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Monocytes can develop immunological memory, a functional characteristic widely

recognized as innate immune training, to distinguish it from memory in adaptive

immune cells. Upon a secondary immune challenge, either homologous or heterologous,

trained monocytes/macrophages exhibit a more robust production of pro-inflammatory

cytokines, such as IL-1β, IL-6, and TNF-α, than untrained monocytes. Candida albicans,

β-glucan, and BCG are all inducers of monocyte training and recent metabolic profiling

analyses have revealed that training induction is dependent on glycolysis, glutaminolysis,

and the cholesterol synthesis pathway, along with fumarate accumulation; interestingly,

fumarate itself can induce training. Since fumarate is produced by the tricarboxylic

acid (TCA) cycle within mitochondria, we asked whether extra-mitochondrial fumarate

has an effect on mitochondrial function. Results showed that the addition of fumarate

to monocytes induces mitochondrial Ca2+ uptake, fusion, and increased membrane

potential (1ψm), while mitochondrial cristae became closer to each other, suggesting

that immediate (from minutes to hours) mitochondrial activation plays a role in the

induction phase of innate immune training of monocytes. To establish whether fumarate

induces similar mitochondrial changes in vivo in a multicellular organism, effects of

fumarate supplementation were tested in the nematode worm Caenorhabditis elegans.

This induced mitochondrial fusion in both muscle and intestinal cells and also increased

resistance to infection of the pharynx with E. coli. Together, these findings contribute to

defining amitochondrial signature associated with the induction of innate immune training

by fumarate treatment, and to the understanding of whole organism infection resistance.
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INTRODUCTION

Monocytes/macrophages are amongst the cells that comprise
the innate branch of the immune system and until recently,
they were regarded as devoid of immunological memory.
It is currently known that these cells actually possess this
biological attribute, which was named “training” to differentiate
it from the adaptive immune memory (1, 2). Innate immune
training allows macrophages to respond better to a secondary
immunological challenge, even if the primary and secondary
challenges are qualitatively different (3, 4). Innate immune
training of monocytes has been successfully induced with the
Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine
(5), Candida albicans (6), Candida albicans-derived β-glucan (7,
8), and oxidized low-density lipoprotein (oxLDL) (9, 10). Innate
immune training in β-glucan- or BCG-stimulated monocytes
induces a metabolic shift from oxidative phosphorylation to
aerobic glycolysis and inhibition of glycolysis diminishes the
LPS-induced production of TNF-α and IL-6 in BCG-trained
monocytes (7, 11).

Metabolic analyses have shown that in addition to glycolysis
and glutaminolysis, fumarate accumulation constitutes a
metabolic signature of innate immune training; moreover
fumarate itself induces trained immunity, at least in part
by the activation of epigenetics-regulating ezymes that lead
to trimethylation of lysine 4 on histone 3 (H3K4me3) and
acetylation of lysine 27 on histone 3 (H3K27Ac), linking
immunometabolic activation with long-term epigenetic
changes. The epigenetic program induced by fumarate partially
reproduces that of β-glucan-induced training (12). There is
evidence that supports the hypothesis that mitochondria lie at
the heart of immunity (13–15). In this regard, mitochondria
produce a number of metabolites such as fumarate and succinate,
which harbor important inflammatory signaling functions
(16–20) and also provide cellular and systemic homeostasis
through diverse mechanisms involving metabolite-sensing,
calcium signaling, mitochondrial dynamics and cristae structure,
and cell-to-cell communication (21–25).

In this study we have analyzed several functional and
morphological traits of mitochondria, present during the
induction phase of fumarate-mediated innate immune training
in human monocytes, and explored the effect of systemic
exposure to fumarate on C. elegans mitochondria and resistance
to infection.

MATERIALS AND METHODS

Monocyte Isolation
Peripheral blood mononuclear cells (PBMCs) were isolated from
healthy donors after informed consent and under Declaration of
Helsinki Guidelines (Ethics committee numbers LSHTM-5520
and LSHTM-14576) by using Ficoll-paque PLUS (GEHealthcare,
Chicago, IL). Thereafter, monocytes were either enriched by
adherence or isolated by positive selection, using human
CD14 MicroBeads (Miltenyi, Bergisch Gladbach, Germany) and
suspended in RPMI-1640 medium supplemented with pyruvate,
L-glutamine, non-essential amino acids, and 10% fetal calf serum.

Cells were seeded into Petri dishes (Corning Inc, NY, USA),
12-well plates (Corning), or µ-slide 8 well chambers (Ibidi,
Munich, Germany) and incubated overnight at 37◦C in a
5% CO2 atmosphere for adherence. Cells were then used for
morphological and functional assays, as indicated.

Fumarate-Induced Training
Monocytes (5 × 105/well) cultured in 12-well culture plates
(Corning) were supplemented with 100µM of monomethyl
fumarate (MMF) (Sigma, St. Louis, MO, USA) and incubated
for 24 h at 37◦C in a 5% CO2 atmosphere, cells were then
washed with PBS and supplemented with fresh medium, as
previously described (12). As a positive control for innate
immune training, monocytes were incubated with heat-killed C.
albicans (105 cells/mL), instead of MMF, for 24 h, as described
(7). Culture medium was replaced after 3 and 5 days of
culture. At day 7, medium was replaced, cells were added with
Golgistop (BD Biosciences, San Jose, CA, USA) in order to
inhibit protein secretion, and cells were stimulated with 1µg/ml
LPS (Sigma, St. Louis, MO, USA) for 4 h. Cells were carefully
detached by using a cell scraper (Corning) and then fixed with
Cytofix/Cytoperm (BD Biosciences) and labeled with anti-CD14-
APC (HCD14) (BioLegend, San Diego CA, USA), and anti-TNF-
α-FITC (Mab11) moAbs (BD Biosciences).

Production of TNF-α was analyzed by flow cytometry
(FACScalibur, BD Biosciences) on 10,000 events gated in the
viable cell population. Cell viability was usually >80%. Mean
Fluorescence Intensity (MFI) and the percentage of TNF-α-
producing cells, indicative of cytokine production, were assessed
by using the CellQuest software (BD Biosciences).

Mitochondrial Dynamics and Mitochondrial
Membrane Potential (1ψm)
CD14+ cells (4 × 105 cells/well), cultured in µ-slide 8 well
chambers (ibidi GmbH, Gräfelfing, Germany) were labeled with
100 nM tetramethylrhodamine methyl ester (TMRME) (Thermo
Fisher Scientific, Walthman, MA, USA) for 20min at 37◦C.
Cell imaging was performed in time-lapse mode (one image
every 10min for 3 h) on a Nikon Ti-E inverted microscope
with Hamamatsu ORCA-Flash 4.0 Camera, driven by NIS
elements version 4.6 software using a CFI Plan Apo 60x/1.4
DIC Lambda Oil objective. Images were deconvolved using NIS
elements version 4.6 software. The serial images were analyzed
for mitochondrial dynamics parameters (elongation, area, and
interconnectivity), using Image J software (NIH, Bethesda, MD),
as described (26). For1ψmassessment, the same series of images
were analyzed for mean fluorescent intensity (as indicative of
1ψm), using ImageJ software (NIH).

Cytoplasmic and Mitochondrial Calcium
Fluxes
Freshly isolated human monocytes were labeled with 10µM
Fluo-4/AM (Thermo Fisher Scientific), or with 10µM Rhod-
2/AM (Thermo Fisher Scientific) for 30min at 37◦C, for
the assessment of cytoplasmic and mitochondrial calcium,
respectively. Cells were washed with PBS and suspended in
RPMI-1640 medium supplemented with 2mM CaCl2 (Sigma).
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Base calcium concentration, as indicated by the MFI in the
FL-1 channel (for Fluo-4/AM) or in the FL-2 channel (for
Rhod-2/AM) was recorded for 30 s and, then, real-time calcium
mobilization in response to the addition of 100µM MMF was
recorded for 3–4min post-stimulation. At this time, ionomycin
(100 ng/mL) (Sigma) was added, as a positive control of both
cytoplasmic and mitochondrial calcium flux. In another set of
experiments, Rhod-2/AM-loaded cells were exposed to fumarate,
in the absence (no CaCl2 plus EGTA) or in the presence
of extracellular calcium (2mM CaCl2, no EGTA), in order
to analyze if intracellular calcium stores are a source for
mitochondrial calcium influx.

Mitochondrial Shape and Mitochondrial
Cristae Ultrastructure
PBMC-derived monocytes, cultured in Petri dishes (Corning),
were treated for 3 h with 100µM MMF, or left untreated, as a
negative control. Cells were washed with Sorensen buffer and
fixed for 30min with 3% potassium permanganate in Sorensen
buffer. After fixing, cells were carefully scraped off and spun
down in a 15mL tube (Corning) and then in an eppendorf
tube. Cells were washed several times with Sorensen buffer. Cells
were dehydrated with ethanol, embedded in EPON 812 (Electron
Microscopy Sciences, Hatfield, PA, USA) and cured in an oven
at 60◦ C for 24 h. Ultrathin sections (70 nm) were obtained,
and observed with a Jeol JEM1010 electron transmission
microscope, operated at 60 kV. Electron microscopy images were
analyzed with the Image J software (NIH) for the assessment
of morphological characteristics of mitochondria (surface area,
perimeter, Feret diameter, aspect ratio, form factor, roundness),
as well as cristae ultrastructure, as described (27, 28).

Mitochondrial Dynamics and Pharyngeal
Infection in Fumarate-Treated C. elegans

as an Infection Model
C. elegans maintenance was performed using standard protocols
(29), with worms grown at 20 ◦C on nematode growth
media (NGM) that was seeded with E. coli OP50 to provide
a food source. C. elegans strains included: SJ4103 zcIs14
[myo-3::GFP(mit)] (GFP-expressed in mitochondria in muscle
cells) and SJ4143 zcIs17 [ges-1::GFP(mit)] (GFP-expressed in
mitochondria in intestinal cells). An N2 hermaphrodite stock
recently obtained from the Caenorhabditis Genetics Center was
used as wild type. From the L4 (fourth larval) stage of adulthood,
animals were treated throughout life with 10, 50, or 100µM
MMF solubilized in MilliQ water, or MilliQ water alone as a
negative control, which was added topically to NGM plates.

For assessing mitochondrial dynamics, after 24 h from the L4
stage, at day 1 of adulthood, live animals were mounted onto
2% agar pads under a cover slip and anesthetized by placing
them in a drop of 0.2% levamisole and then immediately imaged
for mitochondrial analysis. Confocal microscopy analysis was
performed on a Zeiss LSM510 confocal microscope with a Plan-
Apochromat 63x/1.4 Ph3 objective. Mitochondrial dynamics
were assessed by measuring elongation, area, and connectivity,
as described (26), using Zen Software (Zeiss).

Mortality associated with pharyngeal infection was
assessed daily from the L4 stage throughout worm lifespan
in order to be able to perform necropsy prior to corpse
decomposition. Pharyngeal swelling was analyzed as described
by Zhao et al. (30). As an additional control carbenicillin
was added topically onto a 2-day-old bacterial lawn at a
final concentration of 4mM to prevent bacterial growth and
worms were grown on these plates and pharyngeal infection
mortality assessed.

Differential Interference Contrast (DIC) images of pharyngeal
infection with E. coliOP50 were captured using a Zeiss Axioskop
at x63 magnification on day 13 of adulthood, when pharyngeal
infection is common, in order to illustrate the observable contrast
between healthy, uninfected and infected worms.

Statistical Analyses
Mitochondria shape descriptors and size measurements, as
well as mitochondria cristae density and incident angles were
analyzed by Wilcoxon Rank Test. Mitochondrial dynamics were
analyzed by Wilcoxon Rank Test and ANOVA and Tukey’s
post-hoc test, and C. elegans pharyngeal infection was analyzed
by ANOVA, and unpaired Student’s t-tests. All analyses were
preformed using Graph Pad Prism Software (Graphpad, La Jolla,
CA). A significant statistical difference between controls and
treatments was defined as p < 0.05.

RESULTS

Fumarate-Treated Monocytes Produce
More TNF-α in Response to LPS Than
Non-stimulated Monocytes
In order to set up the experimental conditions for the induction
of innate immune training with fumarate, as reported by Arts
et al. (12), monocytes were supplemented with 100µM MMF,
rested for 7 days and then stimulated with LPS for the assessment
of TNF-α production. Non-trained monocytes (medium alone)
and monocytes that were supplemented with a preparation of
heat-killed C. albicans, as reported by Quintin et al. (6), served
as controls.

Results showed that, indeed, fumarate pre-stimulation renders
macrophages more reactive to LPS stimulation, as assessed by
the production of TNF-α, a condition compatible with innate
immune training. Nevertheless, macrophages that had been pre-
activated with heat-killed C. albicans had a higher base level,
as well as a higher post-LPS level of TNF-α production than
fumarate-treated cells (Figure 1).

Fumarate Induces Cytoplasmic and
Mitochondrial Calcium Uptake Within
Minutes of Monocyte Stimulation
After confirming that MMF readily induces innate immune
training, as reported (12), we assessed a series of mitochondrial
functional and morphological parameters, in order to figure
out the role of mitochondria if any, in the induction phase
of training, beyond that of fumarate production. Calcium flux
analyses showed that within minutes of MMF addition (100µM)
both cytoplasmic and mitochondrial calcium concentrations
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FIGURE 1 | Fumarate-trained monocytes/macrophages produce more TNF-α

in response to LPS than un-trained cells. Freshly isolated monocytes were

trained with 100µM MMF or with 5 × 106 heat-killed C. albicans (as positive

control) for 24 h, or left untreated (as negative control). After 7 days of

“resting,” cells were stimulated with LPS for 4 h. Figure shows a representative

result out of six independent experiments, showing the percentage of

TNF-α-producing cells (intracellular staining), upon LPS-activation.

in monocytes increased, reaching a maximal post-stimuli
level at around 3min for cytoplasmic Ca2+, and 2.5min
for mitochondrial Ca2+ (Figures 2A–D, respectively). When
mitochondrial calcium was assessed in the absence or in the
presence of extracellular calcium (2mM CaCl2), the kinetics of
calcium fluxes was similar (Figure 2E).

Fumarate Induces Mitochondrial Fusion
and Increases Mitochondrial Membrane
Potential (1ψm) Within Hours of Monocyte
Stimulation
Tetramethylrhodamine methyl ester (TMRME)-labeled
monocytes were subjected to confocal microscopy analysis,
for the assessment of both mitochondrial dynamics and 1ψm.
Results showed that, after 90min of fumarate stimulation cells
underwent mitochondrial fusion, as assessed by an increase
in mitochondrial area, elongation, and interconnectivity;
concomitantly, 1ψm increased (Figure 3).

Fumarate-Treatment of Monocytes
Induces Changes in Mitochondrial Shape
and Cristae Ultrastructure
Transmission electron microscopy analyses were performed
on MMF-stimulated monocytes/macrophages, as well as on

non-stimulated cells (negative control). Results showed that
upon fumarate stimulation (for 3 h) mitochondria increased
their surface area (p < 0.0001), perimeter (p < 0.0001), Feret
diameter (p < 0.01), aspect ratio (p < 0.0001), and form factor
(p < 0.0001). In contrast, mitochondria from fumarate-treated
monocytes had lower values for roundness (p < 0.001), and
circularity (p < 0.001) (Figure 4).

Mitochondria cristae from fumarate-treated monocytes
showed significant lower incident angles (p < 0.01) and no
significant changes in cristae density (Figure 5).

Fumarate Induces Mitochondrial Fusion in
Muscle and Intestinal Cells in C. elegans
In order to analyze the effect of fumarate in vivo in a
whole organism, C. elegans strains SJ4103 and SJ4143, which
express GFP in muscle and intestinal cells, respectively,
were exposed to 100µM MMF just prior to adulthood
at the L4 stage of development (to preclude any possible
developmental effects that might confound results). After
24 h, on day 1 of adulthood, mitochondrial fusion was seen
in both muscle and intestinal treated cells (Figure 6), with
reduced mitochondrial circularity as well as increased area,
interconnectivity and elongation, similar to changes seen in
fumarate-treated human monocytes.

Fumarate Reduces Pharyngeal Infection in
Aging C. elegans
Around 40% of aging C. elegans adults die from life-
limiting bacterial pharyngeal infection, under standard
culture conditions (E. coli OP50, 20◦C) (30). To explore
whether fumarate plays a role in the C. elegans innate
immune response, we investigated the effects of MMF
on pharyngeal infection. Fumarate supplementation was
found to cause a statistically significant 50% reduction in
incidence of death with pharyngeal infection (Figure 7), at
concentrations of 10, 50 and 100µM. The effect showed a
higher degree of statistical significance at 50 and 100µM,
suggesting a possible dose-dependent effect (though the
difference between the effects of 10 and 50µM or 100µM were
not significant).

DISCUSSION

Innate immune training offers a promising theoretical
framework for the understanding of infectious diseases and
vaccination (31–34), and mechanistically, it has been defined
in terms of immunological, metabolic and epigenetic hallmarks
(2, 31, 35–38). This work analyzed some mitochondrial traits
during the induction phase of MMF-induced innate immune
training and showed distinctive features of mitochondrial
function, from the first minutes of fumarate addition to
monocytes, helping to define a mitochondrial signature for
innate immune training.

Fumarate is an intermediate metabolite in the tricarboxylic
acid cycle produced within mitochondria (18, 39), which
accumulates in β-glucan- but not in BCG-trained monocytes
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FIGURE 2 | Fumarate treatment induces cytoplasmic and mitochondrial calcium influx in monocytes. Freshly isolated monocytes were loaded with Fluo-4

(cytoplasmic calcium) or with Rhod-2 (mitochondrial calcium). Mean fluorescence intensity (MFI), indicative of calcium concentration, was assessed by real time flow

cytometry. After recording base calcium levels for 30 s, MMF (100µM) was added to cells in suspension, and calcium levels were recorded, in real time, for the next

3min. Figures depict cytoplasmic calcium influx (A,C), and mitochondrial calcium influx (B,D); (A,B) are examples of raw data, and (C,D) represent the mean ± s.d of

the fold change in MFI (n = 8). (E) shows the kinetics of mitochondrial calcium influx in the absence, or in the presence of extracellular calcium.

and is able, by itself, to induce innate immune training in
monocytes (12).

It was first confirmed that MMF induces training in
monocytes, as demonstrated by Arts et al. (12) i.e., after MMF
treatment and seven days of “resting,” LPS stimulation of
monocytes/macrophages resulted in higher production of TNF-
α, as compared to untreated cells (Figure 1). When monocytes
were trained with heat-killed C. albicans, as shown by Quintin
et al. (6), a more robust production of TNF-α was observed upon
LPS stimulation, as compared to fumarate-trained monocytes
(Figure 1).

From the several known inducers of innate immune
training (5–10, 12), we decided to assess the mitochondrial
signature on fumarate-induced training, reasoning that if the
induction of innate immune training is to be used for better
vaccination protocols, the use of a simple molecule with
several well-defined biological activities, such as fumarate,
would have advantages over the use of whole microorganisms,
such as BCG, or microorganism-derived products, β-glucan
for instance.

Fumarate is produced by the oxidation of succinate by
the enzyme succinate dehydrogenase (respiratory complex
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FIGURE 3 | Fumarate treatment induces mitochondrial polarization and mitochondrial fusion in monocytes. Monocytes, cultured in chamber slides, were loaded with

TMRME. Cells were left un-treated (medium) or supplemented with 100µM MMF. Fluorescent images were recorded by time-lapse confocal microscopy, every

10min, up to 180min. Mean fluorescent intensity is indicative of 1ψm, and mitochondrial dynamics parameters were assessed as indicated under Materials and

Methods. Images depict raw data for medium (control) and fumarate-treated cells (A,C), and figures (B,D) integrate the results from at least 200 individual cells per

treatment, from three independent experiments. **p < 0.01 by one-way analysis of variance, Tukey post-hoc test.

II, CII) within mitochondria (40), and it is also a product
of tyrosine metabolism and the urea and purine nucleotide
cycles (24, 41). In addition to its function as a TCA
cycle metabolic intermediate, fumarate has antioxidant,
epigenetic, and immune response modulation functions
(12, 41–45).

Next, considering that mitochondrial calcium shapes
Ca2+ signaling and stimulates respiration and ATP synthesis
(21, 46) both mitochondrial and cytoplasmic calcium fluxes
were assessed. Results showed that mitochondria readily
respond to stimulation with MMF by uptaking calcium
within minutes (Figures 2B,D), suggesting that MMF binds
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FIGURE 4 | Exogenous fumarate induces changes in size and shape of mitochondria in monocytes. Freshly isolated monocytes were (A) left un-treated (control) or

(B) incubated for 3 h in the presence of 100µM MMF. Cells were then prepared for transmission electron microscopy. Ultramicroscopy images were recorded and (C)

morphological features of mitochondria (area, perimeter, Feret diameter, aspect ratio, form factor, roundness, and circularity), were assessed as indicated under

Materials and Methods. Bars indicate the range that contains 50 % of all data, middle lines represent the median, and whiskers extend toward minimum and

maximum values. Results are from at least 600 mitochondria from three independent experiments. ****p < 0.0001 by Wilcoxon Rank Test, Tukey post-hoc test.

to a fumarate receptor in the cell membrane, triggering
cytoplasmic calcium influx (Figures 2A,C) followed by
mitochondrial buffering (47). In this regard, a fumarate
receptor, the hydroxycarboxylic acid receptor 2 (HCAR2), has
been described (48). However, when mitochondrial calcium
was assessed in the absence of extracellular calcium, calcium
influx into mitochondria was still observed (Figure 2E),
thus suggesting that fumarate can also trigger the release of
calcium from intracellular stores, allowing calcium influx into
mitochondria. Endoplasmic reticulum (ER)-mitochondria

tethering and Ca2+ transfer to the mitochondrial matrix via
ER–mitochondria contact sites is a well-known mechanism of
cellular calcium handling (49, 50); whether this mechanism
accounts for fumarate-induced innate immune training would
require further analyses.

Mitochondria also responded to the fumarate treatment
of monocytes by driving their mitochondrial dynamics
toward a fusion state and by increasing, within a few
hours, their membrane potential (1ψm) (Figure 3). At the
ultrastructural level, mitochondria became larger, as assessed
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FIGURE 5 | Fumarate treatment reduces the incident angle in mitochondrial cristae in monocytes. Untreated monocytes (control) (A) and monocytes treated with

100µM MMF for 3 h (B), were processed for transmission electron microscopy. Images were recorded and mitochondrial cristae density and cristae incident angle

were calculated (C), as indicated under Materials and Methods. More than 600 mitochondria from three independent experiments were analyzed. ****p < 0.0001

Wilcoxon Rank Test, Tukey post-hoc test.

by the morphological parameters described by Picard et al.
(27) i.e., surface area, perimeter, Feret diameter, aspect
ratio, and form factor, whereas roundness and circularity
decreased, as compared to untreated cells (Figure 4).
These ultrastructural characteristics are compatible with
the finding of mitochondrial fusion (Figure 3); increased
fusion may be a requirement to maximize oxidative
phosphorylation by means of complementation among
mitochondria, and to maintain the energy output in the
face of stress (22).

In addition to mitochondrial dynamics, cristae are also an
important morphological indicator of mitochondrial function
since cristae are the hub where most of the respiratory complexes

are embedded, and account for oxidative phosphorylation and
ATP production and therefore changes in cristae number and
shape define not only respiratory capacity but cell viability as well
(51). Mitochondrial cristae structure has been defined in terms
of density (cristae number vs. mitochondrial area), and by the
incident angle, which indicates how closely cristae are arranged;
the lower the incident angle is, the closer cristae are to each other,
making the respiratory electron transfer chainmore efficient (28).
Results showed that the mitochondrial incident angle was lower
in fumarate-treated monocytes as compared to that of untreated
monocytes (Figure 5), suggesting that fumarate could favor the
assembly of respiratory chain supercomplexes (23, 51, 52), and
this remains to be analyzed.
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FIGURE 6 | Fumarate induces mitochondrial fusion in muscle and intestinal cells of C. elegans. Images depict the mitochondrial dynamics of un-treated (control) and

fumarate-treated C. elegans. (A) strain SJ4143 (GFP-expressing mitochondria in intestinal cells) and (B) strain SJ4103 (GFP-expressing mitochondria in muscle cells).

Mitochondrial dynamics parameters were assessed by measuring all mitochondria within 5 squares of 30 × 30µm, evenly distributed along the nematode, for each

experimental condition. Arrow heads point to mitochondria in a fusion state, triangles point to mitochondria in a fission state, ****p < 0.0001 Wilcoxon Rank Test,

Tukey post-hoc test (n = 5).

In addition to analyzing the effect of MMF on the
mitochondria of human PBMC-derivedmonocytes in the context
of innate immune training, we wanted to explore its effects
in vivo in a whole organism. To this end, two strains of C.
elegans were used: SJ4103 (GFP-labeled mitochondria in muscle)
and SJ4143 (GFP-labeled mitochondria in intestinal cells). Both
strains of C. elegans showed an effect of MMF on mitochondrial
dynamics similar to that in monocytes. This indicates that
MMF-induced mitochondrial fusion is not exclusive to human
monocytes, and suggest that the effect is widely conserved in the
animal kingdom.

Recently, it has also been shown that nutrient deficiency
induces mitochondrial fusion in C. elegans, and that this
correlates with resistance to Enterococcus faecalis infection (53).
We tested whether fumarate (which induces mitochondrial
fusion) can lower the risk of infection in C. elegans. Under
standard culture conditions on E. coli OP50, C. elegans is
susceptible to life-limiting pharyngeal infection that begins in
the terminal bulb around the grinder and progresses to the
rest of the pharynx (30). We found that in MMF-treated C.
elegans, incidence of death with pharyngeal infection incidence
drops by 50% (from ∼40% incidence in untreated to ∼20% in
MMF-treated worms), at a MMF concentration of 50µM. Since
it has been shown that fumaric acid, and dimethyl fumarate

affect bacterial growth at a concentration of 10mM (i.e., 200
times this concentration) (39), we cultured E. coli OP50 in the
presence of 100 and 500µMMMF, the form of fumarate used in
all experiments, and could detect no effect on bacterial growth
(data not shown), thus arguing against the possibility that the
observed increased resistance of C. elegans to infection is due to
effects on bacterial viability. However, a mild impairment of E.
coli pathogenicity by fumarate affecting pharyngeal infection rate
cannot be ruled out.

This work provides evidence for a mitochondrial signature,
consisting of the calcium influx to cytoplasm and mitochondria
within a few minutes, and the fusion, polarization, and increase
in mitochondrial cristae closeness, within a few hours post-
stimuli, suggesting mitochondrial activation, and highlighting
the mitochondrial side of the metabolic basis for the induction
phase of fumarate-induced innate immune training. Moreover,
results showed that MMF induces mitochondrial fusion in C.
elegans, which were accompanied by C. elegans resistance to
pharyngeal infection under standard culture conditions. How
specific these mitochondrial traits are for pro-inflammatory as
compared to anti-inflammatory innate training remains to be
analyzed (6, 54).

A further caveat is that E. coli is not a pathogen that C. elegans
usually encounters in the wild (55); however, given thatC. elegans
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FIGURE 7 | Fumarate reduces pharyngeal infection in C. elegans. (A) DIC images of C. elegans pharynx, at day 13 of worm adulthood, showing infection (top); and

no infection (middle); the posterior bulb is outlined (scale bar = 40µm), and a graphic representation (bottom). (B) Percentage of C. elegans with pharyngeal infection

in un-treated (control), and 10, 50, and 100µM MMF-treated worms, as well as in C. elegans cultured on carbenicillin (4mM)-treated E. coli OP50. Each dot

represents a trial performed by triplicate, and in each triplicate about 50 worms were analyzed. Bars depict mean ± s.d. (n = 3). **p < 0.01, ***p < 0.001, by one-way

analysis of variance and unpaired Student’s t-tests.

immunity has presumably evolved to deal with highly diverse
and sometimes novel bacterial pathogens, the observed effect of
fumarate in its response to E. coli is likely to reflect an authentic
immunological mechanism.

Together, these findings open the possibility to experimentally
modulate mitochondrial activity to boost innate immune
training and resistance to infection, and illustrate the potential
for using C. elegans as a whole organism model of innate
immune training.
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