-S_{x}V \not\Rightarrow CVS_{x}VCV-S_{x}V, \quad S_{x}VCVCV-S_{x}V$$

## Edge effects

• However, non-local co-occurrence restrictions may be favoured when adjacent to salient prosodic edges.

- Endress & Mehler 2010:
  - Adults better at learning restrictions between  $C_1$  and  $C_2$  in  $C_1VccVC_2$  than in  $cVC_1C_2Vc$ .
  - Attributed to advantage from coding edge positions during learning:
    - e.g. "beginning" must be *x* and "end" must be *y*.

#### Prefix-suffix asymmetry

 Previous research arguing for structure in which root + suffix forms a domain to the exclusion of prefixes. (Nespor & Vogel 1986, Peperkamp 1997; Zuraw et al. 2014)



• Suffixes more likely than prefixes to participate in vowel harmony cross-linguistically. (Bakovic 2000, Hyman 2002, Krämer 2002, Finley & Badecker 2009)

#### Prefix-suffix asymmetry

 Previous research arguing for structure in which root + suffix forms a domain to the exclusion of prefixes. (Nespor & Vogel 1986, Peperkamp 1997; Zuraw et al. 2014)



• Suffixes more likely than prefixes to participate in vowel harmony cross-linguistically. (Bakovic 2000, Hyman 2002, Krämer 2002, Finley & Badecker 2009)

#### Stress and vowel harmony

- Vowels in strong positions (e.g. stressed syllable of the root) might be preferred triggers for vowel harmony. (Hyman 2002)
  - E.g. Height harmony spreads leftward from a stressed syllable in Pasiego Spanish. (Penny 1969, Hualde 1991, Kaisse 2016)
- Metaphony-type systems: co-occurrence restriction between stressed syllable and a following vowel, often an affix. (Walker 2005)
  - In some varieties, target and trigger can even be nonlocal. (Walker 2004)

## Experiment

#### **Experiment Overview**

- AGL paradigm
- 'Poverty of the stimulus' design (Wilson 2006)





11

## Design

- Stem vowels:
  - Front [i, e]
  - Back [u, o]

| Stem types |         |         |                |
|------------|---------|---------|----------------|
| CiCi       | C e C i | C u C i | <b>C o C i</b> |
| C i C e    | C e C e | C u C e | C o C e        |
| C i C u    | C e C u | C u C u | C o C u        |
| C i C o    | C e C o | C u C o | СоСо           |

- Stem consonants:
  - [z, n, g] any position; [m, l, d] as  $C_2$  only.
  - No repeated consonants.
- Two alternating affixes: [fi]~[fu] and [be]~[bo]
  One plural, one diminutive (counterbalanced).
- Stimuli recorded by native Hebrew speaker.

## Design

- Manipulated: Affix Type and Stress betweensubjects.
- Four groups:
  - Suffixes, Local stress:
  - Suffixes, Nonlocal stress:
  - Prefixes, Local stress:
  - Prefixes, Nonlocal stress:

[nupó] ... [nupó-fu] [núpo] ... [núpo-fu] [núpo] ... [fu-núpo] [nupó] ... [fu-nupó]

• **Measured**: Proportion of test trials participants chose harmony with local vowel.

**1. Locality**: Overall preference for agreement with local vowel vs. non-local vowel.



**1. Locality**: Overall preference for agreement with local vowel vs. non-local vowel.

**\*** # CVCV – CV # **\*** CVCV – CV #

**2. Affix Type**: Greater locality preference for suffixes than for prefixes.



**1. Locality**: Overall preference for agreement with local vowel vs. non-local vowel.

**#** CVCV – CV # **#** CVCV – CV #

2. Affix Type: Greater locality preference for suffixes than for prefixes.
 [[CVCV - CV]] vs. [[CVCV - CV]] [CV-[CVCV]] vs. [CV-[CVCV]]
 Greater locality preference Weaker locality preference

**1. Locality**: Overall preference for agreement with local vowel vs. non-local vowel.

**#** CVCV – CV # **#** CVCV – CV #

- 2. Affix Type: Greater locality preference for suffixes than for prefixes.
   [[CVCV CV]] vs. [[CVCV CV]] [CV-[CVCV]] vs. [CV-[CVCV]]
   Greater locality preference Weaker locality preference
- **3. Stress**: Greater locality preference when local vowel is stressed.

**CVCÝ – CV** vs. **CVCÝ – CV Greater locality preference**  CVCV – CV vs. CVCV – CV Weaker locality preference

## Participants

#### • Total: 356

- L1 Dutch: 77
- L1 English: 76 (33 from pilot)
- L1 French: 38
- L1 German: 90 (54 from pilot)
- L1 Greek: 75
- Mostly university students.

1. **Training phase** (harmonic stems only)

# **(**núpo] ... [núpofu]

(Later trial...)

[núpo] ... [núpobo]

1. Training phase (harmonic stems only)

[núpo] ... [núpofu]

- 16 trials in training phase:
  8 CVCV stems x 2 affixes, [fi~fu] and [be~bo].
  - One stem for each possible  $V_1V_2$  combination.

1. Training phase (harmonic stems only)

(núpo] ... [núpofu]

2. Verification phase (harmonic stems only)

[gódo] ... [gódofi]...[gódofu]?

- 16 Verification trials :
  - 8 novel CVCV stems x 2 affixes, [fi~fu] and [be~bo].
    - One stem for each possible  $V_1V_2$  combination.

1. **Training phase** (harmonic stems only) (núpo] ... [núpofu] 2. Verification phase (harmonic stems only) )) [gódo] ... [gódofi]...[gódofu]? 80% correct? → No -----Yes 3. Generalization phase (harmonic and disharmonic stems) [púdi] ... [púdifu]...[púdifi]?

- 80 total Generalization phase trials:
  - 16 harmonic stem trials.
    - 8 novel harmonic stems x 2 affixes.
    - Similar to those in training.
  - 64 disharmonic stem trials.
    - 32 disharmonic stems x 2 affixes.
    - Never encountered stems of this type before.
  - All trials mixed together; order randomized.

#### Results – Harmonic stems



#### Results – disharmonic stems

#### Overall locality preference



### Affix Type



## Affix Type



#### Stress



#### Stress



## Affix Type x Stress



## Affix Type x Stress



## Summary

- 1. Strong locality bias overall.
- 2. Robust effect of Affix Type.
  - Strong locality preference between root + suffix.
  - Much weaker preference between root + prefix.
- 3. Very limited effect of stress.
  - No overall effect of stress.
  - Stress appears to interact with Affix Type in some languages.

## Implications

• Consistent with [root+suffix] as a preferred domain for local harmony compared to [prefix+[root]].

→ Consistent with a (preferred) word structure with the root and suffix more closely integrated than the prefix. (Nespor & Vogel 1986, Peperkamp 1997)

- Possible role in explaining why prefixes are less likely to participate in harmony.
- Unified account of prefix/suffix asymmetry for vowel harmony and other processes such as foot assignment.

#### L1 differences

- Subtle differences between L1s in the interaction of Affix Type and Stress.
  - Most apparent interactions in Dutch and Greek.
    - **But**: a potential interaction even in French!
  - Mostly sensible:
    - Suffix & Local Stress >> Suffix & Nonlocal stress, Prefix & Local Stress >> Prefix & Nonlocal stress
    - **But**: strongest locality preference for Suffix & Nonlocal Stress in English??
- Next step: Can aspects of the languages' foot structure, morpho-phonology, etc. explain these differences?

## Future plans

- Hungarian speakers
  - Have vowel harmony in the L1.
- Speakers of a predominantly prefixing language.
   Will they still show a locality preference with suffixes?
- Closer look at vowel height as a factor.

# Thank you!

#### Acknowledgments:

- Help with experiments:
  - Martin Rönsch
  - Remco van der Veen
  - Andrew Clark
- Funding:
  - Deutsche Forschungsgemeinschaft
  - British Academy/Leverhulme Trust

#### Finley & Badecker (2009)

- AGL study of root-controlled and affix-controlled vowel harmony (VH).
- Affix controlled:
  - Prefix-controlled VH learned more poorly than Suffixcontrolled VH.
  - [beme] … [mu-bomo] worse than [beme] … [bomo-mu]
  - Consistent with bias against prefix as harmony trigger.
- Root-controlled:
  - Prefixes and suffixes as VH targets learned equally well.
  - Generalized equally often to other affix type.
  - Conclude that the bias is specifically against prefixes as harmony triggers.

#### Comparison with Finley & Badecker 2009

- Unlike us, F&B found no preference for suffixes in root-controlled harmony.
- Perhaps due to task differences.

#### Comparison with Finley & Badecker 2009

- F&B training: [beme] ... [mi-beme]
  - Very similar to ours.
  - Our results suggest that several participants actually learn a non-local co-occurrence restriction from such input, rather than local harmony: [mi<sub>x</sub>-beme<sub>x</sub>]
- F&B testing:
  - [tede] … [mi-tede] or \*[mu-tede]
  - [beme] ... [beme-gi] or \*[beme-gu]

#### Comparison with Finley & Badecker 2009

- F&B training: [beme] ... [mi-beme]
  - Very similar to ours.
  - Our results suggest that several participants actually learn a non-local co-occurrence restriction from such input, rather than local harmony: [mi<sub>x</sub>-beme<sub>x</sub>]
- F&B testing:
  - [tede] ...  $[mi_x$ -tede<sub>x</sub>] or \* $[mu_y$ -tede<sub>x</sub>]
  - [beme] ...  $[be_xme-gi_x]$  or \* $[be_xme-gu_y]$
- Success on task does not tell us what kind of pattern was learned.