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What we will cover:
*The basis of inference in science.
*Compare the "frequentist" approach we

usually learn, with today’s widely used
alternatives in statistical inference.

»Particularly the use of "likelihood" and
Bayesian probability.

*We will hopefully empower to develop
your own analyses, using simple examples.

What we will not cover:

Not suitable for people already well-versed in
statistics. They’ll already know most of this!

Not suitable for people who've no idea about
statistics. At least GCSE knowledge required.

We won't have time to teach you all you need to
know to analyse your data.

We won't have time to go into very complicated
examples.

Instead, we hope

You begin to develop a healthy disrespect for
most “off-the-shelf” methods. (But you will
probably still use them).

You start to form your own ideas of how
statistics and scientific inference are related (a
philosophy of science topic).

That your interest in likelihood and Bayesian
analysis is piqued, and you might be motivated
to do further reading.

You become empowered to perform simple
statistical analyses, using Excel and Excel's
Solver "add-in". + a little programming = you
can analyse much more difficult problems.

My main source

Anthony W. Edwards
(1972); reprinted 1992:
Likelihood. Cambridge UP

AW.F. EDWARDS

Likelihood

see also more in-depth:
Yudi Pawitan (2001).

In all Likelihood. Statistical
Modelling and Inference
using Likelihood. Oxford UP

QOverview

* What is scientific inference?
* Three philosophies of statistical inference:
- Frequentist (probability in the long run)
- Likelihood (likelihood)
- Bayesian (posterior probability)
¢ Common Ground: Opposing philosophies agree
(approximately) on many problems

¢ Discussion
* Exercises, example of ABO bloodgroups
¢ Ziheng's talk: when philosophies conflict ...

Scientific Inference

¢ What is scientific inference?

The nature of scientific
inference

“I'm sure this is true”

“I'm pretty sure” “I'm not sure”
“It is likely that...”

“This seems most probable to me”

All of inference about the world is likely to
be based on probability; it’s statistical.

(Except divine revelation!)

Models and hypotheses

Science is about trying to find
“predictability” or “regularities” in nature,
which we can use.

For some reason, this usually seems to
work ...

Models and hypotheses allow prediction.
We test them by analysing something
about their “likelihood” or “probability”




Models and hypotheses in
statistical inference

Models are assumed to be true for the
purposes of the particular test or problem
e.g. we assume height in humans to be
normally distributed.

Hypotheses are “parameters” that are the
focus of interest in estimation
e.g. mean and variance of height humans.

Data is typically discrete

... Counts of things
... Measurements to nearest mm, 0.1°C
Data is also finite

Models, hypotheses can be discrete too, or
continuous. Models and hypotheses may be
finite, or infinite in scope.

A good method of inference should take this
discreteness of data into account when we
analyse the data. Many analyses,
particularly frequentist, don’t!

For example, {
milk fat

From Sokal & Rolif 1981,
Biometry p.47

Null hypotheses in statistics

We are often taught in biology a simplistic
kind of “Popperian” approach to science, to
falsify simple hypotheses. We then try to test
the null hypothesis!

(Zero-dimensional statistics, if you like; only
one hypothesis can be excluded).

In this view, estimation (e.g. mean, variance)
is like natural history, not good science.

Physics-envy?

Estimation is primary

Edwards argues that we should turn this
argument on its head.

Estimation of a distribution or model can
lead to testing of an infinitude of
hypotheses, including the null hypothesis.

Uses full dimensionality of the problem:
>1 - n-dimensional statistical analyses.

More powerful!

The three philosophies

* Three philosophies of statistical inference:
- Frequentist (probability in the long run)
- Likelihood (likelihood)
- Bayesian (posterior probability)

1. Frequentist, significance
testing, P-values

Perfected in 1920s &t
(Pearson, Fisher et al.) '[
e.g.  test, or t-test o
2=528,df.=1; "
or +=3.92, d.f.=10 h
We find P<0.05, or P=0.009834
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This is “tail probability” or “probability in the
long run” of getting results at least as extreme
as the data under the null hypothesis

Philosophical problems
with frequentist approach
We only have one set of data; seems to

imagine the experiment done a very large
number of times

Often tend to assume the data come from a
continuous distribution;
e.g. 2 tests on count data, £(O-E)?/E

Encourages testing of null hypothesis

P - values

P-values are “tail
probabilities”

“What the use of P |
implies, therefore, is thata ;"
hypothesis that may be :[
true may be rejected ”'L
because it has not L
predicted observable

results that have not
occurred” Jeffreys 1961
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Alternatives to frequentism

* Frequentism: “Probability in the long run”

¢ Two alternative measures of support:
- Bayesian Probability (Thomas Bayes 1763,
Marquis de Laplace 1820)
“The probability of a hypothesis given the data”

- Likelihood (RA Fisher 1920s, Edwards 1972)
“The probability of the data given a hypothesis”

(can be viewed as a simplified form of Bayesian
probability)

2. Likelihood

The likelihood of a hypothesis (H) after doing
an experiment or gathering data (D) is the
probability of the data given the hypothesis

L(H|D) =P(D|H)
Probabilities add to 1 for each hypothesis (by

definition), but do not add to 1 across different
hypotheses - hence “Likelihood”

The Law of Likelihood

“Within the framework of a statistical
model, a particular set of data supports one
statistical hypothesis better than another if
the likelihood of the first hypothesis on the
data exceeds the likelihood of the second
hypothesis”

P(D|H,)
P(D|H,)

Likelihood Ratio =

Support

Support is defined as the natural
logarithm of the likelihood ratio

P(D|H,)
P(D|H,)
=log, P(D|H,)~log, P(D|H,)

Support =log,

Example: binomial
distribution

Supposing we are interested in estimating the allele
frequency of a gene in a sample:

A a Total alleles
2 8 10
i (n-i) n
This is a problem that is well suited to the binomial theorem:
n e n [
PDH)) = | |p'(1-p)"" =———=p'(1-p)
i il(n—i)!

A common frequentist
approach:
Sample mean p*=2/10=0.2
Sample variance, spz = p*q*/n =0.2x0.8/10 = 0.016
Standard deviation of mean, s, =V0.016=0.126
95% conf. limits of mean = p* + £ o5,
=0.2+2262x0.126
= (-0.085, +0.485)
Note the NEGATIVE lower limit!

Likelihood approach

To get the support for two hypotheses, we need
to calculate:

P(D|H,)
P(D|H,)
Note! The binomial coefficient depends only
on the data (D), not on the hypothesis (H)

Support =log,

n n!
P(DIH,) = (i]p'(l— P =

Binomial coeff. cancels! No need to calculate the
tedious constant! Just need the pi(1-p)(*) terms

Likelihood & the binomial

Binomial probability sample size “successes”
using likelihood n=10 =2
Likelihood/B. in likelihood in likihood ratio
Hi=p  pA(-pNm)
0 0 ANUM (mpossibie) | #ANUMI | (>minus infinty)
-.

0001 1.002606 -12.81351
0.01 620745605 9200743 4.19635]
0.05 0001658551 6401811 130779
0.1 0.004304672 5448064 0.44403]
0.15 0006131037 5004391 .09037)
0.2 0.006710886 -5.004024 “=max (=2)] 0
0.25 0006257057 5074045 0.07002]
03 0.005188321 5261345 025732
0.35 0003903399 5545008 054138
0.4 0,002687386 5919186 291516
045 0001695612 5379711 -1.37569)
05 0.000076563 6931472 -1.92745]
0.5 0000508658 7583736 257971
05 0.00023583 8351077 -3.34795)
065 051417E.05 9260143 425612
07 321489605 -10.34513 534111
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The support curve gives o [N N | n=40
a measure of belief in the oo LA AL
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Edwards: 2 units below [T —m—
the can be viewed as anemins
“support limits” o 01 02 03 os 05 65 o7 08 4o 1
(equivalent to approx 2 /77- \
standard iati in
the frequentist approach) [/ A
- n=10
log,LR=2 implies LR=¢%, n=40
the best is 7.4x as good




Sum of support from different experiments

Likelihood of Binomial p

X
\im, 208

\\

Support provides a way to adjudicate between data
from different experiments

Sum of support

ed)

Binomial p

3. Bayes’ Theorem

P(B| 4)P(4)
P(B)

Named after its inventor, Thomas Bayes in 181
Century England. Led by Bayes and Laplace, the
theorem and “Bayesian Probability” has come to
be used in a system of inference ...

P(H|D)=k.P(D|H)P(H)
Posterior Likelihood  Prior
Probability Probability

P(4|B)=

Bayes’ Theorem as a means

of inference
P(H,|D) _ k.P(D|H,)P(H))
P(H,|D) k.P(D|H,)P(H,)
If the prior is “uniform”, P(H,)=P(H,)
P(H,|D) _ P(D|H,)
P(H,|D) P(D|H,)

The ratio of posterior probabilities collapses to
... a likelihood ratio!

Common ground

* Common ground: Opposing philosophies
agree (approximately), in many problems.

Opposing philosophies

Important to realize there isn’t just one way of
doing statistics. For me:

Edwards’ argument for likelihood as the means
of inference seems powerful. Probability of the
data given the hypothesis is a good measure.

Bayesian difficulties: “probability of a
hypothesis” without data (the prior probability)

Frequentist difficulties: P-values: probability
based on events that haven't happened

In practice

In practice, in most applications, all three
approaches tend to support similar hypotheses.

Edwards shows that significance tests are justifiable
by appealing to likelihood ratios - tail probability
low when likelihood ratio (itself often proportional
to relative Bayesian probability) is high.

In very complex estimation problems (e.g. GLM),
where we test for “significance” of V extra
parameters, we use the chi-square approximation:

2log,LR="deviance”= y,2

This interpretation employs a frequentist approach.

Conclusion
Utility of likelihood

Estimation and hypothesis testing of complex problems
today almost always use likelihood or Bayesian
methods, often using MCMC optimization, for example:

Generalized Linear Models, Deviance

T

geny estimation, clock estimation

Linkage mapping, QTL analysis in human genetics
High energy physics experiments

At the very least, these methods enable more complex
problems 1o be analysed. At best, they may provide an
improved philosophical basis for inference.

Excel exercise with "Solver"

go to www.ucl.ac.uk/~ucbhdjm/bin/
open the ABO_Student.xls file

follow instructions

Relationship of likelihood ratio to
frequentism

In large samples,

G=2{log, P(D| H,)~log, P(D| H,)}

converges to a 2 distribution with the numbers of
degrees of freedom given by the numbers of free
parameters.

For a test of null hypothesis H, vs. max. likelihood

hypothesis H;: P can be calculated from the integral
of the 2 probability density function.

Also, note that with a support value (AlnL) of 2.0, G = 4.0

=1.96° = 3.84, i.e. the value of # which is "significant"
at P=0.05 with 1 degree of freedom.




