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Lecturel

Probability and statistical modelling

1.1 Motivation

Climateresearcheracetwo fundamentaproblemsin the courseof their work. Thefirst is the
complity of the climate system,and the secondis the difficulty in obtainingreliable climate
measurementsConsequentlyall resultsin climateresearcthave somedegreeof uncertaintyat-
tachedo them. This hasimplicationsfor all who usetheresults whetherthey aredecisionmalkers
developingnew policiesor scientistsseekingo developfurthertheirunderstandingf theclimate.
It is thereforeusefulto develop scientificmethodghatincludesomerecognitionof uncertainty

Theaim of theseecturess to introducestatisticalmethodghatdealwith uncertaintyby using
probability models.In this lecture,we provide somebackgroundmaterial,andgive anaccessible
overview of therelevanttheory Subsequenecturesintroduce andillustrate,the useof General-
izedLinearModels(GLMs) in climateresearchaswell asbriefly discussingthertypesof model.
Thereasorfor focusingon GLMs is thatthey arewell establishedn statisticsandareextremely
flexible andpowerful. Most goodstatisticalsoftware packagesave thefacility for fitting GLMs.
We will illustratethe applicationof GLMs usingthe free packageR (for detailson how to obtain
this packageseeAppendixA.1).

1.1.1 Examplesof problemsin climate reseach

Typically, theaimsof ary climateinvestigatiorfall into oneor moreof the following cateyories:

1. To seekanunderstandingf climatic processedyy studyingtherelationshipsetweervari-
ables.For example,we maywish to determinewhetherthe stateof ENSOcanberelatedto
rainfall patternsn aparticularpartof theworld. The presencer absencef sucharelation-
shipmaysuggesmechanismshatcanbe used for example,to improve the performancef
dynamicalor physicalclimatemodels.

2. To examinethe evidencefor changesn climateregimes,andto determinethe natureand
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extentof ary suchchanges.Of particularinterestat presents the detectionof signalsthat
may be attributedto anthropogenieffects. However, suchsignalsaredifficult to detectand
evenharderto interpret. Therearetwo basicreasongor this:

(a) Climate variesnaturally on mary differenttimescales.lt is difficult to tell whether
ary apparentrendsover, say thelast 30, 50 or 100 yearsare associatedvith human
actwity, or whetherthey canbe explainedin termsof naturalvariability.

(b) Theclimatesysteminvolvescomple interactions.Typically, changesvill bedifferent
in differentlocations,and at differenttimesof year For example,in North-Western
Europeit is generallyacceptedhatthelate20thcenturyhasseeratrendtowardswetter
winters and drier summers. Analysesof annualrainfall here, then, may not reveal
ary trendsbecausehe two effects canceleachotherout. This is a simple example,
whichcouldbestudiedstraightforvardly by analysingdatafrom ‘winter’ and‘'summer’
separately However, not all situationsareasohvious asthis, andthereis a dangerof
misinterpretationf the potentialcompleity of a systemis notrecognised.

3. To make someusefulstatementaboutfuture climate.Underthis headingwe includeshort-
term and seasonaforecasting,climate changeimpactsstudiesand risk assessmerfrom
extremeevents.

Laterin thelectureswe will considerfour specificcasestudiesgachof which canberegarded
asfalling into oneor moreof thesecateories.

1.1.2 Uncertainty, and the needto confront it

In all of the situationsoutlined above, someuncertaintyis involved. In an applicationsuchas
weatherforecastingthis arisesbecausdi) our numericalmodelsareincomplete(ii) our dataare
subjectto measuremerdrror. It maybearguedthataswe developmorepowerful computersmore
accuratemodelsandbetterquality data,suchuncertaintywill be reducedandwe will be ableto
generatdetterandbetterforecastsThis maybetrue, but ultimatelythereis alimit to whatcanbe
achiezed— this hasbeenknown sincethe developmeniof quantumtheoryin the mid-1920s.We
mayask(i) is thisimportant?and(ii) if so,is it possibleto quantifytheuncertaintyin aforecast?

In responséo thefirst of these we may answerasfollows: it is importantto knowwhetherit
isimportant If aforecasthasa‘small’ errorthenthereis little uncertaintyandwe may chooseo
ignoreit (exactly how we define'small’ herewill dependontheapplication).If, ontheotherhand,
theerrorin aforecasts ‘large’ thenwe may have to accountfor it. Of coursewe do notknow in
advancewhattheforecasterrorwill be,andthereforethe bestwe candois to give anindicationof
its likely magnitude.

This leadsus to the secondquestionaborve: is it possibleto quantify the uncertaintyin a
forecast?To addresshis, consideffirst thata perfectforecastequiresperfectmeasurementsf all
factorsinfluencingthe climatesystem(aswell asa perfectrepresentationf the systemitself). In
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reality, it is not possibleto obsenre all of the relevant factors— andthosethat are obsened are

subjectto measuremergrror. As aresult,aforecastehasonly partialknowledgeof thetrue state
of the systemwhentheforecasts issuedandis unableto distinguishbetweerthe mary different
‘true’ stateswhich areconsistentvith this partialknowledge.Theforecastfor eachof thesestates
will be the same,but the actualoutcomeswill be different. We canimaginecollectingtogether
all of thesepossibleoutcomesand studyingthem. If we did this, we could make someuseful

guantitatve statementsuchas‘90% of the actualvalueswerewithin 5% of the forecastvalue’.

Sucha statemengives a useful indication of the accurag of a forecast,or equvalently of the

uncertaintyassociatedvith it. The point of this agumentis thatwe have just madea probability

statementHowever, we have at no stageclaimedthatclimateis in any way ‘random’. We return

to thisin thenext section.

Althoughtheabove exampledealswith weatheirforecastingthefundamentapoints— thatwe
needto know aboutuncertainty andthat simple quantitatve statementganhelp— arevalid for
all applicationsUnfortunatelyin mary areaf scienceaheimportanceof thesepointsis oftennot
recognised.Therearea numberof reasongor this — largely dueto theway in which the human
mind works. For example,a scientistwill often have aninstinctive feelingthat his or herresults
are‘more or less’right, andthereforethatuncertaintycanbe neglected.

Example 1.1: Many complex models,suchas GCMs, involve large numbersof parametersin
suchmodels,individual parametersnay beidentifiedvery accurately However, therewill always
be someerror. The cumulative effect of sucherrorscanbe muchlarger thanexpected. This is
partly becaus®f the psychologicakffect of breakingdown complex modelsinto smallermodules
— usually it is not possibleto comprehendhe workingsof a complex modelin sufficient detail
to understandhe way in which errorscumulate.Additionally, thereis a tendeng for the human
mind to be optimistic, andto imagine(incorrectly)thaterrorswill compensatéor eachotheri.e.
thatoverestimationin onepartof amodelwill be balancedy underestimatioim another

In extreme cases,it may be that several complex modelsare joined together and that the
cumulatve uncertaintyis so large that the combinedmodelis effectively useless.To considera
hypotheticabexample:ahydrologistmaybeinterestedn determiningutureriverlevelsfrom GCM
output.Oneapproacho this maybeto take the precipitationoutputfrom a GCM (modell), apply
a downscalingprocedure(model 2), and input the downscaledprecipitationto a rainfall runoff
model (model 3) to determinefuture river levels. Eachof thesemodelsmay; in itself, provide
reasonableutput,but this doesnot guarante¢hatthe combinedmodellingsystemwill beuseful.

It is temptingto think thatsuchanattitudeis unproductve. If we usethe bestavailablemodels
for asystem surelytheir outputrepresentsur bestattemptat understandinghe system,andthis
canonly beuseful?Well, yesandno. It canbe usefulif we really do have someunderstandingf
the system.However, if the cumulatve uncertaintyin a modelis very large, we mustacceptthat
thisunderstandingloesnotexist. In this casethereis arealrisk of makingcostlywrongdecisions
if we acton the basisof modeloutput. It can be extremelyusefulto knowthat we don't know
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anything! [ |

Another commonscenariois that a scientistrecogniseghat a systemis too comple to be
modelledaccuratelyjn this casethereis a temptationto think thatrepresentatioof uncertaintyis
‘too difficult’, sinceall of thesystemscompleities needto betakeninto accountwhencalculating
thelikely magnitudeof anerror.

A final problemthat ariseswhen consideringuncertaintyis that its effects are often unex-
pected,or at leastcounterintuitive — often, peoplerecognisethat uncertaintyis presentbut do
not correctlyunderstandts implications(this presumablyexplainswhy so muchmoney is spent
acrossthe world on gamblingandlotteries!). A simpleexampleof a ‘counterintuitive’ resultis
thefollowing:

Example 1.2: Supposéhat, at sometime ¢, a particlein a simplesystemis travelling at speed
V; metresper second. By consideringthe dominantforcesacting on the particle, it is possible
to write down its equationsof motion. If all necessarpbsenationsareavailableattime ¢, these
equationgnay be solved to to forecastthe particle’'s speedat somefuture time, ¢t + ¢ say Call
this forecastV,,,. Typically, the actualspeedat time V;., will not be equalto V,,,, becausef
approximationsn the equations However, in a simplesystemwe expecttheerror V., — V., to
be ‘small’. Moreover, if we repeatthe exercisemary times, and computethe averageof all the
errors,we would expectthe averageerrorto be zero.

Now considemwhat happensf we wish to useour forecastof V; ., to obtaina forecastof the
particle’s kinetic enegy, $V;%,. The naturalforecastof this quantityis just %Vﬁw Intuitively, it
seemgeasonabléo expectthaton averagetheresultingforecasterrorswill bezero.In factthisis
incorrect— it canbe shown thatsucha schemewill, on average pverestimatehekinetic enegy,
eventhoughthe averageerrorin the forecastspeeds zero. The magnitudeof the overestimation
increasesvith the uncertaintyin the speedorecasts.

This exampleis a specialcaseof a more generalphenomenon.The surprisingresultoccurs
becaus¢heinitial errorin V. is transformedn anonlineaway. Thekey pointto notehere apart
from the unexpectednessf the result,is thatin orderto forecastkinetic enegy on average, we
needto know aboutthe uncertaintyin the forecastof speed. [ |

1.1.3 Theroleof probability

In the previoussectionwe expressedhe uncertaintyin aweatheiforecastusinga statemenof the
form ‘90% of thetime, the actualvaluewill be within 5% of the forecastvalue’. This statement
takesan EVENT (in this case,thatthe actualvaluewill be within 5% of the forecastvalue)and
assigngo it anumber(90). This numberis interpretedasthe percentagef time thatthe eventwill
occur in thelong run. Equivalently, we couldallocatea numberbetweerD andl representinghe
proportion of time thatthe eventwill occur For presenpurposesthis definesthe PROBABILITY
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of the event. Here, the probability thatthe actualvaluewill bewithin 5% of the forecastvalueis
0.9.

Probabilitystatementareofteninterpretedasthoughthey relateto ‘random’ phenomenaThe
exact meaningof the word ‘random’ in this context is not clear althoughmost peoplewould
agreethatit impliesa lack of orderedstructureat somelevel. This perceptions unfortunateand
incorrect.In the previoussection,we madea probability statementor adeterministicsystem.The
statemenwvasmeaningful becausehe systemcould not be obsened completely(this sounddik e
guantumtheoryagain!). Probability statementsre meaningfulfor suchsystemsand provide a
simpleway of expressinguncertainty Indeed,probability may be thoughtof asthe languageof
uncertainty

In practice,of coursejt is necessaryo developtechniqueghatenableusto make probability
statementsnthe basisof obsenations. Themoderndisciplineof STATISTICAL SCIENCE (usually
referredto just as STATISTICS) is largely concernedwith the developmentof thesetechniques.
Statisticsin climateresearchs often percevedto be about‘analysingdata’. To someextent, this
is true, but it is morethanthat. Most professionaktatisticiansvould agreethat statisticsis about
interpretinginformation Sincethereis usuallyuncertaintyassociatewvith ary suchinterpretation,
it is inevitablethatprobability findsits way, in someform or anotheyinto mostmodernstatistical
methods.

In orderto appreciatsomeof thesemethodsandthewayin whichthey canbeusedto interpret
information,it is necessaryo summarise few theoreticakesults. Theseprovide the background
andjustification for someof the materialto be discussedn the remaininglectures. We do not
intendto give too muchtechnicaldetail;rather to give a broadovervien of someof thekey ideas.

1.2 Overview of probability theory

1.2.1 Probability asarelative frequency

In probabilitytheory we speakof an EXPERIMENT asary procesghatcanresultin a numberof
possibleoUTCOMES. An EVENT is justa collectionof theseoutcomes.

Example 1.3: Supposeve wish to determinewhetherit will rain tomorrown in Beijing, on the
basisof informationavailabletoday The evolution of the weatherbetweentodayandtomorrov
is, in probabilisticterms,anexperimentsinceit is a procesaunderwhich mary differentpossible
scenariosor outcomes,are possible. Someof theseoutcomeswill resultin rain tomorrown in
Beijing; otherswill not. Thereforethe event‘it rainstomorrav in Beijing’ canbe regardedasa
collectionof differentoutcomef theexperiment. [ |

Formally, PROBABILITY is definedasan allocationof numbers between0 and1, to events.
Theallocationmustsatisfycertainrequirementshowever, thesedo not concernus here.Of more
interestis the interpretationof probabilities. The ‘classical’ interpretationis that the probability
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of an eventis the proportionof timesit would occurin a long sequenceof repetitionsof the
experiment,underidentical conditions. In climateresearchit is notimmediatelyclearthat this

is useful. In Examplel.3 above, it seemghatthe experiment(i.e. the evolution of the weather
betweenodayandtomorron) cannotbe repeateda large numberof times. However, in this case
‘repetitions’ canbe obtainedfrom all daysfor which the synopticconditionsareidentical— or,

at least,very close— to todays. If the probability of rain tomorrowv in Beijing is 0.9, this can
be interpretedas saying‘90% of dayslike today are followed by daysduring which it rainsin

Beijing’.

This way of understandingprobabilitiesis calledthe RELATIVE FREQUENCY interpretation,
andis the view that we will take for mostof theselectures. However, it is not the only way
in which probability statementsnay be interpreted. An alternatve view is mentionedbriefly in
Lecture3.

1.2.2 Someimportant results,and notation

It is convenientto introducesomemathematicahotationin this section.We will denoteeventsby
Ay, As, . ... Theprobability of anevent 4; is denotedby P (A4;).

Often, we areinterestedn finding the probability of an event, A; say whenwe know that
anotherevent A, hasoccurred. This is referredto asthe CONDITIONAL PROBABILITY OF A;
GIVEN A, anddenotedby P (A;|A,).

Example1.4: Supposehatin Beijing, onaverageit rainson 20%of days.However, atthe peak
of the monsoonseasorit rainson 60% of days. We can expressthis in probability notationas
follows: let A; denotethe event'it rainstodayin Belijing’, and A, bethe event‘today, we arein
the peakof themonsoorseason’ThenP (A4,) = 0.2, andP (A;|A;) = 0.6. [

This exampleshows, very simply, how conditionalprobability may be usedto to studyrela-
tionshipsbetweerevents.Our understandin@f the climatesystentells usthatrainis morelikely
duringthemonsoonBecaus@f this,theconditionalprobabilityof rainduringthemonsoordiffers
from the UNCONDITIONAL PROBABILITY (0.2in this example).

Definition: Formally, P (A;|A,) is definedas

P (A; andA,)
P (Ap)

Here,whenwe write P (A; and A,), we meanthatthe eventsA; and A, bothoccur

A usefulway to think of conditionalprobabilityis this: if we know A, hasoccurredwe have
effectively changedheexperiment.In Examplel.4 above, we canthink in termsof anexperiment



LECTURE NOTES, JUNE 2001 11

‘pick ary day, andseeif it rainsin Beijing’. In this casetheprobabilityof rainis 0.2. If we define
analternatve experiment:‘pick ary dayduringthe peakof themonsoorseasonandseeif it rains
in Beijing’, thenthe probabilityof rainis 0.6.
If theoccurrencef A, tellsusnothingaboutA;, thenP (A;|A4,) = P (A;). Inthiscasegvents
A; and A, aresaidto be independent A rearrangemendf the formal definition of conditional
probabilitytells usthatif A; and A, areindependentP (A; andAy) = P (A;) x P (As).
Somekey resultsconcerningconditionalprobabilitiesareasfollows:

Bayes’ Theorem: Let A; and A, beeventswith P(Ay) > 0. Then

As|Ay) P (Ay)
P(Ay)

P(AI‘AZ) = P(

In fact,thisis a simplified statemenof thetheorembut it is adequatdor our purposesWe
will returnto thisresultin Lecture3.

Generalised Multiplication Law: For arbitrary events A,,..., A, such that
P (A; andA,,...andA4, 1) >0,

P(A1 andAz, .. .andAn) = P(Al) X P(A2|A1) X P(Ag‘Al andAQ) X ...
x P(A,|A; andA,,...andA4, ) .

This resultis essentiallyan extension andrearrangementf the formal definition of condi-
tional probability givenabove. It will be usedduringthe discussiorof likelihoodtheoryin
Sectionl.4.3below. For the momenta simpleexamplewill suffice:

Example 1.5: In the Westof Ireland,the probability thatany daywill experiencerainfall
is 0.7. However, if rainfall wasexperiencedn the precedingday this probabilityincreases
to 0.85.Whatis the probabilitythatrain falls on two successie daysin the Westof Ireland?

Solution: Let A; betheevent‘first dayis wet’, and A, be the event‘seconddayis wet'.
ThenP(A;) = 0.7,and P(A,|A;) = 0.85. Hence
P(A1 andAQ) = P(Al) X P(AQ‘AI) = 0.7 x 0.85 = 0.595 .

Hence,if we take all pairsof successie daysin Ireland,approximately60% of thesepairs
will experiencerain on bothdays. [ |
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1.2.3 Randomvariables

Most of the time, we are not so much interestedin answeringquestionssuchas ‘Will it rain

today?’asin studyingnumericalquantitiege.g.theamountof rainfall, or the numberof typhoons
in the North-WestPacificin a particularseason)In the framewnork of probabilitytheory this may
be dealtwith by allocatingnumbersto the outcomesof an experiment. Any rule for allocating
numberdo outcomess calledaRANDOM VARIABLE (notethat‘'random’ hereis usedasa formal

mathematicaterm, not in the sensediscussedn Sectionl1.1.3). In theselectures,the letter Y

denotesarandomvariable.

To summarise:

e An EXPERIMENT is aprocesghatcanresultin anumberof possibleouTcoMEs. Typically,
in climatestudiesheseoutcomesvould be differentscenarioghatcouldoccuroveragiven
time period.

e An EVENT is acollectionof outcomesFor example therearemary differentscenarioghat
will giveriseto 15 tropicalcyclonesin the North-WestPacific this yeat

e A RANDOM VARIABLE is arulefor allocatingnumbergo outcomesThenumberof tropical
cyclonesin the North-WestPacific this yearis a randomvariable,sinceit providesasingle-
numbersummaryof eachpossibleclimatescenario.

Discreterandom variables

A DISCRETE RANDOM VARIABLE takesvaluesin a countableset. In practice,discreterandom
variablesusuallyariseascounts— for example,the numberof tropicalcyclonesin atime period.

Suppos€’” is adiscreterandomvariable.lts entireprobability structurecanbe summarisedby
makingalist of all thevaluesit cantake, andallocatingthe appropriatgrobabilities:i.e. by spec-
ifying P(Y = k) for all the possiblevaluesof k. Sucha specificatioris calledthe PROBABILITY
DISTRIBUTION of Y. Notethat'Y = £’ is anevent (it correspondso a statemenof the form
‘therearel15tropical cyclonesin the North-WestPacific’).

Often,it is usefulto beableto summarizehebehaiour of arandomvariableby giving asingle
‘typical’ value.Thisleadsto thenotionof ‘averages’andto somefurtherdefinitions.Theaverage
of asetof obsenationsis usuallyunderstoodo betheresultof addingthemtogetheranddividing
by the numberof obsenations. The resultrepresentsin somesensethe valuethat would have
beenobsenedif all of the obsenationshadbeenequal. Sothe operationof ‘averaging’provides
uswith a corvenientsingle-numbesummaryof anentiredataset.

This notioncanbe extendedo randomvariables.Thereasoris thatwhenwe make probability
statementsaboutrandomvariables,we are imagining mary repetitionsof an experimentunder
identicalconditions.Eachof theserepetitionswill giveriseto a singlevalueof thevariable. The
averageof all thesevaluesis a singlenumberwhich we mayregardasrepresentatie.
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Definition: TheEXPECTED VALUE, or EXPECTATION, of adiscreterandomvariableY’,
denotedby E(Y), is definedas

E(Y)=kP(Y =k),

providing thesum(whichis over all valuestakenby Y') is well-defined.

E(Y) representanidealisedong-runaveragefor the valuesof Y. It is alsocalledthe (POP-
ULATION) MEAN of Y, andis usuallydenotedoy p. It neednotnecessarilypeavaluethatY can
take (for example,we mightfind thatthe expectednumberof tropical cyclonesin the North-West
Pacificthis yearis 22.6).

If Y is arandomvariable,thensois ary transformatiorof Y, say¢(Y'); hencewe cantalk
aboutE (Y?), E(InY) etc. Notethat,in general,E (¢(Y')) is notequalto g (E(Y)).

The expectation,u, of a randomvariableY is intendedto give a ‘representatie’ value. It is
naturalto ask‘How representatie, exactly?’. Putanotherway: if we forecasthatthevalueof Y
will be i, how big will ourerrorbe,onaverage?

Definition: TheVARIANCE of Y is definedby
Var(Y) = B (Y - ) .

whereit exists.

Var(Y) is often denotedby o2. If we repeatan experimentmary times, eachtime issuinga
forecastThe valueof Y will bey’, 0% is theaveragesquaredorecaserror. Thereforeit is adirect
measureof uncertainty The squareroot of the variance o, is calledthe STANDARD DEVIATION
of Y. Themotivationfor thisis thato is measuredn the sameunitsasY’, andhencehasa direct
interpretation.The standardieviation canbethoughtof asthelik ely magnitudeof aforecasterror
(recallthediscussionn Sectionl.1.2).

For randomvariablesthat cannottake negative values theratio of standarddeviation to mean
(0/ 1) is adimensionlesgjuantitycalledthe COEFFICIENT OF VARIATION.

Continuous random variables

Not all randomvariablesarediscrete For example temperatureantake ary valueonacontinuous
scale. This is anexampleof a CONTINUOUS RANDOM VARIABLE. If Y is a continuousrandom
variable,it is not obvious how we cancalculateprobabilitiessuchas P(Y = 18) — in thelong
run, how oftenwill avalueof exactly 18 (ratherthan17.9999... or 18.000...001) arise?

It is easierto think of continuougandomvariablesby consideringeventsof theform 'Y < ¢,
sinceprobabilitiescaneasilybe allocatedto suchevents(it is straightforvardto make statements
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suchas'75% of thetime, thetemperatureavill belessthan18°C’).

Definition: for any randomvariableY’, the function
F(y)=P (Y <y)

is calledthe (CUMULATIVE) DISTRIBUTION FUNCTION (cdf) of Y.

Distribution functionsaredefinedfor both discreteandcontinuousandomvariables.We can
usethe distribution function to find the probability of obtaininga valuein ary intenal: if a < b
thenP(a < Y < b) = F(b) — F(a). Now, if F(.) is continuousand differentiable suchthat
dF/dy = f(y), we have

sinceintegrationis the oppositeof differentiation.

The function f(.) hereis called the (PROBABILITY) DENSITY FUNCTION of Y. Note that
I? f(y)dy is the areaunderthe graphof f(.) betweena andb. Hence,if Y hasdensity f(.),
P(a < Y < b) canbe obtainedasthe areaunderthe graphof f(.), betweern andb (seeFigure
1.1). Notethat f(y) is not the sameasthe probabilitythatY = y. In fact, for ary continuous
randomvariable,the above discussiorforcesusto acceptthatfor any numbery, P(Y = y) = 0
(sincethe areaunderthe graphof f(.), betweeny andy, is zero). Thisis not intuitively obvious,
but thelogic is correct! We have discoveredthat‘possible’ eventsmay have probability zero.

Noticethat F'(.) canbeobtainedrom f(.) asF'(y) = [Y  f(u)du). Hencef(.) andF(.) each
specifycompletelythe probability distribution of a continuousandomvariable.

How canwe defineexpectationfor continuousrandomvariables?Well, we could chooseto
approximatea sucha variableby a discreteone which takesvalueson a very finely spacedyrid
of points(separatedby intervals of lengthdy, say). In this case,if §y is small,we will find that
fly+dy) =~ f(y), sothattheareaunderthegraphof f(.) betweery andy + dy is approximately
f(y)oy. If we saythatthe discreteapproximationtakesthe valuey whenY” lies betweeny and
y + oy, thentheexpectedvalueof this discreterandomvariableis 3" y f (y)dy. Theapproximation
will improve aséy becomesmallerandsmaller;in thelimit asdy tendsto zero,the sumtendsto
anintegral. Thereforewe have

Definition: Let Y be a continuousrandomvariablewith density f(.). The EXPECTED
VALUE of Y is definedas

E(Y) = /o:o yf(y)dy = p, say

providing thisintegralis well defined.
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f(y)

Shaded area
corresponds to
P(a<Y<bh)

a b y

Figurel.1: Interpretationof a probability densityfunction: probabilitiesarerepresentedy areas
underthegraph.

Thedefinition of variancefor a continuousandomvariableis the sameasthatfor thediscrete
casei.e. £ ((Y - M)Q). Interpretationof expectationandvarianceis the sameasfor the discrete
case.In general definitionsandformulaearealsothe same exceptthatwe replace}" by [, and
P(Y = k) by f(y)dy.

Somerandomvariableshave distributionsthatarea mixture of discreteandcontinuoussompo-
nents.Daily rainfall is agoodexample— evenin Ireland,a proportionof daysexperiencesxactly
zerorainfall, but if the rainfall amountis non-zeroit may be regardedas a continuousrandom
variable.

Joint and conditional distrib utions

In Sectionl.2.2,weintroducedconditionalprobabilityasaway of studyingrelationshipdetween
events. In general,we will wantto study relationshipsbetweenrandomvariablesin a similar
mannerlf Y3, ..., Y, areeachdiscreterandomvariableswe candefinetheir JOINT PROBABILITY

DISTRIBUTION by considering

P (Y1 =kiandY, =k, ... andY, = k,)

for all the possiblevaluesof k., ..., k,. Whenwe study several randomvariablestogethey we
will often assembleheminto a vectorfor easeof notationY = (Y; ... Y,) say Y is calleda
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RANDOM VECTOR.
Occasionallywe will be interestedn studyingfunctionsof severalrandomvariablesand,in
particular finding their expectationsThe expectedvalueof ¢ (Y3, ..., Y,) isjust

> g(kr,..., k) x P(Yi =k andYy =k, ... andY, =k,) .
k1,..kp

The mostimportantexamplesof this arethefollowing:

Definition: LetY; andY, berandomvariableswith meansu; andu,, andvariancesr?
ando?, respectiely. The COVARIANCE betweeny; andY; is definedas

Cov (Y1, Y3) = E((Yy — ) (Y2 = o)) = E (V1Y) — papsa

andthe CORRELATION betweeny; andY; is definedas

Cov (¥1,Y3)

0102

Corr(Y1,Ys) =

It canbe shown that Corr(Y7, Y,) takesvaluesbetween—1 and+1, andthatit only achieves
thesevaluesif Y; andY; arelinearlyrelated:Y; = a + bY5, wherea andb areconstantsif b < 0
thenCorr (Y3, Y2) = —1; otherwiseit is +1.

NotethatCov(Y,Y) = Var(Y'). Themainreasorfor introducingcovarianceat this pointis to
presenthefollowing result:

Result: LetY; andY; betwo randomvariables.Then

Var(Y; £Y3) = Var (Y1) + Var(Yz) = 2Cov (Y7,Y3) .

This tells us how uncertaintyis propagatedvhenwe combineinformation. We will returnto
this point below.

Now supposeve obsene the valuesof all of theY's exceptfor Y;. We may definethe CONDI-
TIONAL DISTRIBUTION OF Y; GIVEN Y5, ..., Y), by considering

P (Y1 =k andY; =k, and ... andY, = k,)
P(Yi =k andYy, =k, ... andY, = k,) ’

accordingto the definition of conditionalprobability givenin Sectionl.2.2. We can,if we wish,
calculatethe CONDITIONAL MEAN andCONDITIONAL VARIANCE of this distribution, in exactly
thesameway asfor ary otherdiscretedistribution.

If the Y's arecontinuousratherthandiscrete thenwe candefinetheir JOINT DISTRIBUTION
FUNCTION

P(Yi=k|Y; =k,and... andY, = k,) =

F(y,-..,y) =P, <yrand... andy, < y,) ,
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andthecorrespondingOINT DENSITY

OPF
f(yla---,yp)—m-

As before,resultsand formulaefor continuousdistributions are equialentto thosefor dis-
cretedistributions, replacingsumsby integrals and probabilitiesby densities. For example,the
conditionaldistribution of Y; givenYs, ..., Y, hasdensity

f(yla"' 7yp)
Yo =ypand... andY, =y,) = = .
f(yl‘ 2 V2 P yp) f(y27 7yp)
(thedenominatohereis thejoint densityof Y5, . . ., Y,). Also, theexpectedvalueof a function of

continuousandomvariabledss

E(g(Yh---,Yp))=/g(yl,---,yp)f(yl,---,yp)dyl---dyp-

Fromnow on, we will discussonly continuousandomvariables.All of theresultsholdin the
discretecaseaswell.

Independenceof random variables

In the sameway aswe definedindependeneventsin Sectionl1.2.2,we cannow defineindepen-
denceof randomvariables.Specifically we saythatY; andY, areindependenif all probability
statementgaboutY; areunafectedby observingY,, andvice versa.If Y; andY; areindependent
continuousrandomvariablesthentheir joint densityis given by the productof their individual
densities: f (y1,y2) = fi1 (y1) f2 (y2), say In addition, E (Y1Y2) = E (Y1) E (Y3) sothatthe
covariance(and hencethe correlation)betweenY; andY; is zero. Note, however, that a zero
correlationbetweeny; andY, doesnotimply thatthey areindependent.

Fromtheformulafor Var(Y; + Y3) givenabove,in theindependentasethe varianceof asum
(or difference)is just the sum of the individual variances.Sincevarianceis a direct measureof
uncertainty(seepage13), this tells us that if we combineoutputsfrom two or more unrelated
models(asin Examplel.1), the uncertaintywill accumulate— we cannotrely on errorsin one
modelcompensatindor thosein another

Theideaof independenceanbeextendedo thatof CONDITIONAL INDEPENDENCE. Suppose
we have threerandomvariablesyi, Y, andYs, andthatneitherof theseis independenof eitherof
the othertwo. However, it may be thatthe conditionaldistribution of Y; givenY, is the sameas
thatof Y; givenbothY; andY3. This couldbe expressedin termsof densitiesas

fnlYa=y2) = f (y1|Ya = y2 @andY; = y3) .

The implication of this is that, oncewe know Y5, Y;3 tells us nothingnew aboutY;. This notion
is extremelyimportant,andis particularlyrelevantfor the studyof comple systemssuchasthe
climate.An examplewould probablyhelp:
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Example1.6: Suppos&; isarandomvariabletakingthevaluel if it rainsin theWestof Ireland
today and0 otherwise(sucha variable,taking the value 1 if aneventoccursandO otherwise,is
calledanINDICATOR VARIABLE). LetY; beanindicatorfor the passag®f a cold front over the
areatoday andlet Y3 beanindicatorfor rain yesterday

In Examplel.5,wesaw thatP(Y; = 1) = 0.7, andthatP(Y; = 1|Y; = 1) = 0.85. Forthesale
of agument,supposeahaton 98% of dayswhena cold front passe®ver the region, precipitation
occurs.Supposalsothata cold front passe®ver theregiontoday Knowing this, we cansaythat
P(Y, = 1Y, = 1) = 0.98. Now we learn,in addition,thatit rainedyesterday Realistically this
informationis now irrelevant— today it will rain because cold front is presentnot becauset
rainedyesterday The probability of rain todayis still 0.98i.e. P(Y; = 1|Y, = 1andY; = 1) =
P(Yi = 1|V, = 1). _

The calculationin this exampleis not enoughto demonstrateconditionalindependencef
Y; andY; givenY;. A completeanalysiswould requirecomputationof the probabilitiesfor all
possiblecombinationf valuesfor thethreevariables.However, it illustratesthegenerakoncept.
The importantpoint is that dependencéetweentwo variablesmay be completelyexplainedby
theeffect of athird variable.In climateresearchhis situationoftenariseswhen,ashere,thethird
variablerepresents genuinephysicalmechanism.In this case,Y; only tells us aboutY; in the
absencef informationaboutY;.

1.3 Simpledistrib utions

In this section,we summarisea few of the more commonly-usedrobability distributions. We
give,without proof, theimportantpropertiesof eachdistribution. We alsogive, whereappropriate,
anoverview of situationsn which eachdistribution might arise.

1.3.1 The Bernoulli distrib ution

This is the simplestpossibleprobability distribution, for a randomvariableY which takeseither
of thevaluesO andl. If P(Y =1) =pandP(Y =0) =1 — p, we saythatY hasa BERNOULLI
DISTRIBUTION WITH PARAMETER p. In thiscase,E(Y) = pandVar(Y) = p(1 — p).

The Bernoulli distribution is not often mentionedby name,but it is commonlyused. The
randomvariablesn Examplel.6wereall Bernoullirandomvariables.t is oftenusefulto think of
indicatorvariablesn termsof the Bernoulli distribution.

1.3.2 The Binomial distrib ution

Supposean experimentis repeatecdh times, underidentical conditions. The probability of some
event A occurringeachtimeis p, independentlyof all otherrepetitions.Let Y bethetotal number
of repetitionsin which A occurs.ThenY takesvaluesin {0,1,...,n}. We saythatY follows a
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BINOMIAL DISTRIBUTION WITH PARAMETERS n AND p, andwrite Y ~ Bin(n, p). Theproba-
bilities aregivenby

P(Y=k) = < Z )pk(l —p)nk = k!(nniik)!pk(l —p)" ™k (k=0,1,...,n).

Themeanof thedistributionis np, andthevarianceis np(1 — p).

Thebinomialdistribution maynot bedirectly applicableto mary climatevariablessincethere
will be few datasetavhereall of the obsenationshave beenobtainedindependentlyand under
identical conditions. However, it may be that homogeneousubsetsf the obsenationscanbe
regardedasfollowing differentbinomial distributions.

Noticethata Binomial randomvariablecanberegardedasthe sumof n independenBernoulli
randomvariables.

1.3.3 The Poissondistrib ution

A discreterandomvariableY” is saidto have a POISSON DISTRIBUTION WITH PARAMETER i if

ko—u
P(Y:k):“ke! (k=0,1,2,...).

We write Y ~ Poi(u). The distribution, incidentally is namedafter Siméon Poisson(1781—
1840). The meanandvarianceareboth equalto i. A furtherusefulpropertyis thatif Y; andY;
areindependenPoissorvariableswith meansu; andus, thenY; + Y, ~ Poi(uy + p2).

The Poissondistribution can be usedas an approximationto the Binomial (n, p) whenn is
large andp is small. However, in climateandsimilar applicationghis particularaspects rarely
useful.

The PoissonProcess

It iscommonto encounterariableghatrepresenthenumberof occurrencesf somephenomenon
duringatime period. For example,we may wish to countthe numberof typhoonsin the North-
West Pacific this year A schematiadiagramshaowing this situationis shovn in Figure1.2. A
procesghatcanberepresenteth this way is calleda POINT PROCESS (becauséhe occurrences
canberegardedaspointsonaline).

Let Y bethenumberof occurrence thetime intenval of interest.Denotethe durationof this
interval by ¢, andassumehat(i) nomorethanl occurrencés associatedvith eachtime instant;(ii)
the numbersof occurrencesn non-overlappingtime intervals areindependentandomvariables;
and (iii) the meannumberof occurrencesn ary time interval of length 1 time unitis A. Thenit
canbeshavn thatY hasa Poissordistribution with meant.

A procesf occurrenceswhich satisfieghe assumptionsn the previous paragraphis called
aHOMOGENEOUS POISSON PROCESS. Theparametel is calledtheRATE of theprocessAt first
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Figurel.2: Schematidiagramof a point process.

sight, Assumptiong(ii) and(iii) appearestrictve. Assumption(ii) requiresthatnon-overlapping
time intervals shouldbe unrelatedto eachother: this seemsunlikely to hold for mary climate
applications Assumption(iii) requiresthattherateof occurrencess the samefor all time.

In fact, Assumption(iii) canbe relaxed: supposédhatthereexistsan INTENSITY FUNCTION,
A(t) say suchthattheprobabilityof anoccurrencén theinterval [¢, ¢+ dt) is approximately\(t)dt.
In this case andunderAssumptiongi) and(ii) above,it canbeshavn thatthenumberof eventsin
theinterval [a, b) hasaPoissordistributionwith mean/” A(¢)dt. Suchaprocesswith time-varying
intensity is calledanINHOMOGENEOUS POISSON PROCESS.

Assumption(ii) — that non-overlappingtime intervals are independenbf eachother— re-
mains. It seemghatin mostclimateapplicationsthis assumptiorwill not hold. However, there
arecertainsituationsn which the Poissorprocessstructurewill hold approximately Someexam-
plesof theseare:

Superposition: If mary point processesnoneof which predominateare superposedhenthe
resultis approximatelya PoissorProcess.

Thinning: If eachoccurrencen a point processs deletedwith probability p, independentlyof
all otheroccurrencesheresulting‘thinned’ processs approximatelya PoissorProcessf p
is large(i.e. closeto 1).

Translation: If wetake any pointprocessandrandomlydisplaceeachoccurrencéndependently
of all the others,therundercertainconditionson the displacemenmechanismtheresultis
approximatelya PoissorProcess.
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Rare events: In mary situationswherewe are interestedn studying ‘rare events’, a Poisson
Processnodelmay be appropriate For example,we may beinterestedn studyingdaysfor
which rainfall amountsexceedsomethreshold. If this thresholdis high enough,the point
procesof exceedances approximatelya PoissorProcess.

The presentatiornereis deliberatelynon-technicalln all of the situationsabove, certaincon-
ditions arenecessaryn orderthatthe Poissomapproximations valid. However, they do suggest
mechanismsinderwhich it maybeappropriate¢o usea Poissordistribution for counts.

Example 1.7: Intheeastermartsof tropicaloceanseasterlywavesform roughly every 3 days.
Theseareweaktroughsin sealevel pressurethatmove westwards. As they move, someof them
developinto hurricaneqi.e. developwindspeedsbore 33ms ). In the Atlantic, therearetypi-
cally 100easterlywavesperyear of which 8 reachtropical cyclonestatus.

Onthebasisof this, it maybethattropical cyclonesoccurin a Poissorprocesssincewe start
outwith apoint proces®f easterlywaves,anddeleteeachonewith high probabilitysothatwe are
left with just a few tropical cyclones. Therateof cycloneformationis seasonallyarying; hence
aninhomogeneouBoissorProcessnodelmaybeappropriatelf thisis thecasethenthe number
of tropicalcyclonesin any oneyearhasa Poissordistribution. [ |

The Poissonprocessmodelis alsoapplicablefor countsof occurrencesn regions of space,
undersimilar assumptionsisthosegivenabove.

1.3.4 The Normal distrib ution

A continuougandomvariableY hasaNORMAL (or GAUSSIAN) DISTRIBUTION WITH PARAME-
TERS 1 AND o2 if its densityis

1) = <oz exp [—%} JeR.

Wewrite Y ~ N (u, 0?). Themeanof thedistributionis p, andthevarianceis 2.

Thenormaldistributionis perhapshe mostimportantmodelfor continuougandomvariables,
andmuchstatisticaltheoryis baseduponit. The mainreasorfor its importances the CENTRAL
LiMIT THEOREM. This stateghatif Y is thesumof alarge numberof independentandomvari-
ablesfrom any distribution then, undervery generalconditions,Y hasapproximatelya normal
distribution. Also, linear combinationsof normalrandomvariablesarethemselesnormally dis-
tributed. Therefore,it is naturalto usethe normaldistribution when studyingquantitiesthat are
‘averages’.

Example 1.8: Supposeve wishto studymonthlymeantemperaturesSinceeachmonthlymean
is anaverageof around30 daily values,it may be appropriatego considerthatit is dravn from a
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normaldistribution. Typically, however, eachmeanwill be dravn from a differentnormaldistri-
bution, becaus®f effectssuchasseasonality [ |

The normal distribution can be usedas an approximationto mary other distributions. For
example,if Y ~ Bin(n,p) thenY canberegardedasa sumof n independenBernoullirandom
variablegseeSectionl.3.2above). Hence|f n is large, thedistribution of Y canbeapproximated
by a normaldistribution. Similarly, the normaldistribution canbe usedto approximatePoi( )
wheny is large.

Anotherusefor the normal distribution is to study ‘errors of measurement— in fact, this
wasoneof its first uses(by Laplacein 1783,35 yearsbeforeGaussusedit — and50 yearsafter
DeMoivre hadusedit asanapproximatiorto the Binomial!).

The normaldistribution with meanzeroandvariancel is referredto asthe STANDARD NOR-
MAL DISTRIBUTION. Standarchormalrandomvariablesare usuallydenotedoy Z. The density
of the standarchormaldistribution is denotedby ¢(.), andits distribution functionby ®(.). An
importantresultis thatif Y ~ N(u,0?) andZ = (Y — pu) /o, thenZ ~ N(0,1).

1.3.5 The Gamma, Exponential and Chi-squared distrib utions

A continuousandomvariableY hasa GAMMA DISTRIBUTION WITH PARAMETERS v > (0 AND
A > 0if its densityis
My te ™ T(v) y >0
) = { 0 e otherwise ’

wherel'(.) denotegshe GAMMA FUNCTION: T'(a) = [°u®* e “du = (o — 1)['(a — 1). The
gammafunction is sometimescalled the GENERALISED FACTORIAL since,if « is an integer,
I'a)=(a—1)N

If Y hasthis distribution, we write Y ~ T'(v, A). The meanof the distributionis p = v/,
andthe varianceis v/)?. In Lectures2 and 3, we will expressthe Gammadistribution via the
parameterg andv, ratherthan\ andv. In this casethedensityfor y > 0 is writtenas

o (s) 7o []

If Y7 ~ (21, A) andY; ~ ['(vy, A) areindependenthenY; + Y, ~ I'(v; + 15, A) (notethatthe
parametenr mustbe commonto bothdistributionsfor this resultto hold). It follows that,whenv
is large,theI'(v, ) distribution canbe approximatedy a normaldistribution.

Therearetwo situationan whichthe Gammadistributionarisesaturally Theseareasfollows:

1. InahomogeneouBRoissorProces®f rate A (seeSectionl.3.3above), thetime until the kth
eventis distributedasI'(k, A).
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Figurel.3: Examplesof gammadensities.
|

2. If Zy,...,Z, areindependenstandardnormalrandomvariablesandY = -7 , ZZ, then
Y ~ I'(n/2,1/2). In fact, this distribution is usually referredto as the CHI-SQUARED
DISTRIBUTION WITH 1 DEGREES OF FREEDOM. Wewrite 37 | Z2 ~ x2.

More often, however, the gammafamily of distributionsprovidesa convenientmodelfor any
positive-valuedrandomvariable,simply because wide variety of distributional shapesreavail-
able. Someof theseareillustratedin Figurel.3. We seethatthe parameter controlsthe shapeof
thedistribution, andfor thisreasont is oftencalledthe SHAPE PARAMETER. For v < 1, theden-
sity hasamaximumaty = 0. As v increasesthe distribution becomesnoresymmetric.Another
interpretatiorfor v is in termsof the coeficient of variation(seepagel3) of thedistribution. This
isequalto \/v/A2/ (v/\) = 1//v.

Figure 1.3 also shaws that varying ¢ (or, equialently, \) doesnot affect the shapeof the
distribution: it merely scalesthe graphhorizontally andvertically. For this reason,\ is usually
referredto asthe sSCALE PARAMETER of thedistribution.

Whenv = 1 theGammadensityis, for y > 0,

fO) =2 or () = e
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which is the EXPONENTIAL DISTRIBUTION — if Y hasthis distribution we write Y ~ Ezp()).
Thisarisesasthetimeto thefirst eventin aPoissorproces®f rate . Notealso,from thediscussion
above, thatthe x3 distributionis the sameas Ezp ().

1.3.6 The Weibull distrib ution

A randomvariableY hasa WEIBULL DISTRIBUTION WITH PARAMETERS a AND g if its density

is
& (y/B)" " exp[—(y/B)] y=0
0 otherwise.

f(y)={

We write Y ~ Wei(a, 8). « is the SHAPE PARAMETER of the distribution, and § is the SCALE
PARAMETER. Themeanis ST (1 + o '), andthevarianceis 52 [I' (1 + 2a™ ) = T? (1 + a 1)]. A
further propertyis thatif Y ~ Wei(a, 8) thenY* ~ Wei (a/k, ,B’“). Whena = 1, we obtainan
exponentialdistribution with parameten = 1/5.

The Weihull distribution doesnot arisenaturallyin mary ‘obvious’ situations,at leastin cli-
matology Two mechanismshatgive riseto the Weibull distribution areasfollows:

1. If Y ~ N(0,0%) andY; ~ N(0,0?) areindependentthen/Y? + Y2 ~ Wei (2,0v2).
This distribution is calledthe RAYLEIGH DISTRIBUTION. This particularresulthasmoti-
vatedthe useof the Weibull distributionto modelwindspeeds— if theu andv components
of wind velocity are zero-meamormalrandomvariableswith the samevariance thenthe
windspeecasa Rayleighdistribution.

2. Let Xy,..., X, beindependentontinuougandomvariablesdravn from thesamedistribu-
tion andtakingvaluesin therange[r, co) for somethresholdr. DefineY” = min; (X;) — 7.
Then,undercertainconditionson the distribution of the X's, thedistribution of Y is approx-
imately Weibull. As a consequencef this, the Weibull distribution is usedin the study of
extremeevents.Thiswill bediscussedurtherin Lecture3.

As with the Gammadistribution, theWeibull is oftenusedsimply becausd providesaflexible
classof distributionswith differentshapesin practiceit maybedifficult to distinguishbetweerthe
GammaandWeibull distributions. Statisticalinference(seeSectionl.4.3below) is moredifficult
for the Weibull thanfor the Gamma.The Weihull is useful,however, whenwe wantto studythe
probability of observingvaluesover somethresholdsince

P(Y > y) = exp [— (%)a] ,

for the Weibull modell. This hasa particularlysimpleform, andis mucheasierto calculatethan
the correspondingxpressiorfor the Gammadistribution.
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1.3.7 The Multi variate Normal distrib ution

The final distribution we study hereis a joint distribution (seepagel5). Supposé&y, ..., Y, are
randomvariables:the meanof Y; is y;, the varianceis o;; andthe covariancebetweeny; andY

(seepagelb)is o;;. TheY's canbe assemblednto avectorY = (Y;...Y,)’, andthe usinto a
correspondingectoru. In addition,we candefineap x p matrix, 3 say whose(i, j)th element
is 0;;. If thejoint densityof theY's canbewritten as

fly) = (2m) 2[5 exp —% (y—p)'S" (y—p),

where(y — p)' denoteghe transposef the vector (y — i), thenY hasa MULTIVARIATE NOR-
MAL DISTRIBUTION WITH MEAN p AND VARIANCE-COVARIANCE MATRIX X. Wewrite Y ~
MVN(p,X).

Themultivariatenormaldistribution hasmary appealingoroperties.The mostimportantare:

1. Any subsetof the Y's also hasa multivariate normal distribution, with meanvector and
covariancematrix obtainedirom the correspondinglementf p andX.

2. Thedistributionof Y; is N (u;, 04;).

3. If Cov (Y;,Y;) = 0 thenY; andY; areindependentApart from sometrivial casesnvolving
Bernoulli randomvariables(seeSectionl1.3.1), the multivariatenormal distribution is the
only distribution for which zerocovariance(i.e. lack of correlation)impliesindependence.

4. If Aisanr x p matrix, with r < p, thenAY ~ MV N(Au, AXA'). In particulay if
we choosea p x p matrix A in suchaway that A’A = X! (for example,via Cholesly
decomposition)thenAY ~ MV N(Apu, I) wherel isthep x p identity matrix. Thisresult
canbeusedto transformY into avectorof independentariables.

5. Supposeve split Y into two parts,with correspondingplitsfor 4 andX — i.e. write
Y, 241 > ( Y Yo >
Y = , = and X = .
( Y, ) a < 15 31 X
Supposaext thatwe obsere Y, = y,. The conditionaldistribution of Y; is now

MVN (py + S12555 (45 — o), St — B1255, T

The matrix 1,5, is calledthe matrix of (POPULATION) REGRESSION COEFFICIENTS.
Theeffect of observingY’, is to adjustthe meanof Y';, andto reducethe uncertainty

We mightimaginethat,if Y3, ..., Y, all have normaldistributions,thentheir joint distribution
is multivariatenormal. In factis not necessarilyhe case.
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1.4 Probability modelsand statistical methods

Sofar, we have compiledallist of usefulresultsin probabilitytheory We now review someof the
ideasthatareneededo applytheseresults.

1.4.1 Overview of probability modelling

Usually, climate investigationsnvolve analysisof information, in the form of data. Thereare
two stagedo ary analysis:the first is to describethe structuresn the dataandthe secondis to
interpretthem.We areconcernedhereprimarily with interpretationalthoughdescriptioris equally
important(without a cleardescriptionof structurejnterpretationis impossible).

We will assumdhatour informationis a setof numericalobsenationsy, ..., y,. Theseare
typically measurementsf somevariableof interest,andcanbe assembledto a singlevectory.
Usually, eachy is associateavith correspondingaluesof othervariablessayz(®, ..., z® and
we wantto learnhow the xs affect y. Formally, we regardthe ys ashaving beenproducedby a
DATA GENERATING MECHANISM, in whichthezsplayapart. We aimto discoverthismechanism.

The fundamentaldeabehindthe methodsin theselecturesis thaty is the obsened value of
avector Y, of randomvariables.In otherwords,for the particularsetof zs thatwereobsenred,
we could have obsened mary differentys. This approactdoesnot excludethe factthatthe data
generatingnechanismmay be purely deterministic— this wasdiscussecarlier in Sectionl.1.2.

SinceY is avectorof randomvariables|t hasajoint distribution (seepagel5), with density
f(.), say This canbe specifiedby the valuesof oneor more parametersWe distinguishbetween
two classesof parameter:‘statistical’ and ‘physical’ (althoughthis distinction may not always
be obvious). A statisticalparametemerely describegprobability structure;examplesare i or o2
in the parametrisatiorof the normal distribution. A physical parameteiis usedin a simplified
representatiof the mechanisngeneratinghe data— gravitational accelerations anexample.
In our probability-basedramewvork, we physicalparametersvill usually contribute to the mean
vectorof thejoint distribution, sincethisis our ‘expectation’givenourunderstandingf thesystem.

Thevaluesof someparametergsuchasgravitational acceleration)nay be known in adwvance.
Theremainingunknovn parametersanbeassembledhto avector @ say In this casethedepen-
denceof thejoint density f(.) upon@ canbe emphasisetby writing f(.; #). Thenour objectve,
of discoveringthe datageneratingnechanismganbere-statedasfollows:

Objective: Givendatay, to specify a suitablejoint density f(.; 8) for the underlying
joint distribution, andto learnasmuchaspossibleabout6.

In this contet, f(.; ) is a PROBABILITY MODEL for the data. Ideally, its specificatiorwill
useanunderstandingf theunderlyingmechanismo specifya plausiblemeanstructure.Thiscan
thenbecombinedwith aknowledgeof probabilitytheoryto selectanappropriatadistribution. For
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example,if theys areaveragesywe might considemusingnormaldistributionsto modelthem.
Learningabout® may involve estimatingits valuefrom the availabledata,or testingwhether
thedataareconsistentvith someprespecifiedialue,8, say Severalmethodsmaybe availablefor
carryingout suchtasks,eachof which yields a slightly differentanswer It is thennaturalto ask:
which methodshouldwe prefer? We now considersomeof theissuesnvolvedin answeringhis
guestionpeforegiving anovervien of somecommonly-useanethodsn Sectionl.4.3.

1.4.2 Estimation and inference— issues

Supposefor corvenience thatthereis a single unknovn parameterf. Hopefully, this canbe
estimatedusing somefunction of the obsenationsy. Any function of the randomvectorY is
calleda STATISTIC.

Definition: A statisticT’(Y) is anESTIMATOR of aparamete? if its valuet = T'(y) is
usedasanestimateof 6.

SincetheY' s arerandomvariablessois ary statistic. Thusary estimator?” hasa probability
distribution. The propertieof this distribution determinevhetheror not 7" is a‘good’ estimator

Definition: If E(T") = 6 thenT isanUNBIASED estimatorof §. Thedifferenceh(T’; 0) =
E(T) — 0 istheBiAs of T asanestimatorof 6.

An unbiasedestimatorwill give ustheright value‘on average’i.e. in along seriesof experi-
ments. Of coursewe only obsene y once! We would like to be fairly surethatT'(y) is closeto
theactualvalueof 4. Thiswill happenf T is unbiasecandhasa smallstandardieviation:

Definition: Thedistribution of anestimatoiis calledits SAMPLING DISTRIBUTION. The
STANDARD ERROR of anestimatoris the standardieviation of this samplingdistribution.

Theterminologyis potentiallyconfusing,but is usedto emphasis¢hefactthatwe aretalking
aboutthetypical magnitudeof anestimationerror.

Unbiasecdestimatorsnaynotbeunique.So,giventwo unbiasedestimatorshow dowe choose
betweerthem?Obviously, we wantthe onewhich is expectedto give the smallesterror, in some
senseOneway of achiesing thisis via the criterionof meansquareerror:

Definition: TheMEAN SQUARE ERROR of anestimator]” for aparamete# is definedas

MSE(T) = E [(T - 6)*] .
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It canbe shawvn that MSE(T') = Var(T; 0) + b*(T, #). Thereis atradeof, in termsof MSE,
betweenbiasandvariance. If we concentrateon unbiasedestimatorghenthe smallestpossible
MSE is achieved by the estimatorwith minimum variance. However, by consideringestimators
with asmallamountof bias,we mayfind somethinghathasa muchsmallervariancethanthe best
unbiasedestimatoy sothatwe canreducethe MSE.

Inter val estimation

Sofar, we have only consideredjiving asinglenumberasourestimateof f i.e. aPOINT ESTIMATE.

Of course sincethe estimateis a realisedvalue of a randomvariableit is unlikely to be exactly
equalto @ (in fact,if T(Y") is a continuousrandomvariable, P(T'(Y') = 6) = 0!). In this case,
we might wish to give arange of # valuesasour estimate.Sucha rangeis calledan INTERVAL

ESTIMATE Or @ CONFIDENCE INTERVAL.

Confidenceintervals are constructedn sucha way thatthey have a specifiedprobability of
including the ‘true’ value of . For example,a 95% confidenceinterval will containthe true
valuewith probability 0.95. A 99% interval will includethetrue valuewith probability 0.99,and
thereforeneeddo bewiderthana 95%interval.

Typically, if the varianceof our estimatoris small thenwe will be reasonablysurethat our
point estimates closeto 4, andwill thereforeour confidencenterval will be narrav. Ontheother
hand,if the varianceof the estimatoris large thenour confidencenterval will be wide. Thusthe
length of the intenval tells us somethingaboutthe precisionof the estimator Viewed in another
way, it tellsusaboutour uncertaintyregardingé.

Therearevariouswaysof calculatingconfidencentervalsin practice.The‘obvious’, andmost
common,way is to usetheintenal

t £+ (k x standarcerror) ,

wheret is the estimateandk is a constantchoserappropriatelysoasto give theright probability
of includingthetruevalueof . However, this methodwill only becorrectif the standardcerror of
anestimatordoesnotdependon . An alternatve methodis discussedn the next section.

Hypothesistesting

In someways relatedto the idea of interval estimationis that of HYPOTHESIS TESTING. This
theorywasdevelopedfor usein controlledexperimentsinvolving simple structures.The ideais
to testwhetheror not the dataareconsistentwith someprespecified/alueof 0, sayf,. Typically,
thisis doneby constructinga TEST STATISTIC whichis expectedto take ‘small’ valuesif thetrue
valueof f is 8y, and‘large’ valuesotherwise.

If the obsenedvalueof theteststatisticis lessthansomeconstant¢ say we concludethatthe
dataareconsistentvith theNULL HYPOTHESIS 6 = 6,; otherwisewe REJECT thenull hypothesis
in favour of an ALTERNATIVE HYPOTHESIS. Therearetwo typesof error we canmake in this
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procedure:eitherwe rejectthe null hypothesisvhenit is true (a TYPE 1 ERROR), or we accept
it whenit is false(a TYPE 2 ERROR). Thevalueof ¢ is usuallychosenso thatthe probability of

makingatype 1 erroris equalto someprespecifiedzaluesuchas0.05or 0.01. This probability
is calledthe SIGNIFICANCE LEVEL of thetest. If the null hypothesigs false,the probability of

making a type 2 error then dependaipon factorssuchas the samplesize and the magnitudeof

the differencebetweerd, andthetruevalueof 4. If 3 is the probability of makingatype 2 error,

thenthequantityl — § is calledthe POWER of thetest. It measuresheability of thetestto detect
genuinedeparturesrom the null hypothesis.

An equialentapproacho testingis to calculatethe probabilitythat, underthe null hypothesis,
theteststatisticwill exceedits obseredvalue. This probabilityis calledthe OBSERVED SIGNIFI-
CANCE LEVEL or p-VALUE. For atestatthe5% level (i.e. wherethetype 1 errorrateis 0.05),we
will rejectthenull hypothesisf thep-valueis lessthan0.05.

Supposaow thattwo testprocedureareavailableto us. How dowe choosewhichoneto use?
Fromthediscussiorabove, oneapproactwould beto fix a significancdevel, andthenchoosehe
procedurahathasthe highestpower. We returnto this below.

Althoughhypothesidestingis widespreadin mary applicationst shouldbeusedwith caution.
Thereasoris thatary testingproceduras designedo answerthequestionls # equalto 8,?’. The
answerto this, whenstudyinga complex systemsuchasthe climate,is almostcertainly‘No’. If
we have a large datasetary powerful testingprocedurds very likely to rejecta null hypothesis,
evenif thedifferencebetweery, andthetruevalueof ¢ is very small. The procedurealsoassumes
thatthereis atruevalueof #, whichwill only bethecasef datageneratingnechanisniollowsthe
particularmathematicatlorm thatwe areusing!

1.4.3 Estimation and inference— techniques

Finally in thislecture we introducethreemethodghatarecommonlyusedto implementtheideas
discussedbore.

Method of moments

The naturalway to estimatethe parametewnector @ in the probability model f(.; 8) is to match
propertiesof the distribution with the correspondingpropertiesof the data. For example,to es-
timate the meanof ary distribution we coulduseY = n'¥",Y; — i.e. usethe meanof
the datato estimatethe meanof the distribution. In somesituations,we may modify the idea
slightly to obtain unbiasedestimators. For example, the obvious estimatorof the varianceof

o —\2 o ,
a normal distributionis n=* 7, (YZ- - Y) , but this is biasedso we usually usethe estimator

P?=m-1)"'%2r, (YZ- — Y)2 instead.s? is calledthe SAMPLE VARIANCE.

Themethodof momentss usuallyeasyto implement.However, thechoiceof propertiedo use
is notalwaysobvious. A disadwantagds thattwo scientistsanalysingthe samedata,may choose
differentpropertiesandreachdifferentconclusionsln simplecaseghisis not usuallya problem,



LECTURE NOTES, JUNE 2001 30

but it canbe a majordravbackwhendealingwith complex models.

Leastsquares

In casesvherewe wish to modelthe meanstructureof a distribution (i.e. E(Y;) dependon 6),

we may wish to choosed soasto minimisethe quantity>"" , (V; — E(Y;))°. Estimatorsderived
in thisway arecalledLEAST SQUARES ESTIMATORS. In somesensehey improve uponmoment
estimators,sincethereis no arbitrary choice of fitting properties. However, the approachcan
only beusedto estimateparameterselatingto the meanof adistribution. In its simplestform, it is

appropriatenly whenall of theY saredravn from distributionswith the samevariance However,

modificationsexist to dealwith unequakariances.

If all of theY's have the samemeany, theleastsquarestimatorof 1 is Y.

Maximum lik elihood

Anotherpossibleapproacho estimationrelieson avery simpleidea: we shouldchoosehevalue
of @ which allocatesthe highestprobability to the obsenationsy. Specifically we definethe
LIKELIHOOD for @ giveny, as

L8ly) = f(y;0),

anddefinetheMAXIMUM LIKELIHOOD ESTIMATE OF 6 to bethevaluewhichmaximisesL(6|y).
Equivalently it is thevaluethatmaximiseghe LOG-LIKELIHOOD In L(8|y). In practice maximis-
ing In L(0|y) is ofteneasiethanmaximisingL(0|y). If theY's areall independentandomvari-
ablessuchthatthedensityof Y; is f; (.; 8), thentheirjoint densityis just f(y; 6) =TT, fi (v:; 0),
sothatthelog-likelihoodis

InL(Bly) = ilnfi (vi; 0)
i=1

We denotethe maximumlik elihoodestimate(MLE) by 6.
Now considerhow we might usethelikelihoodto form a confidencenterval for a parameter
Previously, we saidthata confidenceanterval could be calculatedas

t £ (k x standarcerror) .

Anotherway of defininga confidencenterval is asthesetof all valuesof 8 for whichthelik elihood
(or, equialently, thelog-likelihood)exceedssomethreshold An examplewill begivenin Section
3.2.5.Suchaninterval will only besimilarto the‘obvious’ oneif thelikelihoodis fairly symmetric
aboutits maximumpoint.

Finally, we considetypothesidesting.In alik elihood-basedramenork, we cantestwhether
thedataareconsistentvith anunderlyingvalueof 8, by examiningthe LIKELIHOOD RATIO A =
L(B|y)/L(6|y), or its logarithm. By definitionof , L(8|y) > L(8,|y). Valuesof A closeto 1
(i.e. valuesof In A closeto zero)areconsistentvith the null hypothesis|argervaluesarenot.
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Likelihood-basegbrocedurediave a numberof appealingproperties. A precisestatemenbf
theseis lengthyandtheoretical.However, for practicalpurposeghe mostimportantonescanbe
summariseasfollows:

1. In awide classof usefulmodels maximimumlik elihoodestimatordave thesmallestMean
Squarederror of anyestimator

2. For suchmodels ik elihood-basedonfidencentervalsaregenerallythe shortesthatcanbe
found,ataspecifiedconfidencdevel.

3. Themostpowerful testfor distinguishingoetweertwo hypothesess basednthelik elihood
ratio (the NEYMAN-PEARSON LEMMA). This meansthatif a weaksignalis presentin a
noisyrecord,alikelihoodratio testmaybe ableto detectit whenotherproceduregannot.

The only disadwantageto lik elihood-basednferenceis thatit requiresthe probability model
f(y; @) to be completelyspecified. Resultsand conclusionswill dependon this specification,
so we needto ensurethat the model structureis realistic. This canbe achiezed by combining
prior knowledgeof the problemwith an understandingf probability mechanismsuchasthose
discussedn Sectionl.3above.

1.5 Further reading

This lecturehassummarisedn extremelywide rangeof material,andwe will notattemptto give

anexhaustve referencdist. Thereis very little appliedliteraturethatdealswith the generaideas
of probabilitymodelling. The materialin Sectionl.4is quitetechnical,if treatedthoroughly and

therearefew accessiblestatisticaltexts that cover it. For this reasonto find out moreaboutthe

generaldeasdiscussedn this lecturethe bestapproachmay beto consulta goodundegraduate-
level statisticstext. Rice (1995)andWackerly et al. (1996) are both excellentexamples. These
bothgive a very clearaccouniof basicprobabilitytheory aswell asa goodoverview of statistical
methodgincludingrelatively accessibl@ccountof the materialin Sectionl.4).

Thetheoryof pointprocesse¢Sectionl.3.3)is not coveredin somuchdetailin thetexts cited
above. Coxandlsham(1980)give a goodtheoreticalccount.Diggle (1983)givesa moreapplied
treatmentfocusingprimarily uponprocesses spaceaatherthantime — however, thebasicideas
arethesamein eachcase.

The discussiorof the multivariatenormal distribution (Section1.3.7) closelyfollows thatin
Krzanawski (1988). This text is anexcellentintroductionto multivariatetechniquesn general—
includingmary methodswvhich arecommonlyusedin climatology



Lecture 2

GeneralizedLinear Models

In the previouslecturewe discussedhe needfor probability-basednodellingin climateresearch
and gave an overview of someof the issuesinvolved, togetherwith a collection of necessary
backgroundmnaterial. In this lecture,we introducea specifictechniquethat canbe usedto apply
theseideas.

The basicproblemwe consideris to determinehow somequantity of interestis affectedby
otherquantities.The quantityof interestis calledthe DEPENDENT Or RESPONSE VARIABLE, and
the otherquantitieswill bereferredto asEXPLANATORY VARIABLES, PREDICTORS Or COVARI-
ATES. For example,we mightwantto know if, or how, El Nifio affectstropical cycloneformation
in the North-WestPacific. In this casethe dependenvariablemay be the numberof cyclonesin a
year andthe predictorsareappropriately-choseBl Nifloindices.

The approachdescribedhereis an extensionof the familiar techniqueof linear regression.
However, our view of regressiormay differ from that normally encounteredn climateresearch.
We thereforestartby outlining this view.

2.1 Overview of linear regression

In thesimplestcaselinearregressiorcanbedescribedsfollows: we have n pairsof obsenations
{(zs,y:;) : i =1,...,n}, andaplot shavsthatthe pointsaremoreor lessscatteredbouta straight
line. Accordingly, we maydecidethatthe datacanbe summarisedy then equations

Yi = by + bz + € (izla---an)a

wheree; is the predictionerror for theith point, andb, andb; arechoseno minimisethe sumof
squarecpredictionerrors, Y7, e?.

This procedureseemssensiblejf alittle ad hoc We canmake thingsalittle morerigorousif
we try to embedthe procedurewithin the frameavork of a probabilitymodel. In mostsituations jf
we havetwo z valuesthatarethesameheassociateg valueswill differ, asdiscussedh Lecturel.

Thusy; canberegardedasthe obsenedvalueof arandomvariableY;, whosedistribution depends

32
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onz;. An appropriatanodelfor sucha situationmightbe
Y; = bo+ biwi + e,

wherethe {¢;} areindependentandomvariableswith zeromeanandcommonvariance(o?, say).
Equialently, we canwrite

E(Y;) = Bo + przi = p(;) , say
If we alsoregardthe zs asrealisedvaluesof randomvariables{ X, : i = 1,n}, we areeffectively
modellingthe conditionaldistribution (seepagel6) of Y; given X; = z;. If we make the extra
assumptiorthatthe {¢;} arenormallydistributed,thenwe arepredictinga probability distribution
for Y givenavalueof x — we aresayingthatY; ~ N (8, + S1zi, 02).

2.1.1 Parameter estimation

Thediscussionn Lecturel suggestshatwe shoulduseMaximumLik elihoodto estimatgparam-
eterswherever possible.Sincethe Y's areassumedo be independenof eachother thelikelihood
is just the productof theindividual densitieqseeSectionl.4.3)i.e.

& 1 (yi — Bo — Brxi)?
L(ﬁoaﬁ1,02§y) :zzl_Il <\/Wexp l_ 200_2 : ]) )

from the definitionof thenormaldensityin Sectionl.3.4.Thelog-likelihoodis therefore

n o _ \2
In L(ﬁo, 131’ ()‘2; y) = Z <_% In 02 _ (yz ﬁSOQ ﬁ1.’L‘Z)

=1

) + constant.

To maximisewith respecto 3, and 3, we calculated In L/05, andd1ln L/0p;, setto zeroand
solve to obtainestimates3, and 3, say It is clear from the log-likelihood, that theseestimates
do not dependon ¢2. In fact, the only part of the log-likelihoodwhich contrikutesto estimation
of Bp andpBy is =X 4 (yi — fo — 61332-)2 , whichwe aretrying to maximise.This is equialentto
minimising>_? ; (v; — Bo — ,3195,-)2 i.e. to LeastSquaregstimation.So,if we assumeanunderly-
ing normalprobabilitymodel,the‘obvious’ LeastSquaregroceduregyieldsMaximumLik elihood
estimates— andis thereforeoptimal from a variety of viewpoints,asdiscussedn Sectionl1.4.3.
Thequantitys>, (y; — o — Blzr,-)2 is calledthe RESIDUAL SUM OF SQUARES (RSS).

A MaximumLik elihoodestimatonf 2 canbeobtainedsimilarly — it depend®nRSS.In fact
this estimatoris biased andis usuallyadjustedo accountfor this. We will notdiscussestimation
of o2 furtherhere.n the next sectionwe will assumats valueis known, sincethis simplifiesthe
discussioranddoesnot substantiallyaffect any of thetheory atleastfor large samples.

2.1.2 Hypothesistesting

Supposeow that,knowing thevalueof o2, we wishto testthenull hypothesisd, : 3, = 0 against
thealternatve H; : 3; # 0. Thescientificquestionbeingasked hereis: is thereary evidencefor a
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genuindinearassociatiobetweertheysandthexzs? Thestandardvay of doingthisis to examine
theratio of Bl toits standarcerror. If thisratiois smallerthansomecritical value,we concludethat
the dataare consistentwith an underlyingprocessn which thereis no association.The critical
value dependon the significancelevel of the test. For a testat the 5% level (i.e. suchthatthe
probability of rejecting H, whenit is trueis 0.05),it is 1.96. Wheno? is unknown, the critical
valuealsodepend®n the samplesize,but it is usuallyaround? for atestatthe 5% level.

An alternatve testprocedures basednthelik elihoodratio (seeSectionl.4.3).Under Hy, the
log-likelihoodis

n 1 ; — 2
> (—— Ino” — M) + constant,

; 2 202

=1
andin this casethe maximumlik elihoodestimateof 3, is justthe samplemeany. Thelog lik eli-
hoodratio statisticis then

no(1 (Y; — Bo — przi)? 1 (Y; — V)2
InA = ) (-=Ino®— : “lno?4 it/
! H( 2 17 207 MR

= ;7 <Zn:(K—Y)2—Rss) .

=1

Therearetwo pointsto notehere:

1. Thefirst termin the obsened value of this statisticis proportionalto the samplevariance
of the ys (seepage29). The residualsum of squareds the amountof variation that is
unexplainedby the regression. The likelihoodratio statisticis thereforeclosely relatedto
the proportionof varianceexplained(i.e. the COEFFICIENT OF DETERMINATION, usually
denotedby R?).

2. Considertheexpressiorfor 21n A:

n o\ 2
2nA =3 (Y'—Y) _Rss
i=1

This lookslik e the differencebetweenwo sumsof square®of normally-distritutedrandom
variables.We expect,from Sectionl.3.5,thateachsumof squarewill have a chi-squared
distribution. Underthe null hypothesisthisis indeedthe case— thefirst termis distributed
asy?_,,thesecondasy?_,, andthedifferencebetweerthemasy?. Wewill thereforeaccept
H, atthe95%levelif 21n A is lessthanthe 95% point of a x? distribution (whichis 3.841);
andatthe99%level if 2In A < 5.991.

7
o o

Finally, in this section,we introducethe conceptof DEVIANCE. This may be thoughtof asa
measureof discrepang betweerthe fitted modelanda ‘perfect’ model. By a perfectmodel,we
meanonein which eachy valueis perfectlypredicted(i.e. in which E(Y;) = y;). In this casethe
log-likelihoodis

1 )2
> (—— Ino® — M) + constant= —— In o + constant.
—\ 2 20 2
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Thediscrepang betweerour fitted modelanda perfectmodelcanbe measuredin the usualway,
by examiningtheratio of likelihoods— or twice its logarithm(!). The statisticis

n 1 1/; _ 2 _ 2 ; 2
2<—ﬁln02+constan> —22 —ZIno? — ( bo — Prz:) + constan
2 = 202
= (Yg - Bo - lei)Q RSS
- Z 0'2 = 0-2 = D ! Say

=1

ThestatisticD is calledthe SCALED DEVIANCE. Thequantityo?D (hereequalto RSS)is called
theDEVIANCE. If thefitted modelis correct,the scaleddevianceis distributedasy? .

The importantmessagdrom this sectionis that commonconceptsfrom the commonLeast
Squareapproacho regressiorhave beenembeddedvithin theframeavork of a probabilitymodel,
andinterpretedvia a likelihood-base@pproacho inference. This suggesthow the ideasof re-
gressiormay be extendedo situationswherethe Y's have distributionsotherthanthe normal.

2.2 The extensionto GeneralisedLinear Models

Supposenow we have a vectorof randomvariablesY = (Y7,...,Y;,)". Associatedwith Y; is a
vectorof p predictorvariables:xz; = (z;1,..., %) Let y; = E (Y;|x;). Thena GENERALIZED
LINEAR MODEL (GLM) for Y canbespecifiedby choosingafamily of probability distributions
(e.g.Poissonnormalor gammaor theY's, andsetting

g (,Mz) = 50 + ﬁlﬂfil + ...+ ﬁp.’Eip =n; ,Say

whereg(.) is amonotonicfunctioncalledthe LINK FUNCTION, and@ isap x 1 vectorof param-
eters.n; is calledthe LINEAR PREDICTOR.

Example2.1: Thelinearregressiommodelof the previoussectionis aGLM. In thiscasetheY's
areall normallydistributed,andn; = u; = By + f1zi, Sothatthelink functionis theidentity,. B

Example 2.2: Supposehe Y's are Bernoulli randomvariables(seeSection1.3.1), with u; =
E (Y;) = P (Y; = 1). In thiscasejt doesnot make senseo write alinearequationsuchas

wi = Bo+ Bixin + ...+ BpZip

sincewe know that p; mustlie between0 and1. Therefore,we usually apply a transformation
which mapsthe interval [0, 1] to the whole real line. Varioustransformationsre possible: per

hapsthe mostcommonis the logistic transformg (1;) = In (u;/ (1 — p;)). This givesriseto the

LOGISTIC REGRESSION MODEL

P(Yi=1)
1n(l—P(Yz:l

)) =n; = 0o+ bizin + ...+ BpTip -
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| Distribution |  Canonicallink | Nuisanceparameter ||

N (p,0%) 9(u) = p ¥ =0’
Poi (1) g(p) =Inp P =1

14 -1 -1
F(u—) g(p) = p Y=v

7

_ H _
Ber(u) g(p) = In <1—) p=1
—

Table2.1: Examplesof canonicalink functionsandnuisanceparametersReferto Sectionl.3for
detailsof the parameterisationssedhere.

Herethelink functionis thelogistic transform.Oncewe know ; we canfind y; = P (Y; = 1) =
e [ (1 4 e™"); thenthedistribution of Y; is Ber (u;). [ |
In practice,the link function is usually chosento ensurethat ary restrictionson valuesof
the fitted meansare automaticallysatisfied(asin the logistic regressionexampleabaove). Apart
from this, theremay be physicalreasondor choosinga particularlink function; however, often
the choiceis madepurely for corvenience. Many software packagesisedefault link functions
(whichcanbechangedy theuser).Unfortunatelythesedefaultsarechoserfor theirmathematical
elegancewhichis notalwaysthesameaspracticalusefulnessThey arereferrecko asCANONICAL
LINKS. For our purposesthe only problemcaseis the gammadistribution, wherethe canonical
link is (1) = p~*. Useof thislink function doesnot guaranteehatthe fitted meanswill all be
positive,andin applicationst is far morenaturalto usethelink g(x) = In y instead.

In additionto the 5s, mostGLMs requireadditionalparameterso beestimatedthesetypically
specify the variancestructure,and are assumedo be constantfor all cases.For example,in a
normaldistribution we needto estimatethe variances? andin a gammadistribution (seeSection
1.3.5) we needto estimatethe shapeparameter.. We refer to suchparameterss NUISANCE
PARAMETERS, anddenotethemby . In theliterature,andin software packagesthey areoften
calledscALE PARAMETERS (whichis confusingfor thegammadistribution!). Somedistributions,
suchasthe Poissomand Bernoulli distributions,do not have nuisanceparametersin suchcases,
wetake i) = 1. Table2.1givesnuisanceparametersandcanonicalinks, for afew distributions.
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2.2.1 Inferenceand lik elihoodtheory

Givenadatavectory, the Gsin aGLM maybeestimatedy MaximumLik elihood. Thisis usually
doneusing ITERATIVE WEIGHTED LEAST SQUARES, which is an efficient numericalalgorithm
thatworks for a wide rangeof usefuldistributions (theseare distributionsin the EXPONENTIAL
FAMILY). Likelihoodtheorycanthereforebeappliedto problemssuchashypothesigestingwithin
the GLM framework.

Typically, software packagesvill outputparameteestimatedogetherwith their standarder-
rors. Thesecanbe usedto obtainapproximateconfidencentervals for eachof the parameters,
andto testhypothese the sameway asfor linearregressiondiscussedn Section2.1.2above).
However, theresultsof sucha procedureshouldbe interpretedwith extremecautionwhentwo or
morepredictorsarehighly associatedWe will seeanexampleof thisin thefirst casestudybelow.

In general,t is betterto uselik elihoodratio teststo assesshe significanceof predictors.The
theoryis a directextensionof thelinearregressiorcasediscussedn Section2.1.2above. Specifi-
cally, we supposehatthelinearpredictorin our modelhastheform

ni = Bo+ bz + ...+ BpZip

andwe wish to testthe null hypothesisH : 5,11 = B442 = ... = B, = 0, for somegq < p. The
likelihoodratio testproceduren this caseis:

1. Fit the REDUCED MODEL (i.e. themodelcontainingthefirst ¢ predictors)usingMaximum
Likelihood;denotetheresultinglog-likelihoodby In L.

2. Fit themodelcontainingall of the zs, anddenotetheresultinglog-likelihoodby In L. This
will neverbelessthanin L.

3. Calculatethe likelihoodratio teststatistic2ln A = 2 (In L; — In Ly). If thisis largerthan
the appropriatepercentag@ointof a x? distributionwith (p — ¢) degreesof freedom reject
the null hypothesisptherwiseaccepit.

Unlessthe Y's arenormally distributed,the x? distribution hereis actuallya large-samplepprox-
imation. However, in climatology mostdatasetsaresolargethattheresultis almostexact.

To uselikelihoodratio tests,we needto decideupona sensiblehierarchyof models,because
two modelscanonly be comparedf oneis a specialcaseof the other This requiresthe modeller
to think rathercarefully abouta problembeforestartingto testhypothesesin climatology there
is often a natural hierarchyof models,basedon our understandingf climatic processes.For
example,we may be interestedn investigatingthe effect of El Nifio uponrainfall in China. We
know thatrainfall varieswith locationandseasontherefore we shouldaccountfor theseeffects
beforewe beagin to studythe effect of El Nifio. A sensiblestratayy in this casewould beto build
a ‘'simple’ modelthat accountsfor seasonalityand regional variation; andthento comparethis
with an extendedmodelthat incorporateghe effectsof El Nifio. Wheninterpretingthe results,
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however, we shouldbearin mind the commentanadein Sectionl.4.2aboutthe appropriateness
of hypothesigestingin complex systemsgspeciallywherelarge datasetsareinvolved. Usually,
we will needto exercisesomedegreeof scientificjudgemenin suchsituations.

Many software packageslo not outputlog-likelihoodsdirectly; rather they outputdeviances.
As definedin the previoussection the scaleddeviancefor amodelis definedas

D=2(InLr—InL),

where Ly is thelikelihoodfor a FULL MODEL in which we setu; = y;, and L is thelikelihood
for the model under consideration. Testsbasedon the scaleddeviance are directly equivalent
to thosebasedon the likelihood ratio statistic. However, software packagesisually reportthe
unscaleddeviance. This is definedas)D, wheres) is anestimateof the nuisanceparameterThe
reasonis that,for smallsamplesgestimationof i) canaffect the x? distribution theoryuponwhich
likelihoodratio testsare based. We do not discussthis further here: it is mentionedmerelyto
aid understandingf softwareoutput! For distributionswithout a nuisanceparametersuchasthe
PoissorandBernoulli,thescaledandunscaledieviancesareidenticalandy? testingis appropriate.
The devianceis equialentto the residualsumof squaredRSS)in a linear regression. For
thisreasonproceduresuchasAnalysisof Variancewhichdescribefow differentpredictoran a
regressioraccounfor thevariability in theY's) aregeneralisedo ‘Analysisof Deviance’in GLMs.

2.3 Intr oduction to casestudies

We have now coveredall of the necessaryheoreticabackground.To illustratetheideas,we next
introducefour climatologicalcasestudiesandconsidehow the GLM approachmaybeappliedin
eachcase At presentwe focuson generaissuessuchaschoiceof distribution andpredictors.

2.3.1 Casestudy 1: Tropical cyclonesin the North-W estPacific

The first studyis an extremely simple example. It hasbeenchosenbecausat providesa nice
illustration of the ideas,on a small dataset.Figure 2.1 shavs numbersof tropical stormsin the
North-WestPacific Ocean for eachyearbetweenl959and2000. ‘Tropical storms’areclassified
as eventswith a maximumwindspeedabove 17 ms™!; ‘typhoons’ as eventswith a maximum
windspeedover 33 ms™!; and‘intensetyphoons’aseventswith a maximumwindspeedover 49
ms !. The intensetyphoonrecordstartsin 1972, becausehe Dvorak techniquefor assessing
maximumwindspeedsvas not available beforethis. The datain this figure canbe downloaded
from thewebsitefor this lectureseries.

It is well known thatthe stateof EI Nifioin ary yearis relatedto tropical stormactuity in the
North-West Pacific the following year This canbe seenin Figure 2.2, in which the numberof
typhoonsin eachyearis plottedagainsthe Nifio 3 anomalyfor eachmonthof the precedingyear

Ihttp://www.tea.ac.cn/chinese/meeting/s tudyl /stud yl.htm |.
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Figure2.1: Annualnumbersof tropical stormsin the North-WestPacific, 1959-2000.
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The samplecorrelationcoeficientsfor eachplot arealsogiven. Within our probability modelling
framework, theseareestimate®f ‘true’ underlyingcorrelationcoeficientsasdefinedon pagel6.
For eachplot, we have also testedthe hypothesighat the ‘true’ underlyingcorrelationis zero.
Thep-valueon eachplot is supposedo representhe probability of obtaininga correlationatleast
aslarge asthe oneobsened, if thereis no relationship.On this basis,it appearghat significant
relationshipsexist for all monthsbetweenluneand DecemberTheserelationshipstogethemwith
othersthatarenot consideredere,may be exploitedin seasonalorecastingnodels.

However an analysisvia correlationsis no more thana useful startingpoint. If we wish to
constructseasonalorecastsyve might askthefollowing questions:

1. TherelationshigbetweerNifio 3 valuesandstormnumberss clearbut weak. Thereforearny
seasondiorecastghatjust usetheserelationshipswill beimperfect.How canuncertaintyin
theforecastderecognisedwhile atthe sametime providing quantitatve information?

2. Nifo 3 valuesin successie monthsare highly correlated. Given this, how mary months’
Nifio 3 valuesshouldwe includein our forecastingnodel?

3. Isthereary evidenceof systematicstructurein stormnumbersthatis attributableto factors
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Figure2.2: Annualtyphoonnumbersrersuspreviousyears monthly Nifio 3 anomalies.
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otherthanEl Nifio?

We will tacklethis problemwithin the GLM framework. The responsevariablehereis the
annualnumberof typhoons,andthe potential predictorsare the twelve Niiio 3 valuesfrom the
previousyear We needto choosea suitableprobability distribution for tropical stormnumbers.
Theobvious candidateasdiscussedn Examplel.7 on page21, is the Poissordistribution, since
tropical stormscanbe regardedasarisingfrom a ‘thinned’ processof easterlywaves. As a pre-
liminary checkthatthis is reasonablewe canplot out histogramsof stormnumbers. Theseare
presentedn Figure 2.3, for eachof the storm categyories. One very quick checkon the Poisson
assumptiorat this stageis to seewhetherthe samplemeansandvariancesof stormnumbersare
approximatelyequal. For the ‘tropical storms’cateyory, in Figure2.3, the varianceis someavhat
lessthanthe mean;however, for the othertwo cateyoriesthe meanandvariancearesimilar.

In Section2.7,wewill returnto thisexampleandusethe softwarepackagerto fit someGLMs.

2.3.2 Casestudy 2: Daily rainfall in Westem Ir eland

The Galway Bay areaof Westernreland(seeFigure2.4) experiencesloodingevery winter. How-
ever, this flooding was exceptionallyseverein the wintersof 1990,1991,1994and 1995. Prior
to the 1990s,floodingon this scalehadoccurredon averageevery 30 years.After the 1991 flood
event,thelrish Governmenttcommissione@n extensie studywhoseaimswere:

1. To assestheextentto whichthefloodingwascausedy abnormalainfall, ratherthanother
factorssuchaschangesn landuse;

2. To determinewhetheror notrainfall patternsn the areaarechangingsystematicallyand

3. To explore a variety of engineeringsolutionsto the flooding problem,anddeterminetheir
likely effectiveness.

For this study daily rainfall datawereavailablefrom raingaugesvithin the studyareafor the
period1941-1997 To assesshelik ely effectivenesf engineeringsolutions,it wasnecessaryo
estimatethe probability of large floodsrecurring,andto generatesyntheticdaily rainfall seriesfor
inputto hydrologicalandhydrogeologicamodels.

Figure 2.5 shows the time seriesof winter (DecemberJanuaryand February)rainfalls over
the Galway Bay area. It is clearthatwinter rainfall wasexceptionallyhigh in the flooding years
(especiallyl994and1995),andthatwinter rainfalls seemto have increasedn the 1990s.Thereis
thereforesystematicstructurein therainfall record,whichis associateavith severeflood events.

Unfortunatelythis structureas difficult to detectin thedaily rainfall record whichis very noisy
(only 1.2%of thevariability is associateavith seasonality!)ldeally, any analysisof changingcli-
matein this areawould be basedn dataat monthlytimescale®r longer to smoothoutthis noise.
However, the needfor syntheticdaily rainfall seriesmeanghatultimately a studyof daily rainfall



LECTURE NOTES, JUNE 2001

42

Distribution of storm numbers

oo}
o o
S
3 ©
g S
% Mean = 27.38
o < Variance = 23.46
= o 4
g o
[7)
['4
N
o 4
o
8
e T T ]
20 30 40

o

10

Number of events

Distribution of typhoon numbers

0.10
1

Relative frequency
0.04 0.06
1

0.02

0.00
L

Mean = 17.5
Variance = 17.13

0.08
1

0.06
1

Relative frequency

«©

S
T T T
0 10 20

30 40
Number of events
Distribution of intense typhoon numbers
(=]
- -
o
Mean = 8.03

< Variance = 10.82
o -
=
N
o 4
o
(=]
S
e T T T T 1

0 10 20 30 40

Number of events

Figure2.3: Distributionsof annualnumbersof tropical storms,typhoonsandintensetyphoonsin

the North-WestPacific, 1959-2000.



LECTURE NOTES, JUNE 2001 43

0 50  100km
Slige
Y
; Birr
g
STUDY AREA—= Gort ]

Figure2.4: Locationof the Galway Bay studyareawithin Ireland.

is required. Generalized.inear Models are ableto identify weaksignalsin noisy data(because
they uselikelihoodmethodsn a probability-basedramewvork), andarethereforeparticularlyap-
propriatefor thiskind of problem.

Themodellingof daily rainfall is complicatedby the factthatthe distribution hasa mixture of
discreteandcontinuouscomponentsWithin the GLM framework, this canbe overcomeby fitting
two models.Thefirst is usedto predictthe probabilitythatrain will occurata siteon agivenday,
andthe secondo predictadistribution for theamountof rainif non-zero.

To modeltheprobabilityof rain, it is naturalto uselogistic regressionseeExample2.2 above).
It is harderto choosea suitabledistribution for the amountof rain on wet days— thereis no
‘obvious’ physicalmechanisnthat suggesta suitablecandidate However, the gammafamily of
distributionsprovidesa flexible classof modelsfor positive-valuedrandomvariables(seeFigure
1.3),andsoit is naturalto work with this family.

At this point, we shouldrecallfrom Section2.2 thatwhenusingGLMs we usuallyassumehat
the nuisanceparameter) is commonto all obsenations. For the gammadistribution, ¢ = v !
(seeTable2.1). In Sectionl.3.5,we saw thatthe coeficient of variationof a gammadistribution
is v~1/2. Hence,if we useagammaGLM with constant, we areassuminga commoncoeficient
of variationfor all of the obsenations. Before we start, we should calculatethe coeficient of
variationfor subset®of the data(e.g. for eachmonth,or eachsite), to checkthatthis assumption
is reasonableFor this particulardatasetthe coeficient of variationin daily rainfall doesindeed
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Figure2.5: Meandaily winter rainfall amountdor Galway Bay area,1941-1995.
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appearconstaniover monthsandbetweersites. Indeed this is a featurethatis often obsenedin
daily rainfall data,from all overtheworld (providing the areaof interestis nottoo large). Thereis
no obviousphysicalexplanationfor this, but it is very corvenient!

Predictorswhich may affect daily rainfall include seasonalityaltitude and ‘external’ factors
suchasthe North Atlantic Oscillation(NAO). Someof thesepredictorsmay have variableeffects
— for example,the dominantimpactof the NAO is known to be in the winter months. Finally,
we mentionthattypical daily rainfall sequenceareautocorrelatedh time, sothatthe individual
Y valuesin a GLM cannotbe regardedasindependen(this is usuallyrequired,in orderto write
down andmaximisea lik elihood). We returnto thesepointsin Section2.4 below.

2.3.3 Casestudy 3: Mean monthly temperaturesin the USA

Our third casestudy usesGLMs to study climate at a continentalscale. The aim is to develop
a modelfor monthly meantemperaturesit ary locationin the USA. Temperaturedatafor the
period 1948-1997areavailablefrom 2600weatherstations.The datasehasa total of 1,560,000
obsenations.

It is naturalto usethe normaldistributionto modelmonthlymeantemperaturedyecausef the
CentralLimit Theorem(seeSectionl.3.4).A GLM usingthenormaldistributionis justastandard
multiple regressiommodel. By incorporatingpredictorsrepresentingeasonat¢ffectsandregional
variability, we canspecifydifferentnormaldistributionsfor eachobsenationin the dataset.
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Thereis aproblem,however. As describedn Section2.2above,in GLMsi it is usuallyassumed
thatthe nuisanceparameteis constanfor all obsenations.Thevalidity of thisassumptiorshould
be checled beforestartingto develop models. Simple plots are sufficient to demonstrate¢hat the
assumptiordoesnot hold. For example,Figure2.6 shavs thatthe standardieviation of tempera-
turesis lowerin the summemonthsthanin winter. Similar plotsshow thatthe standardieviation
alsovarieswith factorssuchaslatitude.

Oneapproacho this problemwould beto work with standardisetemperatur@anomaliegather
than actualtemperatures.This techniqueis commonlyusedin climatology In this particular
casewe might calculate for eachsite, a separateneanandstandardieviation for eachmonth of
the year; thentransformeachdatavalue using thesemeansand standarddeviations, so that all
systematicseasonahndregionalvariability hasbeenremoved.

From the viewpoint of probability modelling, the idea of working with anomaliess not al-
togethersatisictory and may lead to underrepresentatiorof uncertainty This is becausehe
approachs effectively fitting a modelwith a separateneanandvariancefor every singlesiteand
month— in this case whenwe have 2600sites,this ‘model’ has2600 x 12 = 31200 parameters
representingneantemperaturestructure,and a further 31200 parametersepresenting/ariance
structure. From a statisticalviewpoint, this meansthat 62400 parameterfhiave beenestimated!
Without a properanalysiswe do notknow whatimpactthis will have uponour conclusionsbut it
is anissuethatshouldbeinvestigated.
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Fortunately within the GLM framework it is possibleto dealwith changesn both meanand
variancein an eleggantmanney at leastwhenwe areworking with normaldistributions. The ap-
proachrelies upon a numberof resultsfrom Lecturel: the varianceof ary distribution is the
expectedsquareddeviation from its mean(Section1.2.3); ary normalrandomvariable can be
transformedo a standarchormalrandomvariableby suitablescaling(Sectionl.3.4);the square
of a standarchormalrandomvariableis distributedasx? by definition; andthe x? distribution is
equialentto the gammadistribution with shapeparameteequalto 1/2 (Sectionl.3.5). To sum-
marise: If ¥ ~ N(u,0?) then(Y — p)? ~ T (4,(20%)7"). As aresultof this, we canmodel
boththe meanandthe varianceof monthlytemperaturessinga combinationof models.We usea
normalmodelto specify

p
pi=E ) =B+ Bizji
j=1
anduseagammamodelwith known shapgparameteto specifys? = E ((YZ- — u,-)2). IntheGLM
framawvork, o7 is allowed to dependon variousother predictors,&y;, . .., &, say (which may or
may not bethe sameasthe zs usedin themodelfor 1;) in suchaway that

q
h (03) =% + _Zl%'fji )
=
wherethe vs area further setof coeficientsto be estimatedandh(.) is amonotonicfunction. In
this casewe have chosem: (0?) = o; = h(z) = /=, on the basisof otherpreliminaryanalyses
which arenotreportechere.

This modelling approachhasthe disadwantageof being computationallyintensve. This is
becausdhe Maximum Lik elihood estimatef the 8s in the modelfor 1; dependon the values
of o2 for all casedn the datase(in fact, the 8s are estimatedby WeightedLeastSquaresn this
casewheretheweightsareinverselyproportionalto the associatedariances) However, in order
to specifythe valueof o we needto know the valuesof the ys. Thesecanonly be estimatecby
fitting a modelto the squarecbrrors{(Yi — ui)Q i=1,... ,n}, which arethemselesunknavn
becausave don't know the valuesof the us! An iterative approachto modelfitting is required.
Thealgorithm,whichyieldsMaximumLik elihoodestimate®f all parameterss:

1. Startby assuminghatall variancesareequal.

2. UseWeightedLeastSquarego estimatethe gs in the meanpartof the model. The weight
for theith caseis 6; 2, wheres? is the currentestimateof the variance.

3. Usethe estimatedss to calculatethe estimatedmeans{; : i = 1,...,n}. Calculatethe
corresponding;quarederrors{(YZ- — ﬂi)Q i=1,..., n} and estimatethe ~s from these

usingagammaGLM with shapeparametefixedatv = 3.

4. If thechangan all parameteestimatess ‘small’, stop;otherwisego backto step(2).



LECTURE NOTES, JUNE 2001 47

This procedureis non-standardand someprogrammingis requiredto implementit in any
softwarepackage However, the extra effort is worthwhile sinceall the usualbenefitsof GLMs are
availableto us— likelihoodratio testsfor determiningthe significanceof predictors,confidence
intervalsfor every parametein the model,anda completelyspecifiedprobability distribution for
eachobsenation. Theresultingmodelis far more parsimonioughanthatunderlyingthe ‘climate
anomaly’approach{the modelwe discussn Lecture3 containsl39parametergsteadof 62400),
andcanbe usedto specify probability distributionsfor monthly temperatureat locationswhere
no datahave beenobsened.

2.3.4 Casestudy 4: Daily Maximum Windspeedin the Netherlands

The final casestudy is similar to CaseStudy 2 above. The aim is to provide dataand some
specimeranalysesfor a realistic climatologicalexample(in contrastto CaseStudy 1, which is
rathersimple).

The studyis concernedvith windspeedsn the Netherlands.Large areasof this countryare
below sealevel, andare protectedby a systemof dikes. Thesedikesare continually attacled by
waves,andit is necessaryo continually monitor the risk of dike failure. The mainrisk of dike
failureoccursduringhighwinds,sincethesecausdargewaves. It is thereforeof particularinterest
to studyextremewindspeeds.

For this study we usedaily windspeediatafrom 9 sites,eachof which have continuougecords
from 1961-1998.Eachdaily valueis the largestof 4 instantaneoubourly valuesat times 0600,
1200,1800and2400,andis referredto asthe Daily MaximumWndspeed DMWS). Thesitesare
listed,togethemnwith somesummarystatisticsjn Table2.2. Bubblemaps,shoving the magnitude
of the statisticsfor eachlocation, are given in Figure 2.7 (the larger the circle, the larger the
value being represented).The datahave beenstrictly pre-processetty the Royal Netherlands
MeteorologicalObsenatory, to remove inhomogeneitiesandare of extremelyhigh quality. They
canbedownloadedrom thewebsitefor this lectureseries.

Thedaily statistican Table2.2 (includingthe mean)areself-explanatory Theannualstandard
deviation is computedfrom the time seriesof annualmeanDMWS at eachsite, and providesa
backgroundagainstwhich the valuesin the ‘Decadaltrend’ columncanbejudged. Thesevalues
are obtainedby fitting a straightline throughannualtime seriesplots at eachsite using linear
regressionthey representhedecadathangdan meanwindspeedaccordingo thisfitted line.

Onceagain,suchproceduresare only a first stepin a full analysis. Summarystatisticscan
only give approximatendicationsof structure sincethey ignoreall of the otherfactorsthataffect
windspeedsHowever, they areusefulfor exploratory purposes.For example,Figure2.7 shovs
alot of spatialstructurein all of the summarystatistics— windspeedsiearthe coastare higher,
andmorevariable,thanthoseinland. Also, windspeedst coastalsitesappearo have increased
betweenl1961-1998while thoseat inland locationshave decreased.This patternis not dueto

2http://www.tea.ac.cn/chinese/meeting/s tudy4 /stud y4.htm |I.
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: Daily standard | Daily coefficient| Annual standard | Decadal
Sitename || Mean 2 o L
deviation of variation deviation trend
ljmuiden 8.44 3.36 0.40 0.38 0.28
Schiphol 7.24 3.08 0.43 0.35 -0.06
Soesterbey| 6.05 2.50 0.41 0.33 -0.06
Eindhoven || 6.37 2.74 0.43 0.43 -0.30
De Bilt 5.68 2.39 0.42 0.37 -0.09
Deelen 6.61 2.74 0.41 0.35 -0.24
Eelde 6.51 2.75 0.42 0.37 0.20
Vlissingen | 7.23 3.00 0.41 0.34 0.09
GilzeRijen | 6.27 2.61 0.42 0.35 -0.15

Table2.2: Summarystatisticsfor DMWS series(ms~!) from 9 sitesin the Netherlands.
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Figure2.7: Regionalvariationof summarystatisticssor DMWS in the Netherlands.
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inhomogeneitiesn the stationrecords(a comparisonwith NCEP windspeeddataover Europe
supportghis). Whatis interestinghereis the contrasin DMWS regimesover asmallarea.

If we wish to analysethis datasewithin the GLM framework, we needto specifya suitable
family of probability distributionsfor DMWS. Historically, windspeed$ave oftenbeenmodelled
usingthe Weihull distribution, but the motivationfor this is weak(seeSectionl1.3.6). Moreover,
the Weibull is not a memberof the exponentialfamily of distributions(seeSection2.2.1above),
sothatstandarchumericattechniquesannotbeapplieddirectly to maximisethelik elihoodin this
cas€. Amongthe distributionscommonlyusedfor Generalized_inear Modelling, the gammais
themostnaturalcandidatehere,sinceit offersaflexible rangeof shapedor dealingwith positive-
valuedvariables. To usegammaGLMs, we needto assumehat the coeficient of variationis
constantasin CaseStudy 2 above. Table 2.2 shaws that this assumptiorappeargeasonableat
leastacrosdifferentsites.

To predicta probability distribution for DMWS we might considerusingpredictorsrepresent-
ing seasonavariability, locationeffectsandlong-termtrends(possiblyrepresentedia ‘external’
factorssuchasthe North Atlantic Oscillation,which are expectedto control someaspectof Eu-
ropeanclimate).However, we needto allow trendsto vary systematicalljpetweersites.

2.4 Commonfeaturesof climate-relatedproblems

Thesecasestudiesillustrate a variety of featurescommonlyencounteredn climatologicalprob-
lems.We now summariseéhese anddiscusshow they maybedealtwith in the GLM framework.

2.4.1 Autocorrelationin time

Inferencefor GLMs is carried out using Maximum Likelihood. We thereforeneedto be able
to write down a realistic joint densityfor the obsenations, as definedin Section1.4.3. If the
obsenationsare all independentthis is straightforvard since the joint densityis a productof
individualterms.However, theassumptiorof independencdoesnothold for mary climatological
time series.Thisis especiallytrue for daily seriessuchasthosein CaseStudies2 and4. Suppose,
then, that our datavectory arisesasa time series. In this case,the Generalisedultiplication
Law (pagell) tells usthatthe correspondingoint densitycanbewritten, in an obvious notation,

asf(y;:0) = fi(y1;0) x fo(y2ly1;0) x ... X fro (Ynl|y1,y2,---,Yn_1;0) i.e. asa productof
conditionaldensities.Thelog-likelihoodis then

In L(6]y) = Zlnfi (Yilyt, - -, ¥i—1;0) .
i=1

The point of this is thatthe log-likelihoodcanbe written asa sumof terms. However, eachterm
involvesthe densityof the correspondingpbsenationgivenall previousobservationsWithin the

8In fact, therearealgorithmsfor fitting Weibull GLMs, but thetheoryis complex andwill notbe coveredhere.
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GLM framawork, this canbe dealtwith very straightforvardly. All we have to dois to include
previousobsenationsaspredictorsn themodel.

Often, we will find that the inclusion of previous obsenationsinto a GLM hasa dramatic
effect on othertermsin the model,and uponour assessmerntif their significance. Indeed.,it is
not unusuafor previous obsenationsto dominatea modelcompletelyin termsof measuresuch
asvarianceexplained. In modelsfor daily climate time series,this merely reflectsthe fact that
variability is dominatedby weatherscalefluctuations. Usually, whenwe incorporateprevious
obsenationsinto a GLM, the resultwill be a reductionin the numberof otherfactorsthat are
deemedo be significant. This may leadto the suspicionthat previous obsenationsare somehav
obscuringsomegenuinerelationships.This is not the case— lik elihoodtechniquesaretypically
ableto detectweaksignalsin noisy data,at leastwith the size of dataseusually encounteredn
climatology We maybe confidentthatby includingpreviousobsenationsinto our GLMs, genuine
relationshipswvill beidentifiedandspuriousoneswill bediscardedSuchspuriougelationshipgan
arisevery easily— for example,if two unrelatedime seriesboth have a lot of internalstructure,
they mayappeato berelatedsimply because¢hey bothshav long runsof high or low values.

2.4.2 Interactions

In climateprocessest is commonto find predictorswhoseeffectsvary with the valuesof some
othervariable(representingor example Jocationor time of year). We have seerthis, for example,
in CaseStudy4 — windspeed$ave increasedn somepartsof the Netherlandover the last40
yearsbut reducedn others.

To simplify the discussionsupposehattherearetwo predictorsz; andz,, andthattheseare
relatedto . = E(Y') in suchawaythatg(u) = By + 5121 + Saxe. However, thevalueof g itself
maydependon thevalueof z,, suchthat3, = v + v12:1. In thiscasewe have

g(ﬂ) = Bo+ fiz1 + (’Yo + ’71551) o = Po + B1T1 + Yox2 + V1T1To .

This looks exactly like our original model exceptthat now we have threepredictors(z,, x, and
x122) insteadof two. The predictorsz; andz, aresaidto INTERACT. The extra predictorz;xs
iS an INTERACTION TERM in the model. The ideacanbe extendedto dealwith more comple
interactions For example theregional differencebetweertrendsin the Netherlandsnaybemore
pronouncedn thewinter thanthe summer This would berepresentetly 3-WAY INTERACTIONS
betweerpredictorsrepresentingrends JocationeffectsandseasonalityTo includeinteractionsn
amodel,we just needto addtermscorrespondingo productsof therelevantpredictors.

2.4.3 Spatial dependence

Climatedataset®ftentake theform of a numberof time seriesfrom differentspatiallocationsas
in CaseStudies2, 3 and4. In suchcasesye needto addresgheissueof spatialdependencele
distinguishtwo forms of suchdependencesfollows:
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Systematicregional variation: In CaseStudy 3, averagetemperaturesn the Northern USA
will be coolerthanthosein the South. Similarly, in CaseStudy4 we sav thatwindspeeds
arehighestin coastalregionsof the Netherlands.Theseare systematideaturesof regional
climate, and can be regardedas ‘average’effects of location. They canbe incorporated
into a GLM by including predictorswhosevaluesdependuponspatiallocation. Typically,
thesepredictorswill be nonlinearfunctionsof quantitiessuchaslatitudeandlongitude.The
problemof how to specifysuchfunctionswill bediscussedn the next section.

In a sense systematicregional variation is not really ‘spatial dependence’althoughthe
termis often usedto describet (presumablybecauset refersto ‘dependenceiponspatial
location’).

Spatial autocorrelation: As aresultof systematiaegionalvariation,datafrom two nearbysites
will tendto be similar on average,simply becauseahey arecloseto eachother However,
thefluctuationsaboutthe sites’ averagevalueswill alsotendto besimilar, asaresultof the
mechanismgeneratinghe data. For example,in CaseStudy 2 we might expectrainfall
amountgo increasepn average with altitude.However, on ary givendaywe would expect
rainfall amountgo be higher, or lower, thanaverageacrosshewhole area.Thisis because
over an areaof this size, daily rainfall is dominatedby the effects of weathersystems—
anintensefrontal systemwill producea lot of rain everywhere regardlesf altitude. The
effectis to inducespatialautocorelationinto a dataset.

Oneeffect of spatialautocorrelations that datafrom differentsitesat the sametime point
cannotbe regardedasindependent.Spatialautocorrelatioris much more difficult to deal
with thanautocorrelatiorin time, however, sincein this caseit is not usually possibleto
write down a simple factorisationof the likelihood (the problemis thatthereis no natural
orderingof sites). This issueis the subjectof a lot of currentresearchn statistics— most
of the available proceduresare too computationallyexpensve for usewith large datasets
suchasthosefoundin climatology. It canbe showvn, however, thatif we ignorethe spatial
autocorrelatiorand treat sites as independentpur parameterestimateswill be extremely
closeto the exact Maximum Lik elihood estimatesso long as a sufficiently long recordis
availablefrom eachsite. This is thereforethe procedurewe will use. We shouldbearin
mind, however, thathypothesidestsandconfidencentervalsobtainedundertheassumption
of independencwill beincorrect.As aroughguide,for thelevelsof spatialautocorrelation
in the datasetsonsideredhere,the ‘independencestandarderrorsof parametersnay be
underestimatedby a factor of betweenl.5 and 2.5. Hencesomeinformal judgementis
requiredto decidewhetherthe effect of a predictoris ‘significant’ in the presencef spatial
autocorrelation.

Fromnow on,whenwe talk about'spatialdependenceie will bereferringto spatialautocor
relationratherthansystematigegionalvariation.
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2.4.4 Nonlinearities

It is commonto encountesituationswherearesponseariableis associateavith somepredictor
but wherethe relationshipis actuallywith a nonlineartransformatiorof the predictor Examples
includethe investigationof possiblelong-termcyclesin the climate of anarea(wherethe funda-
mentalpredictoris atime index, but a cyclical patternimpliesthattherelationshipis really with a
sinewave derived from the time index), andtherealisticmodellingof systematiaegional effects
(wherethe underlyingpredictorsmight be latitude andlongitude,but systematiovariability can-
not be representedby including thesedirectly into a GLM — for example,in CaseStudy3, it is
unlikely thataveragetemperatures the USA vary asa linearfunctionof longitude!).
Suchnonlineartransformationsnaybe dividedinto two categories,asfollows:

Category 1. in thiscasethereis anobviousparametridorm for thetransformationTheexample
of fitting acyclical trendfunctionfallsinto this cateyory. In suchacasegivenanunderlying
predictorz, we wish to includein the modela term of the form h (z, ¢), whereh(.) is
a known function and ¢ is a vector of parametersn the transformation. Usually these
parametersreunknovn andmustbe estimatedalongwith all of the gs in the model. This
canbe achiezed usingan extensionof the usualiterative weightedleastsquaresalgorithm.
Unfortunatelythis featureis notimplementedn mary softwarepackages.

Category 2: in this case thereis no obvious way in which a nonlineartransformatiormay be
parametrised.The modelling of systematicregional variationin temperaturescrossthe
USA is an exampleof this. We suggestdoptinga nonparametri@pproach.Specifically
supposeve wish to representhe unknaovn transformatior(.) overtheintenal (a,b). Let
{¢;:j=0,1,2,...} beanORTHOGONAL BASIS of functionsi.e. a collectionsatisfying

1 j=k
0 otherwise.

[ st~

Thenh(z) canbeexpressedovertheinterval (a, b), astheinfinite sum
h(z) =3 A;¢(x) -
j=0

for somesetof coeficients{A4,: j =0,1,2,...}.

In practice,providing the (s are chosenintelligently, mostof the coeficients A; will be
very small and can be neglected,so that 4(.) can be representedo a very good degree
of approximationusing a small finite collection of {s. This procedurereducesa highly
nonlineardependenginto linear dependencepona setof known functions: if we use(s
directlyaspredictordn theGLM, thecoeficients{ 4;} will appearsfs. They cantherefore
be estimatedandthe problemis reducednto linearform.

Orthogonalityof thebasisfunctionsis notrequiredfor thisapproacho work. However, if the
datapointsarescatterecapproximatelyuniformly over therange(a, b), thenan orthogonal
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basiswill producepredictorswhich areapproximatelyuncorrelatedAs a consequencehe
coeficient of ary of the (swill not be greatlyaffectedby the presenceor absencef other
termsin themodel.

The disadwantageof orthogonalseriesrepresentations that it may be quite parameter
intensve, as several (s may be neededto obtain an adequateepresentatiomf an effect.
This problemcanbe minimisedby careful selectionof basisfunctions. For example,if a
transformations lik ely to be essentiallymonotonic,t might berepresentedfficiently using
a polynomialbasissuchasLegendrepolynomials. Effectswhich aremoreoscillatorymay
be representednore parsimoniouslyusing Fourier series.Both of thesebasehave {, = 1,

sothatthe coeficientof (; is estimatedaspartof the constanterm(5,) in any GLM.

A straightforvard extensionof theseargumentsshows thatwe canrepresenthe combined
effect of two variables(suchas latitude and longitude)in a similar way. To do this, we
simply needto add(sfor latitudeandlongitude,andinteractiondetweerthem.

Thereis onepotentialpitfall whenusingorthogonakerieso modelregionaleffectswith few
sites. If the total numberof (s andtheir interactionsapproacheghe numberof sites,there
is a dangerof severely overfitting the modelto matchexactly the obserned meansat each
site. As ageneralule, thetotal numberof site effectsin the model(includinginteractions)
shouldbe keptwell belon the numberof sitesavailable.

2.5 Model checking

Having fitted ary model, we needto checkit. This is an areawhich often doesnot receve the
attentionit deseres. However, for GLMs thereare a few simple but informative checksthat
shouldbe carriedout routinely. All of thetechniquegely on analyseof modelresidualssowe
startby discussinghese.

2.5.1 Residuals

In aGLM, we regardeachobsenationascomingfrom a differentprobability distribution. Poten-
tially, this makesit difficult to checkmodelsdirectly. However, it is alwayspossibleto transform
thedatain suchaway that,if thefitted modelis correct,all of the transformedsaluescomefrom
distributionswith the sameproperties.lt is naturalto considertransformationsepresentingome
measuref ‘error’. A few of themorecommonly-usedaneasureare:

Pearsonresiduals: If, for the ith casein the datasetwe forecastsomeprobability distribution
with meany; andstandardieviation o;, thenthe PEARSON RESIDUAL for this caseis

T(P) Y

2 )
0;
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wherey; is theobsenredvalue.If thefitted modelis correct,all Pearsomesidualcomefrom
distributionswith mean0 andvariancel. Pearsomesidualsareusuallysimpleto interpret.

Variationson this themearepossible.For example,for agammadistribution we have o; =
Wi/ /v (seeSection1.3.5),sothatrfp) = /v (y; — ;) /i However, if v is the samefor
all casesn thedatasetve may preferto usethedefinition (y; — u;) /u; instead sincethisis
justthe proportionalerrorwhich is moredirectly interpretable.

Anscomberesiduals:In someapplicationsit maybeusefulto defineresidualghatall comefrom
the samenormal distribution if themodelis correct. SuchmeasuresirecalledANSCOMBE
RESIDUALS. They do notalwaysexist (for example,if the Y's arediscreteit is not possible
to defineresidualghathave a continuoudistribution).

Often, Anscomberesidualsare definedto have an approximateatherthanexact, normal
distribution. For example,for a gammadistribution with meany the Anscomberesidual
may be definedas(y/u)1/3. The distribution of this quantityis not exactly normal,but it is

usually extremely close. The meanandvarianceof the approximatingnormaldistribution
dependdnly onv. Thereforejf v is commonto all obsenations,the Anscombeesidualsall

comefrom the samenormaldistribution.

Devianceresiduals: In Section2.2.1above, we saw thatdevianceis equivalentto the residual
sumof squaregRSS)in a linear regressionmodel. SinceRSSis just a sum of termsof
the form (y; — ui)Q (i.e. of squarecerrors),we might considertrying to write the deviance

asa similar sumof squares:_7 (rZ(D))2, say Sincethe devianceis a differenceof log-
likelihoods,eachof which is expressedas a sumof contritutions from eachobsenation,
definitionsof devianceresidualsanbe dervedby inspectionof thelog-likelihood.

Devianceresidualsare oftendifficult to interpret. However, they areoften provided by sta-
tistical softwarepackagesSincethe scaleddevianceis supposedo have a x? distribution,
we might expectdevianceresidualsto have an approximatenormaldistribution. However,
this approximations oftenquite poor.

We now discusshow residualscanbeusedto checkGLMs.

2.5.2 Checkson forecastprobability distrib utions

The GLM framework dealswith uncertaintyin a responsevariableby specifyinga probability
distribution conditionalon the valuesof predictors. Since parameteestimatesare obtainedvia
MaximumLik elihood,we needto checkthatthechoserfamily of distributionsis realistic. Correct
specificatiorof the forecastdistributionsis alsoimportantif thefitted modelsaresubsequentlyo
beusedin simulations particularlyif extremeeventsareof interest.

For continuougesponseariablestheeasiestvay to checktheform of theforecastistribution
is via quantile-quantilglotsof residuals For instancefor distributionswhereAnscombeesiduals
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aredefinedwe could producea normalprobability plot — a straightline on sucha plot indicates
that the distributional assumptionsre satisfied. Most statisticalpackageswill producenormal
probability plotsvery easily

For discreterandomvariablesthingsmay be moredifficult. However, we canusetherelatve
frequeny interpretationof probability to constructsomesensibletestprocedures.For example,
letY = (Y; ...Y,)" beavectorof discreterandomvariables,eachof which cantake the value
0. Supposewe fit a GLM to Y. We canusethis calculateP (Y; = 0) = p;, say for eachi. We
expectto obsere Y; = 0 on atotal of }_7 , p; occasions.A comparisonof the obsened and
expectednumbersf zeroegprovidesa checkon the probability structureof the model. Of course,
this procedureshouldthen be repeatedor all othervaluesin the dataset.We will illustratethis
procedurewith referenceo CaseStudy1, in Section2.7.

For very simpledistributions,we canbe morethorough.Considerfor example, thecasewhen
the Y's areall Bernoullirandomvariables(seeSectionl1.3.1). Supposeave examineall casedor
which the forecastprobability P (Y; = 1) is closeto somevaluep*. We expectto obsere avalue
of 1 in aproportionp* of thesecases.Unlessthe obsened andexpectedproportionsof 1sagree
acrossthe whole rangeof forecastprobabilities,thereis somethingwrong with the probability
structureof the model. In practice,we implementthis ideaby dividing the forecastprobability
rangeinto suitableintervalse.g. (0.0,0.1),...,(0.9,1.0). We will illustratethis whenwe check
thelogistic regressiormodelfor rainfall occurrencen CaseStudy?2.

2.5.3 Checksfor unexplainedpatterns

As well ascheckingthe probability structureof a GLM, we needto checkthatall of therelation-
shipsbetweenvariablesin a datasehave beenaccountedor correctly In statistics,suchchecks
areusuallycarriedoutby plotting residualsagainstaluesof thelinearpredictor(seepage35),and
againsindividual covariates.Suchplots may be producedothfor covariatesvhich appeaiin the
model,andfor factorsthathave not beenincluded.Any apparenstructurein theseplotsindicates
a problemwith themodel.Notethata plot of residualsagainstobsenedvaluesis notinformative,
andwill usuallyshonv somestructureevenif themodelis correct.

A typical featureof climatologicaldatasetss their large size. If thereare mary pointson a
residualplot, it canbe difficult to interpret. In this case,it may be betterto focuson summary
statisticsfor residualmeasuresver subgroupof obsenations. For example,to checkthat sea-
sonality is well reproducedve can computethe meanand root meansquarederror of Pearson
residualsfor eachmonthof the year andplot these:ary patternin the plot, or valueswhich are
‘significantly’ differentfrom zero,indicateseasonastructurewhich hasnot beencaptured.

To aid visualinterpretatiorof suchplots, it is helpfulto includeapproximateonfidencebands,
indicating the rangewithin which meanresidualsare expectedto lie if the modelis correct. If
meanresidualsare computedirom a network of sites,it may be necessaryo adjustthe width of
theseconfidencébandsto accountfor spatialdependence.
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2.6 Inter preting models

Generalized.inear Modelling is, at its mostbasiclevel, a descriptve techniquefor summarising
relationshipsbetweenpredictorsandresponsevariables. However, it is alsopossibleto interpret
themodelssoasto drav meaningfulconclusionsaaboutthe mechanismshatgeneratedhe data.

The mostobvious way in which we caninterpreta GLM is by examiningthe coeficients of
the predictors. Dependingon the link function used,it may be possibleto infer the effect of a
particularpredictoruponthe meanof the responsalistribution. For example,if thelink function
is theidentity (asin linearregression)5; representshe averageeffectuponY’, of a unit increase
in the ith predictor For modelswith alog link, €% is the averagemultiplicative effect of the ith
predictor

This idea can be extended,to build up picturesof nonlineareffects wherethesehave been
representedionparametricallfasdescribedn Section2.4.4above). Supposefor example,that
we haverepresentedystematicegionalvariationsusingorthogonabasisfunctionsof latitudeand
longitude.If we extractall of thesepredictordrom amodel,togethemwith theirassociateds, then
we obtaina functionthat canbe evaluatedat any spatiallocation. A mapof this function shavs
usthe systematiaegional variationin the meanof theresponseA similar ideaallows usto study
the effects of large-scaleclimate indicesby extracting, and mapping,all termsin a model that
representheir interactionswith location effects. This will beillustratedin CaseStudy 3, in the
next lecture.

Finally on the subjectof interpretationwe shouldnot overlookthe standarcerrorsassociated
with eachparametein a model. If oneor two parametersn a modelhave large standarcerrors,
we know thatthey have not beenestimatedvery precisely This meanghatthe availabledatado
not containmuchinformationabouttheseparametersyhichis potentiallyusefulknowledge.

2.7 Workedexample— CaseStudy 1

To concludethis lecture,we work throughthe first casestudy above, using the free statistical
packageR to performthe analysis.R is a computedanguagedesignedor easyimplementation
of awide rangeof advancedstatisticalandgraphicalproceduresThelanguages object-oriented,
andcanbeusedeitherby typing commandsta promptor by runningR programs AppendixA.1
givesdetailsof how to obtainthe package.

2.7.1 Readingthe data

The datafor this casestudycanbe obtainedfrom thewebsitefor this lectureseries asdescribed
in Section2.3.1above. Therearetwo datafiles. File nstorms.dat  containsannualcountsof
tropical stormnumbersin the North-WestPacific, andfile nino3.dat  containsmonthly Nifio
3 index values. In additionto thesefiles, the R programTC_anal.r maybe downloaded.The
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simplestway to analysethesedatais to downloadthesethreefiles to the samedirectory startup
Rin this directory type source("TC_anal.r") atthe prompt,andthentypeq() toquitR.
However, the only thing thiswill teachyou is how to run R programs!We will startby looking at
someof the simplecommandsn this program.

Thefirst few linesbegin with the“#” character Thesearecommentsandwill be ignoredby
R. Thefirst commandsn the programare

storm.data <- read.table(fil e="n sto rms. dat" ,he ader =T)
attach(storm.da ta)

Thefirstline herereadshedatafile nstorms.dat , andstoreghecontentsn anobjectcalled
storm.data . To view the contentsof ary R object,just typeits nameat the prompt. If we just
wantto view thefirst 4 rows of storm.data , wetype

storm.data[1:4,]
andobtain

Year Storms Typhoons Intense

1 1959 23 17 NA
2 1960 27 19 NA
3 1961 27 20 NA
4 1962 30 23 NA

Thecolumnsareautomaticallynamed.R haspickedup the columnnamedrom the datafile as
aresultof the“header=T " partof theread.table = commandTheNAvaluesin thelntense
columnare usedby R to denotemissingdata(recall from Section2.3.1that we have not used
intensetyphoonnumberdrom ary yearbeforel1972).

The commandattach(storm.data) is usedto tell R to searchthe variable namesof
storm.data , aswell astheindex of R objects,whenwe referto anobject. For example,if we
now typelintense attheR prompt,Rwill firstlook for anobjectcalled“Intense”. If it doesnot
find one, it will look at the columnheadingsn storm.data , andidentify the fourth column.
Alternative waysof specifyingthis arestorm.data$intense , andstorm.data[,4] . The
attach() = commandorovidesa corvenientway of referencingpartsof objects.

2.7.2 Simple plots

The next few lines of the programdemonstratdéiow to producea simpleplot (Figure2.1)in R.
Following thesewe have thelines
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custom.hist <- function(x,bre aks, colou r, names tat lo c) {

Thissectionof codeis auserdefinedunction Its purposas to produceacustomizedistogram
of the datain an objectx, accordingto the valuesof variousoptionsspecifiedin the aguments
breaks ,colour ,nameandstatloc . Thenextfourlines:

par(mfrow=c(3,1 ))

custom.hist(Sto rms, seq(0 40, 2),2,"s torm", ¢(5,0.05))
custom.hist(Typ hoons, seq(0 ,4 0, 2) ,3, "t yphoon",c (30, 0. 05))
custom.hist(Int ense,s eq( 0, 40,2 ), 4," in te nse typhoon",c(20,0. 05))

canthenbeusedto generatd-igure2.3. Thecommandoar(mfrow=c(3,1)) is usedto put
3 plotsonasinglepage.

Having producedhe histogramsthe programreadsthe Nifio 3 dataand memgesthis with the
storm.data  object. This canbedonebecauséhe datafiles nino3.dat  andnstorms.dat
both have a columnheadedYear . To matchthe stormnumbersto the previousyear’s Nifio 3
valueswe add1 to theNifio 3 Year columnbeforemeiging.

The next stepis to produceFigure2.2. Note the useof par(mfrow=c(4,3)) , to produce
a4 x 3 arrayof plotson a page: alsotheuseof aloop (for (i in 1:12) { .. 1 to
produceplotsfor eachmonth;andthe automatidabelling of eachplot usingmonthnameswhich
aredefinedin the objectmonthlabs

2.7.3 Fitting aGLM

Now for theinterestingpart. In Section2.3.1,we suggestedhatthe Poissordistribution might be
appropriatdor modellingstormnumbersHere,wewill only considemodellingtyphoonnumbers
— analysesf tropical stormsandintensetyphoonscanbe carriedout in a similar way. On the
basisof Figure2.2,typhoonnumbersappearo be morestronglyassociateavith Nifio 3 valuesin
Septembethanin any othermonth. At this pointin the program the SeptembeNifio 3 valuesare
heldin the N3.m09 columnof storm.data . LetY; bethe numberof typhoonsin yeari, and
let z; bethe SeptembeNifio 3 valuefrom the previousyear To fit a PoissonGLM with alog link
function (seeSection2.2), we type

glm(Typhoons =~ N3.mO09,family=poisson(link=" log" ))

Thisfits themodelY; ~ Poi (1;), whereln u; = 5y + f1z;. Theoutputis
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Call: glm(formula = Typhoons ~ N3.mQ09, family = poisson(link = "log")

Coefficients:

(Intercept) N3.mQ09
2.8740 -0.1262
Degrees of Freedom: 41 Total (i.e. Null); 40 Residual
Null  Deviance: 41.3
Residual Deviance: 31.63 AIC: 2322
The parameteestimatesareﬁo = 2.8740 and 3; = —0.1262. The deviancefor this model

(again,seeSection2.2)is 31.63.In general R outputsthedevianceratherthanthescaleddeviance,
asdiscussedn Section2.2.1— however, for the Poissondistribution, thesequantitiesare the
same. The null devianceis the deviancefor a model containingno predictors. Recall that, in
a GLM the devianceis the equivalentof the residualsum of squaresn a linear regression. In
this case the devianceis reducedrom 41.3to 31.63— the ‘percentagenf devianceexplained’is
100(41.3 — 31.63)/41.63 = 23.4.

We maywantto dorathemmorewith thismodel— for example we maywantto obtainstandard
errorsfor the parameteestimatesandperformsomemodelchecks.This is straightforvardin R.
All we needto dois to storethemodelin anobject,which we cantheninterrogate:

storm.modell  <- glm(Typhoons ~ N3.m09,family=poisson(link="lo ag")

The objectstorm.modell  now holdsall of the informationaboutthe fitted model. If we
wantsomemoredetail, we cantype summary(storm.modell)  “to obtain

Call:
glm(formula = Typhoons ~ N3.m09, family = poisson(link = "log")

Deviance Residuals:
Min 1Q Median 30 Max
-1.777846 -0.756295 -0.001514 0.641291 2.344787

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.87400 0.03692 77.842 < 2e-16 ***

N3.m09 -0.12624 0.04141 -3.048 0.00230 **

Signif. codes: 0 v 0.001 e 0.01 = 0.05 * 01 1
4In file TC.anal.r , this commandappearsas print(summary(storm.model1)) . This is necessaryo

force outputto bewritten whenthe entireprogramis run usingthecommandsource("TC _anal.r")
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 41.296 on 41 degrees of freedom
Residual deviance: 31.630 on 40 degrees of freedom
AIC: 232.22

Number of Fisher Scoring iterations: 3

The outputis more detailed. We obtain somesummarystatisticsfor devianceresiduals(see
Section2.5.1). If the modelis a good one,we expecttheseto be approximatelysymmetrically
distributedaboutzero. We alsoobtainassessments the significanceof theindividual predictors
in the model. The “z value” columnis the ratio of eachestimateto its standarderror, andthe
“Pr(> |z|)” columngivesa p-valuefor testingthe hypothesisH, : 5; = 0 againsthe alternatve
H, : B; # 0. We mightinformally acceptevidenceof a genuinerelationshipif thevaluesareless
than0.05. In fact, R highlights ‘significant’ relationshipswith asterisks.The p-value associated
with the SeptembeNifio 3 valueis 0.00230 suggestingxtremelystrongevidenceof association.
Note, however, thatthis p-valueis twice thatgivenin Figure2.2. In this case our conclusionsare
not affected,but it doesillustratethe potentialsensvity of resultsto the analysismethodchosen.
Thep-valuesin Figure2.2will becorrectif typhoonnumbersarenormallydistributed;thosefrom
the GLM will becorrectif theunderlyingdistributionis Poisson.

2.7.4 Comparing models

We now have a modelwhich usesSeptembeiNifio 3 valuesto foreasta Poissondistribution for
the numberof typhoonsin the North-West Pacific the following year Is this the bestpossible
model? We could try fitting modelswhich useNifio 3 valuesfrom othermonthsin placeof the
Septembewalue. If we do this, we find that noneof the othermodelsgivesa devianceaslow as
the Septembeone. Equivalently, the ‘Septembermodelhasthe highestlik elihood. However, we
maywantto ask:canwe improve our modelby including othermonths’Nifio 3 valuesin addition
to the Septembevalue?For example,supposeve considerusingboththe Augustand September
Nifio 3 values:

storm.model2  <- glm(Typhoons ~ N3.m09 + N3.m08,
family=poisson(link="log"))
summary(storm.model2)

Theresultsaregivenin Table2.3. The p-valueshereindicatethat neitherof the two Nifio 3
valuesis significantlyassociateavith typhoonnumbers— this appeargo contradictthe findings
of the previous section,wherewe found strongevidenceof an associatiorbetweenSeptember
Nifio 3 valuesandtyphoonnumbers.

The reasonfor the apparenproblemis that Augustand SeptembeNifio 3 valuesare highly
correlatedandtestsbasedn standarderrorsof coeficientscanbe misleadingn this situation(see
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Call:
glm(formula = Typhoons ~ N3.m09 + N3.m08, family = poisson(link = "log"))

Deviance Residuals:
Min 1Q Median 3Q Max
-1.768344 -0.766805 0.006982 0.650814 2.354857

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.873309 0.038393  74.840 <2e-16 ***

N3.m09 -0.118073 0.131130  -0.900 0.368

N3.m08 -0.008747 0.133295  -0.066 0.948

Signif. codes: 0 0.001 = 001 = 0.05 01 ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 41.296 on 41 degrees of freedom
Residual deviance: 31.625 on 39 degrees of freedom
AlIC: 234.21

Number of Fisher Scoring iterations: 3

Table2.3: R outputfor PoissonGLM, fitting annualtyphoonnumbergo previousyear’s August
andSeptembeNifio 3 values.
|

Section2.2.1). Effectively, the hypothesebeingtestedhereareof theform H, : 5; = 0 with all
other 3s fixedat their currentvalues SinceSeptembeandAugustvaluesare highly correlated,
the Augusttermis notlikely to add muchinformationoncethe Septembetermis in the model,
andvice versa.

Theway aroundthis problemis to usetestsbaseduponthedevianceor scaleddeviance(which
arethe samefor the Poissordistribution). We have two models:the ‘Septembewonly’ modeland
the ‘Septembeiplus August’ model. The deviancefor thefirst (reduced)modelis 31.63,andthat
for the seconds 31.625(from Table2.3). To testwhetherthe secondmodeloffers a significant
improvementover the first, we comparethe deviancereductionwith the upper5% point of a 2
distributionwith 1 degreeof freedom(sincethereis 1 extraparametem theextendedmodel). This
is 3.84(checkthisin R by typing qchisq(0.95,1) ). Sincethe obsereddeviancereductionis
only 0.005,we concludethatthereis no improvementandthe modelshouldnot be extended.
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Theanova() commandcanbe usedto carry out this procedureautomaticallyin R . Type
anova(storm.model2,test="Chi" ) , to obtainthe following Analysisof Deviancetable:

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 41 41.296
N3.m09 1 9.667 40 31.630 0.002
N3.m08 1 0.004 39 31.625 0.948

Eachrow of thistablerepresentshe effect of addinganextratermto the model. For example,
by addingthe SeptembeNifio 3 valueto the null model(i.e. the modelcontainingno predictors),
the devianceis reducedby 9.667. The associateg-valueis 0.002,in agreemenwith the result
of the previous section. However, whenwe addthe AugustNifio 3 valueto the model, the de-
viancereducesy 0.004(our manualcalculationgave 0.005,but thisis becauséR only outputsthe
deviancedo 3 decimalplaces).Theassociateg-valueis 0.948.

Of coursewe couldrepeathis analysisthe otherway round— addingthe Augusttermto the
modelfirst. In this casewe find that the Septembeterm doesnot improve significantly upona
modelthatjust containsthe Augustterm. The conclusionis thatonly oneof thetwo predictorsis
necessarySincethe‘'Septembeonly’ modelgivesalower deviance(i.e. ahigherlik elihood)than
the'Augustonly’ model,thisis the modelwe prefer

Finally, we mightaskwhethemwe canimprovethemodelby addinganyNifio 3 valuesfrom the
last5 monthsof theyear(since,accordingo Figure2.2,thisis theperiodfor whichtherelationship
with typhoonnumberss strongest).We cando this by comparingour Septembemodelwith an
extendedmodelcontainingall 5 months’values:

storm.model3  <- glm(Typhoons ~ N3.m08 + N3.m09 + N3.m10 + N3.mll +
N3.m12,family=poisson(link="lo g")
anova(storm.modell,storm.mode I3,te st=" Chi")

We obtainthefollowing Analysisof Deviancetable:

Model 1: Typhoons ~ N3.m09

Model 2: Typhoons ~ N3.m08 + N3.m09 + N3.m10 + N3.ml1l + N3.ml2
Resid. Df Resid. Dev Df Deviance P(>|Chi|)

1 40 31.630

2 36 30.773 4 0.857 0.931

Now, thedeviancereducesy 0.857for theadditionof 4 extraparametergéin the‘'Df’ column).
The associateg-valueis 0.931— again,we find no evidencethatwe canimprove our modelby
addingextraterms.
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Further notes

This examplehasbeenchoserfor its simplicity ratherthanits realism. In practice,modelchoice
is usuallymorecomplec thanin this study However, we have not coveredall of the capabilitiesof
R here(for afull list, type help.start() andseethe online help!), andsomeof thesemay be
of usein morecomplicatedsituations.A few additionalfeaturesareasfollows:

Interactions: thesecanbespecifiedeasilyin R. For example,thecommand
gm(ly ~ x1 + x2 + x1:x2, family = ..) canbeusedto fit amodelcontain-
ing thepredictorsx1, x2 andtheirinteraction.

Stepwisefitting: various‘automatic’ methodsof model selectionexist. Theseare similar to
stepwiseregression. The R commandfor this is step . For example,to selectpredictors
from thelast5 months’Nifio 3 valueswe couldfit amodelcontainingall of thesevalues(i.e.
storm.model3 above),andthenusethestep() commando decidewhichtermsshould
be keptin the model. In the abore example,the commandstep(storm.model3) may
be used.However, suchautomaticmethodsshouldbe usedwith caution. Stepwisdfitting is
notguaranteedb find the‘best’ model,andtheresultscandependiponthewayin whichthe
stepwisesearchs carriedout. Therearevariousoptionsin thestep() command.A safe
stratgy for researcherss: if you don't understandheseoptions,don’t usethe command!
In arny case,n climatethereis usuallyan‘obvious’ hierarchyof modelsso thatthe useof
automaticechniquess not necessaryThis wasdiscusseearlier in Section2.2.1.

GLMs with nuisanceparameters: for the Poissordistribution, thereis no nuisancgparameter
Thereforethedevianceandscaleddeviancearethe sameanddeviancetestsbasecnthe x?
distribution areappropriate gvenfor small samples.However, for otherdistributionssuch
asthe gamma,it may be more appropriateto calculateAnalysis of Deviancetablesusing

‘test = "F" ’insteadof ‘test = "Chi" ’intheanova() command.ln fact,‘test
= "F"’ may be usedfor the Poissoncaseaswell, and givesthe sameresultsasthe x?
version.

2.7.5 Model checking

At this point, we have decidedthattyphoonnumbersmay be predictedusing SeptembeiNifio 3
valuesin a PoissonGLM. Our modelis storedasanR objectcalledstorm.modell . We need
to carryoutsomechecks.Rin factprovidesavariety of diagnostigplots— we justtype

par(mfrow=c(2,2))
plot(storm.modell)

Figure2.8shavstheresult.First,we have a plot of devianceresidualsagainstiinearpredictors
(seeSection2.5.1and2.5.3). Sincewe areusingalog link function,thelinearpredictorsarethe
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Figure2.8: Diagnosticplotsfor PoissonGLM fitted to North-WestPacific typhoonnumbers.
|

logarithmsof the fitted meandor eachcase.This plot providesa checkof thelink functionin the
model,aswell ashighlighting any otherobviousanomalies.If the modelis correct,thereshould
be no structurehere— this appearso bethe casewhichis agoodsign.

The secondplot is a normalquantile-quantilglot of devianceresiduals.This is basedon the
ideathat,asdiscussedn Section2.5.1,devianceresidualsmay be expectedto have a distribution
closeto normal. In this case the quantile-quantilgolot shouldappearcloseto a straightline —
departuresrom this would suggesthatthe Poissorassumptions not valid. However, in practice
the normal approximationfor devianceresidualsmay be poor, so this plot may be moderately
curvedevenif themodelis correct.In this casethereis no causeor concern.

The scale-locatiorplot is anothercheckon distributionalassumptionsilt is designedo check
the variancesof the fitted distributions (for the Poissondistribution, the varianceis equalto the
mean).If the choserfamily of distributionsis correct,the pointson this plot shouldbe randomly
scatteredgbouttheline y = 1. Again,theredo notappeato beary problems.

Finally, the Cook’s distanceplot tells us which obsenations have the mostinfluenceupon
the fitted model (in the sensethat, if theseobsenationswere deleted,the parameterestimates
would changea lot). Obsenations6, 8 and40 areall highlightedasinfluential. To identify these
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obsenations,we cantype storm.data[c(6,8,40),c(1,3,13)] (this commandselects
rows 6, 8 and 40, and columns1, 3 and 13, of storm.data ). The corresponding/earsare
1964,1966and1998.We maywishto investigateheseyearsfurther— for example to determine
whetherarnything unusualoccurred or whetherthereis ary dataerror.

The plotsin Figure 2.8 all seemto indicatethat the Poissonmodel fits well. However, as
discussedn Section2.5.3,we may alsowish to find out whetherthereareotherfactorsthathave
not beenaccountedor. An obvious questionis whethertyphoonnumbershave changedover
time. To answerthis, we can plot a time seriesof modelresidualsfor eachyear We will use
Pearsomesidualssincethey aremoreeasilyinterpretablehandevianceresiduals For the Poisson
distribution, the Pearsonresidualfor theith casein a datasets definedasr!” = (s — 1) /i
In R, theplot is generatedisingthe commands

pearson.modell <- resid(storm.modell,type="pear son")

par(mfrow=c(1,1))

plot(Year,pearson.modell,lwd= 2typ e="I "xla b="Year", ylab ="Residua I")
abline(0,0)

The resultis shavn in Figure 2.9. This plot doesnot look random,indicating that thereis
interannuaktructurethathasnot beencapturedoy the model. In this study we do not proposeto
try andfind out the causeof this; however, it doesshow thatsimpleplotscanbeinformative.

We can also checkthat the meanand varianceof Pearsorresidualsfrom this model agree
with their expectedvaluesof 0 and1 respectiely. The commanddor this may be foundin file
TC anal.r . Themeanis 0, andthe varianceis 0.799. This varianceis lower than expected
— this may indicatethat the Poissondistribution doesnot fit the data. If thisis the casethenwe
have avery interestingresult. We chosethe Poissordistribution by consideringhe mechanisnof
cycloneformation.If thePoissordistributionis nota goodfit, we mustconcludethattyphoonsdo
not follow a Poissonprocessandthereforethat our suggesteanechanisnfor typhoonformation
is incorrect. The mostlikely explanationis that easterlywaves do not develop into typhoons
independentlyf eachother

We concludethis sectionwith a final check. In Section2.5.2, we describeda methodfor
checkingthe probability structureof GLMs for discreteresponses.To implementthis method,
we comparethe obsened andexpectednumbersof yearsin which 0, 1, 2 . .. typhoonsoccurred.
The R codefor doingthis is includedin file TC_anal.r . Theresultis shovn in Figure 2.10.
The obsened distribution is bimodal,with two clearly-definedbeaksat valuesaround14 and20
typhoonsperyear The expecteddistribution doesnot capturethis pattern. This may indicatea
problemwith the model,or the patternin the obsenationsmaybe a chanceeffect dueto thesmall
samplesize. Thisis somethinghatshouldbeinvestigatedurther.

We do not attemptto improve this modelhere. The main point of this casestudyhasbeento
demonstratéhat GLMs canbefitted, andchecled, very easilyin R, andthatsimple checkscan
highlight possibleproblemswith the models.Theseproblemssuggestlirectionsfor furthermodel
developmentandcanpotentiallyenhanceur understandingf climateprocesses.
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Figure2.9: AnnualPearsonesidualdor PoissonGLM fitted to North-WestPacific typhoonnum-
bers.

2.8 Further reading

Thereis an enormousamountof statisticalliteratureon Generalised.inear Models. They were
introducedby NelderandWedderlirn (1972);thetheoryis coveredquite comprehenskly in the
classicbhook by McCullaghandNelder(1989). A lessdetailedandsimplertreatmenis given by
Dobson(1990).Chandle1998) containssomediscussiorof theissuesnvolvedwhenpredictors
arecorrelated.

In the climatologicalliterature, GLMs have not receved much attention. Somefundamental
papersare CoeandStern(1982)andSternandCoe(1984)— theseauthorsusedGLMs to model
daily rainfall sequencesFurtherrecentdevelopmentsof GLMs, in the context of rainfall mod-
elling, aregivenin Chapter4 of Wheateret al. (200®). This referencecontainsmore detailed
pointersto someof therelevantstatisticalliterature,aswell asathoroughanalysisof thelrish data
consideredherein CaseStudy?2.

Poissormodelshave beenusedtio modeltropicalcyclonenumberdy ElsnerandSchmertmann
(1993) and Elsneret al. (2001) — the latter papergives a nice introductionto the use of the
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Figure2.10: Obseneddistribution of annuakyphoonnumberscomparedvith thatexpectedunder
PoissonGLM.

deviancestatisticin a climatologicalapplication.

The needto accountfor autocorrelationwhen analysingrelationshipsbetweentime series,
is very clearly demonstratedby Walther (1999). This papershouldbe compulsoryreadingfor
everybodyin climateresearch!

An overview of the relevantissuesin model checkingis given by Chandler(1998:). For a
moredetailedtreatmenfrom a statisticalperspectie, seeAtkinson (1985)— this bookis a good
referencdor thevarioustypesof residualplot usedby R.

The windspeeddatain CaseStudy 4 have beenprovided by the Royal NetherlanddVieteo-
rological Institute (KNMI). Documentatiorfor this datasetcan be found on the KNMI website
at http://www.knmi .n 1/ samenw/ hydr a/ , andin Verkaik (200Qz). The proceduresisedto
remove inhomogeneities stationrecordsarepublishedn Verkaik (200().

Any graduate-leel mathematicatextbook will containdetailsof orthogonalbasisfunctions.
Abramawitz andStegun (1965)andPressetal. (1992)areusefulreferencesor Legendrepolyno-
mials,in particular



Lecture3

Applications, and alternatives

3.1 Casestudies

To begin thisfinal lecture,we returnto CaseStudies2, 3 and4, which wereintroducedn Section
2.3. Theaimis to illustratewhatcanbe achiezedusingGLMs in avariety of differentsituations.

3.1.1 Casestudy 2

In the studyof Irish rainfall, we have decidedto uselogistic regressionto modelthe sequencef
wet anddry daysat eachsite, andthento fit gammadistributionsto the amountof rain on wet
days.Thesewill bereferredto as‘occurrence’and‘amounts’modelsrespectiely.

To developa model,it is naturalto startwith ‘obvious’ predictorsandto addextratermsand
interactionggradually The valueof extratermscanbe assesselly examiningthelog-likelihood,
predictve performanceandresidualsor eachmodel. Recall,however, thatwhenour dataconsist
of time seriedfrom severalsites,log-likelihoodsshouldbetreatednformally becaus®f thespatial
dependencbetweersites.

Oneof theaimsof this studywasto investigatethe evidencefor changingrainfall patternsn
the Westof Ireland. Within the GLM framework, this canbe investigatedy fitting basicmodels
correspondingo a stationaryclimate,andcomparingthesewith ‘extended’modelsincorporating
nonstationaryeffects. In selectingpredictorsto representrendsover time, four basicalternatves
have beenconsideredhere.Thefirst threearedeterministidunctionsof time:

o=t a0={,°, o and fu(0) = cos (22

t —ty otherwise. w

It is implausibleto extrapolatef; (¢) indefinitely outsidethe rangeof the data,but it may provide
agoodapproximatiorto ary monotonictrendover the periodof record. f,(t) is a cruderepresen-
tation of anthropogenicclimate change’(t, beingtheyearin which the changestartedto occur).
f3(t) isincludedto investigatehe possiblepresencef cyclesin theareas climate. f5(t) and f;(¢)

68
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Model Trend Number of Log- RMSE
number scenario parametersin model | lik elihood (mm)
[ RAINFALL OCCURRENCE |
1 None 35 -67990.600
2 fi 42 -67805.609
3 fo 43 -67805.609 Not
4 f3 44 -67804.388 | applicable
5 NAO 41 -67583.472
6 NAO plus f; 49 -67470.000
[ RAINFALL AMOUNTS |
1 None 30 -194086.831 5.580
2 fi 45 -194023.122 5.579
3 fo 46 -194023.122 5.579
4 f3 43 -193995.569 5.578
5 2 cycles 48 -193941.679 5.577
6 NAO 38 -193862.769 5.567
7 NAO plus f3 42 -193822.092 5.566
8 NAO plus2 cycles 51 -193762.053 5.565

Table3.1: Summaryof modelsfor thedaily rainfall recordin the Galway Bay area.For eachtrend
scenariothe summaryrefersto the bestmodelthatwasfound. Log-likelihoodsare calculatedas
thoughdatafrom differentsitesareindependentThe numbersof obsenationswere 143,682for
theoccurrencenodelsand101,448for theamounts.

|

arebothnonlineartransformation®f time, involving unknovn parameterst,, ¢ andw) thatmust
be estimatedrom the dataasdescribedn Section2.4.4.

Thesetrendfunctionsareall essentiallydescriptve in nature.lt is naturalto askwhetherthere
is a physicalexplanationfor ary apparentrends. Thereforewe have investigatedhe impact of
theNorth Atlantic Oscillation(NAQO) in additionto the deterministiarendfunctions. The NAO is
known to beassociateavith Europearprecipitationpatterns— seethereferencdist at the endof
this lecturefor furtherdetails.

Table 3.1 givesthe numbersof parametersandlog-likelihoods for a variety of models. Ad-
ditionally, for eachamountsmodelthe root meansquarederror (RMSE) is reported. For both
occurrenceand amounts,Model 1 containspredictorsrepresentingsystematicregional effects,
seasonavVariability, previous days’rainfall (5 previous daysfor occurrenceand4 for amounts),
andinteractiondetweemreviousdays’rainfall andseasonabredictors.Thesenteractiongeflect
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seasonavVariationsin the strengthof autocorrelation Autocorrelationis higherin winter thanin
summeybecausehe areaexperiencesnorepersistenfrontal rainfall in thewinter.

Thelog-likelihoodsin Table3.1indicatethatthe bestfits are obtainedby occurrencenodel6
andamountsmodel8. For both occurrenceandamountsthe log-likelihoodsclearly identify the
NAO asthe dominantsourceof interannuablariability. However, it doesnot accountfor all the
trendsin the data, sincethe likelihoodsfor occurrencemodel 5 and amountsmodel 6 are both
significantlyincreasedy addingextra termscorrespondingo linear andcyclical trendsrespec-
tively. The standardieviation of rainfall amountson wet daysis 5.758mm:henceamountsmodel
8 explains6.6%of the variability. Thisis actuallyquiteimpressve giventhelevel of noisein the
data(seeSection2.3.2). Theimprovementis dueto the incorporationof previous days’ rainfalls
(i.e. of ‘weathervariability’), andthe NAO, into the models.

Theseresultsshav that GLM methodologyis ableto distinguishbetweerthe ‘genuine’ NAO
mechanisrmandthe artifical deterministictrendscenarios.The methodologypicks out significant
interactionsbetweenthe NAO and seasonapredictors(the dominanteffect is in winter), anda
3-way interactionbetweenthe NAO, seasonalityandthe rainfall 1 day ago. We canusethis to
illustratehow interactiongnaybeinterpreted.

Example3.1: Wewill considettheinterpretatiorof the 3-way interactionin theamountsnodel.
From a physicalviewpoint we may be interestedn the coeficient associatedvith rainfall 1 day
ago,sincethis tells us aboutthe strengthof autocorrelationn therainfall seriesandhenceabout
the typesof weathersystemthat affect the area. In the presentdiscussion]et Y; be the rainfall

amounton dayt¢ whenit is non-zeroandlet i; denotethe meanof the distribution of Y;. We are
usingagammaGLM with alog link function (seeSection2.2). In our model,we have choserno

usethepredictorln (1 + Y;_;) to representhe effect of rainfall 1 dayago. Accordingto thefitted
model,the contributionof Y; ; toIn y; is

2 da 2 da
In (1 + Y1) [0.194 +0.070 cos %ﬂu 0.030sin 27— _ (9,010 x NAO)
27 x da 27 x da
—(0.01 =m x 98y 002 in 27 X 98
(00 5 % NAO x cos = +(000 x NAO x sin =2 ]

where‘day’ is the day of the year(runningfrom 1 to 365),and‘NAQ’ is the currentvalueof the
monthly NAO index. This index fluctuatesabouta zerovalue. Therefore,if we put NAO =0 in
this equationwe will obtainan‘average’seasonatycle for the coeficientof In (1 + Y;_). If we
putNAO = 1, wewill obtainthe correspondingycle for ayearin which NAO takesthevaluelin
every monthi.e. in whichthereis areasonablytrong,andpersistentpositve anomaly
Theresultis shavn in Figure3.1. As expectedautocorrelatiorns wealerin thesummeithanin
thewinter. Theeffectof theNAO is to decreaséheautocorrelationn thewinter months but it has
very little effectin thesummer This suggestshata positive NAO is associateavith areductionin
the homogeneityof weathersystemsn winter. Thisis quite acomple structureto identify from
noisydata;however, the GLM is ableto detectthis, andto represenit straightforvardly. [ |
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Figure3.1: Seasonalariationof thecoeficientof In (1 + Y;_,) in Gawayrainfall amountamodel,
andtheeffect of the NAO uponthis variation.

In seriousclimatestudieswe would probablywantto explorethis datasefurther. In particular
we may wantto determinewhetherthereareary large-scaleclimate indicesthat accountfor the
deterministictrendsin the modelspresentedere. However, no nev methodswvould be involved
sowe do notattemptthis here.

To checkthemodelswe startby studyingPearsomesiduals Herehowever, becaus¢hedataset
is large,we do not plot individual residualsput summarystatisticsover subset®f data.For exam-
ple, Figure 3.2 shavs summarystatisticsfor monthly andannualPearsorresidualsrom the best
modelfor rainfall amounts.The amountamodelsusegammadistributions,for which we usethe
modified Pearsomresidualswhich arejust the proportionalerrors(y; — ;) /u; for eachcase(see
Section2.5.1). Theplotsof meanresidualsnclude95%confidencéands approximatelyadjusted
for spatialdependencelf the modelis correct,approximately9d5% of meanresidualsshouldlie
within thesebands. Thereis little systematicstructurein eitherof the meanresidualplots. This
indicateshatthe modelgivesa goodrepresentationf seasonahndinterannualariability.

Figure3.2 alsoshaws the root meansquaredPearsonesidualfor eachmonthandyear— i.e.

) (T§P>)2. Theseplotsaredesignedo highlight ary problemswith the variancestructureof
themodel(i.e. to checktheassumptiorthatthe coeficient of variationis constant) Thehorizontal
lines on the plots are dravn at 1/+/7, where is the estimatedshapeparameterof the gamma
distributions. This is the expectedvalue of the squaredPearsorresidualsf the modelis correct.
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Figure3.2: Seasonahndannualstructureof Pearsomesidualsfrom rainfall amountsmodel8 in
Table3.1.

We seethatthereis avery smallamountof seasonastructurein thetop plot, but little interannual
structure.For practicalpurposesthereis nothingto worry abouthere.

In additionto checkingseasonaandinterannualtructure we could checkthat regional vari-
ability is well representedyy computingsummarystatisticsfor Pearsomesidualsat eachsite. We
alsoneedto producesimilar plotsfor the occurrencenodel.

To checkthe probability structureof the amountanodel,we canproducea normalprobability
plot of Anscomberesiduals(seeSection2.5.1). If the gammadistribution fits the datawell, this
shouldappearasa straightline. Theresultis shovn in Figure3.3. Theplot is linear, exceptin the
lower tail wheretherearenot enoughvery smallresiduals.This hasbeeninvestigated Aimostall
of thevaluesin the lower tail correspondo rainfall amountswhich wererecordedas‘trace’ (i.e.
thevaluewasrecordedas‘lessthan0.1mm’). Thelack of fit hereis thereforeto be expectedand
will notcauseary problemsn practicalapplications.

In Table3.1,therainfall occurrencenodelsuselogistic regressionandprovide anopportunity
to demonstratéhecheckingof probability structurefor Bernoullirandomvariables.Thetechnique
wasdescribedn Section2.5.2. We split thedatasetccordingto the modelledprobability of rain,
andcomparethe obsened andexpectednumbersof rainy daysin eachsubsebf data. Theresult,
for the bestof the occurrencanodels,is shavn in Table3.2. Thereis a closeagreemenbetween
obsenedandexpectedproportionsof rainy days,acrosghe entirerangeof forecastprobabilities.
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Figure3.3: Normalprobabilityplot of Anscomberesidualdrom rainfall amountsmodel8 in Table
3.1.
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Theworstcasesrefor theforecastangeg0.5, 0.6) and(0.9, 1.0). For example,of the6,444days
whenwe forecasta probability betweerD.5and0.6, we expect54.6%to bewet, but only obsene
53.2%.This differences actuallystatisticallysignificant,but is of little practicalinterest.

Onthebasisof these andothersimilar analysesye may concludethatthe Irish daily rainfall
recordis well modelledusing a combinationof occurrencemodel 6 and amountsmodel 8, in
Table3.1. In mary climatologicalapplicationswe might stopat this point. We have learnedthat
the apparennonstationarityin Irish rainfall is not a ‘chance’effect, andthat someof it is dueto
fluctuationdn theNAO. We have alsoobtainedsomeinterestingandinterpretableresultsshoving
how the NAO affectsautocorrelationn rainfall sequencesWe couldinterrogatethefitted models
furtherto find out, for example,how NAO affectsrainfall amountgratherthanautocorrelationsat
differenttimesof year

However, for this particularstudy we needto do morethanthis. Recall,from Section2.3.2,
thatanothemim of thestudywasto estimatehe probabiltyof largefloodsrecurring,andto provide
syntheticrainfall sequence®or inputto hydrologicalmodels.Within the GLM framawork, this is
straightforvard. All we have to dois to simulatesequencefrom the fitted model. Froma single
sequencewe canderive ary quantityof interest(suchasthewinter rainfall amountin a particular
year). By simulatingmary sequencesye canobtaina simulatedprobability distribution for this
guantity of interest— this tells us aboutour uncertainty In fact, we have to allow for spatial
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Forecastprobability of rain
0-0.1| 0.1-0.2| 0.2-0.3| 0.3-0.4| 0.4-0.5| 0.5-0.6| 0.6-0.7| 0.7-0.8| 0.8-0.9| 0.9-1.0
0 4989 | 14449 | 10433 | 8912 6444 6591 | 18088 | 43776 | 30000
0.000( 0.179 | 0.254 | 0.357 | 0.455 | 0.532 | 0.646 | 0.752 | 0.850 | 0.938
E || 0.000| 0.178 | 0.249 | 0.347 | 0.449 | 0.546 | 0.656 | 0.760 | 0.856 | 0.927

oz

Table3.2: Checkingthe probability structureof occurrencenodel6 in Table3.1. Row N givesthe
total numberof daysin eachcolumn. Rows O andE give the obsered andexpectedproportions
of thesethatwerewet.
|

dependencevhensimulatingover a network of sites. Thetheorybehindthis canbe comple, and
is not coveredhere.Detailsaregivenin thereferenceshe endof thelecture.

Figure 3.4 shavs whatcanbe achieved usingsimulation. Here,1000daily rainfall sequences
have beengeneratedver the period 1989-1997.Thesesequencegvere all initialised using ob-
sened data. From eachsimulateddaily sequencewinter rainfalls were extractedfor every year
Thefigureshavs percentilef thewinter rainfall distributionsobtainedn thisway:. It alsoshovs
the obsenedwinter rainfall amountswith someuncertaintyowing to missingdata.

The simulateddistributionsin Figure 3.4 shav someinterranualvariability, asa resultof the
NAO. Eachday’s probability distribution dependsuponthe value of the NAO, andthe obsered
NAO sequencérom 1989-1997vasusedin all of the simulations.The highrainfall in 1995,and
low rainfall in 1996, are both stronglyassociatedvith NAO actwity, sincethis is the only factor
in the modelthatcould possiblyproducethe dramaticchangen simulateddistributionsbetween
thesetwo years.

Figure3.4alsoshovsthattheobseredwinterrainfalls overthis periodfall within thesimulated
distributions. The mostextremeobsened rainfalls, in 1994and 1995, appeatto lie betweerthe
upper5% and 1% point of the simulateddistribution. We shouldnot interprettheseresultstoo
literally. However, they do indicatethat floods at leastas extreme asthosein 1994 and 1995
may occur againundersimilar NAO conditions. Qualitatve conclusiondik e this are of useto
policymakers'.

3.1.2 Casestudy 3

In Section2.3.3,weintroducedheproblemof modellingtemperatures theUSA, toillustratethe
useof the GLM approachn a continental-scalstudy We decideto usenormaldistributions,and
to fit separatenodelsfor themeanandvarianceof eachobsenation. In this sectionwe summarise

1Sincethis work wascarriedout, waterlevelsin the areahave againbeenvery high. To someextent, this justifies
theconclusiongpresentedhere!
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Simulated distribution - 99th percentile to maximum
Simulated distribution - 95th to 99th percentile
Simulated distribution - 90th to 95th percentile
Simulated distribution - 75th to 90th percentile
Simulated distribution - 50th to 75th percentile
Simulated distribution - 25th to 50th percentile
Simulated distribution - 10th to 25th percentile
Simulated distribution - 5th to 10th percentile
Simulated distribution - 1st to 5th percentile
Observations (median, 10th and 90th percentile
from 1000 interpolations)
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Figure3.4: Simulatedandobseredwinter rainfalls over GalwayBayarea,1990-1997 Thedistri-
butionsarebasedon 1000realisations.
]

theprocedureghatwasusedto fit amodelto thesedata,andillustratetheuseof orthogonakerieso
represensystematiaegional variations,asdescribedn Section2.4.4. We will notdiscussnodel
checkinghere:all of theissueshave beencoveredin CaseStudiesl and?2.

As mentionedn Section2.3.3,the joint modellingof meanandvarianceis computationally
expensve. Thisis aparticularproblemin this casestudy wherethedatasets large. As afirst step
to reducethe computationatlemandswe split the datasetnto 2 groups.Half of the 2,606weather
stationsweresampledandtheir datawereusedto fit the model. Datafrom theremainingstations
weresubsequentlysedin anindependeninodelvalidationexercise.

The'fitting’ datasetontains/33,16%bsenations.Thisis still large. Within the GLM frame-
work, typically we choosepredictorsby fitting differentmodelsand comparingthem. However,
becausef the computationakxpenseof fitting a joint mean/\ariancemodelto a datasebf this
size,it is notfeasiblehereto fit every possiblemodel(typically it takesbetweer4 and12 hoursto
fit any realisticmodel,usingan extremelypowerful Sun computer).In orderto simplify matters,
therefore we first usestandardnultiple regressiontechniquegwhich arecomputationallycheap)
to identify possiblepredictordor the meanpartof themodel.Next, we studythesquaredesiduals
from the resultingmultiple regressiormodelto identify predictorsfor the variance.We thenfit a
very large model,containingall of thesepossiblepredictors.Finally, we deletegroupsof similar
termsfrom this large model, if they appeamunimportant. When choosingpredictors,we should
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rely on residualanalysesandinformal methodsyatherthanuponformal hypothesigests.This s
becausehe datasets solarge herethatarny formaltestis likely to highlight very small effectsas
statisticallysignificant,evenif they areof no practicalimportance.

In this casestudy orthogonakerieshave beenusedto represensystematiaegionalvariability
in temperaturesAs mentionedn Section2.4.4,a potentialdisadwantageof the orthogonalseries
approachs thatit mayrequirealot of parameterso represenaneffect. Thenumberof parameters
increaseswith the compleity of the function being represented.lt is likely that the dominant
effects of spatiallocation upontemperatureare thoseof latitude and altitude. In orderto keep
model compleity to a minimum, we thereforeincorporatesite altitude as a predictor andthen
useorthogonalunctionsof latitudeandlongitudeto represenary remainingregional variability.
Hopefully, this remainingvariability will bereasonablygmooth.

In orderto usean orthogonalseriesrepresentationwe needto specifyaninterval (a, b) over
which this representatioms valid. Orthogonalserieswill usuallyprovide anaccurateapproxima-
tion to ary function, exceptnearthe endsof the choseninterval. This suggestshat we should
chooser andb to bewell outsidetherangeof the availabledata.However, if we did this we could
not considerthe availablevaluesto be uniformly distributedover (a, b), which is necessaryn or-
derfor theresultingpredictorsto be approximatelyuncorrelatedTherefore jn practicewe should
choosethe interval to be slightly wider thanthe rangeof the data. For this study we represent
longitudeeffectsovertherange—130° to —60°, andlatitudeeffectsovertherange20° to 50°. The
regionis shovn in Figure3.5.

Over the rangeof latitudesconsiderechere,temperaturegncreaseon averagefrom North to
South. This suggestshatthe effect of latitudemay berepresentedsinga low-orderpolynomial.
TheLegendrepolynomialsform anorthogonabasisandsowe have usedthese Polynomialsupto
degreed have beeninvestigatedDegree4 offeredno improvementover degree3, andaccordingly
latitudeis representedia the 3 predictors

LAT  —  (Latitude— 35)/15
A _ (3 ( 1LAT)2 B 1) /2
andg?fAT _ (5 ( {;AT)?’ . 3C{;AT> /2.

Thechoiceof abasisfor representingpngitudeeffectsis notsoobvious. Theonly thingwe can
doistotry differentbasesandseewhich produceghebestmodel.In this study weinvestigatedhe
useof Legendrepolynomialsup to degree8, anda Fourierrepresentationsingthefirst 5 Fourier
frequencies After droppinginsignificanttermsfrom the models,their performancevasvirtually
indistinguishableHowever, the Fourierbasednodelcontainedewer terms. This is thereforethe
preferredbasis,andlongitudeeffectsarerepresentedsingthefunctions

CLONG _ {
j

Whenusing Fourier seriesto represent function over aninterval, we shouldremembethat

cos (% X Iongitude) 1=1,3,5,7.

sin (97—’5 X Iongitud@ j=2,4,6,8.
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Figure3.5: Systematicegionalvariationof temperaturesverthe USA, representetly orthogonal
basisfunctionsof latitudeandlongitude,andtheir interactionswith seasonapredictors.Contour
unitsaredegreesFahrenheit.

Fourier seriesareperiodic. If f(.) is the Fourier seriesrepresentationf a function f(.) overthe
intenal (a, b), then f(a) = f(b). The Fourier basisshouldthereforeonly be usedin situations
whereit is reasonabléo assumehat f(a) and f (b) areapproximatelyequal.

In Section2.4.4,we saidthatto representhe systematiozariationof temperaturevith latitude
andlongitude,it is necessaryo includethe (£4T's, (LONGs andtheir interactionsinto the model.
Usually, mary of theinteractionswill beinsignificantandcanbedeletedrom themodel.However,
to startwith we mustconsiderall of them.

At acontinentalkcale regionaltemperaturgatternswill varywith seasonThereforewe need
to includeinteractionsdbetweerthe (s andthe seasonapredictorsin the model. As in CaseStudy
2, seasonalitynay be representedby sineandcosinefunctions. We canusethe interactionsn a
modelto shav the systematiaegionalvariationin US temperaturesr eachmonth. If we take ary
GLM, andextractthetermscorrespondingo seasonalityregionalvariationandtheir interactions,
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we obtaina function of latitude,longitudeandtime of year This representan averagedeviation
from somebaseline,whoselevel is determinedby the remainingtermsin the model. In each
month, the seasonapredictorstake differentvalues,and hencethe coeficients associatedvith
eachof the (s for thatmonthcanbe calculated.The resultingfunction of latitudeandlongitude
canthenbe plotted. The functionsdefinedin our modelfor y; are plotted, for eachmonth,in
Figure 3.5 (note that the effect of altitude is omitted from thesemaps). The ideais exactly the
sameasthatusedto produceFigure3.1in CaseStudy2. The dominantfeaturein thewinteris a
North-Southtemperaturgradient.In the summeythe desertregionsin the WesternUSA become
very hot. This resultis not very exciting scientifically but it doesindicatethe ability of the GLM
approacho represenknown climatepatterns.

Therearenolarge-scaleclimateindicesin thetemperaturenodelsconsideredhere. Themodel
for meantemperatureontainsl12 predictors,of which 99 arerequiredto definethe structurein
Figure3.5. Thevariancemodelcontains27 predictors,of which 23 represensystematiaegional
effects (the remaining4 representseasonalbariation). In a climatological study the resulting
modelcould betreatedasa base:predictorsrepresentinglimatologicalvariablescould be added
to assestheirsignificanceandimpacts.Maps,suchasthosein Figure3.5,couldbeusedto display
theimpactsat differenttimesof year

3.1.3 Casestudy 4

We have now illustratedmostof theimportantareasn which GLMs canbeappliedto climatology
Thefinal casestudygivesyou anopportunityto try out someof theseideasfor yourself.

In Section2.3.4,we decidedhatthesewindspeedlatacouldbemodelledusingagammaGLM.
In principle,this couldbe doneusingR asin CaseStudy1. However, the datasets fairly large (it
contains125,181obsenations),andfitting GLMs in R canbe slow for large datasetsHere,we
will usea suiteof FORTRAN programsto fit models. Theseprogramsfit gammadistributions,
and logistic regressionmodels— originally, they were written for daily rainfall modellingand
usedto analyseCaseStudy?2. Detailsof how to obtainthe programsmay be foundin Appendix
A.2. The softwarewill needto be installedand compiledbeforeyou cantry this casestudyfor
yourself.OnaUnix systemthe compilationwill produceanexecutablecalledfit _gammwhich
is the programwe will useto fit gammaGLMs.

The GLM fitting programsrequirea numberof input files. Theseare all describedin the
softwaredocumentationThefirstis adatafile whichmaybedownloadedrom thewebsitefor this
lectureseriesasdescribedn Section2.3.4. The otherrequiredfiles aresiteinfo.def , Which
containsdetailsof site locations;mnpreds.dat , which is usedto definemonthly ‘external’
predictorg(here,we just provide NAO data,asanexample);anda modeldefinitionfile. All of the
files maybedownloadedrom thewebsite.A numberof modeldefinitionfilesareincluded.These
illustratehow we may build up a GLM graduallyfrom afew ‘obvious’ predictors.

The simplestpossiblemodelfor this studyis the onein which all obsenationscomefrom the
samegammadistribution. In thismodel,E (Y;) = u;, suchthatln yu; = 5, for all . Thedefinition
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Results  after 9 iterations:

Log-likelihood - -76773.038

Number of observations - 125181

No. of parameters estimated - 1

Nuisance parameter (NU) - 5.321411 (ML estimate is

Final parameter estimates:

Main effect:; Coefficient Std Err

Constant 1.899159 0.0012

Spatial  dependence structure:

Structure used is Independence

RESIDUAL ANALYSIS

Mean of observations: 6.680

Standard deviation of observations: 2.896

Mean error (observed - predicted): 0.000

Root mean squared error: 2.896

Proportion of variance explained by model: 0.000

Mean Pearson residual: 0.000

Standard deviation of Pearson residuals: 0.433

Expected std dev of Pearson residuals: 0.433

Mean Anscombe residual: 0.9792 (expected: 0.9791)

Std Dev of Anscombe residuals: 0.1441 (expected: 0.1445)

Figure3.6: Exampleof outputfrom gammaGLM fitting program(simplemodelwith no predictors
excepta constant).
|
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Model | File Predictorsin model

0 model _0.def Constanbnly

1 model _1.def Constant+ autocorrelationin (1 +Y;_;) forj =1,2,3

2 model _2.def As modell, + seasonatycle

3 model _3.def As model2, + linearfunctionsof latitudeandlongitude
4 model _4.def As model3, + autocorrelation/seasonateractions

5 model _5.def As model4, with someinsignificantinteractiongemoved
6 model _6.def As model5, + site/seasonahteractions

7 model _7.def As model5, + site/autocorrelatiomteractions

8 model _8.def As model7, with someinsignificantinteractiongemoved
9 model _9.def As model8, + NAO

10 model _10.def As model9, + NAO/siteinteractions

11 model _11.def As model9, + NAO/seasondhteractions

12 model _12.def As modelll, + NAO/site/seasonahteractions

13 model _13.def As modelll, + lineartrend

14 model _14.def As model13, + trend/siteinteractions

15 model _15.def As model14, + trend/seasonahteractions

16 model _16.def As model14, + trend/site/seasonaiteractions

17 model _17.def As model14, including spatialdependence

Table 3.3: Descriptionof modelsfor which definitionfiles areprovided, for usewith CaseStudy
4,
|

file for this modelmodel _0.def . To fit this model,copy model _0.def to gammamdl.def
andrun thefitting program. Someimportantpartsof the outputareshavn in Figure3.6. These
includethelog-likelihoodfor thefitted model,thenumberof obsenations the parameteestimates
andsomeresidualanalyses.The estimateof /3, is 1.899. This correspond$o a meanwindspeed
of ¥ = 6.679ms 1. Thefull outputcontainsfurtherresidualanalyseswhich areomittedhere
for reason®f spaceUseCaseStudy2 asa guidewheninterpretingtheseanalyses.

The model fitting programcontainsa numberof outputfiles. Theseare describedin the
software documentation.The importantonesare gammamdl.res , which containsresults,and
gammamadl.de2 , which is a model definition file correspondingo the fitted modef. If we
now want to extend the model by adding extra predictors,we can copy gammamdl.de2 to
gammamdl.def , add someextra lines correspondingo the extra predictors,andfit the new
model.

°Thefile anscombe.ps mayalsobe produced This producesa normalprobability plot of Anscomberesiduals.
However, this maybeincorrectandshouldbeignored! UseR to producenormalprobability plots.
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To give someideaof atypical sequencef modelsfor this dataset,17 modeldefinition files
have beenprovided. The modelsaresummarisedn Table3.3. Notethefollowing:

1. Thefirst predictorsto be addedare thoserepresentingautocorrelation. This is extremely
important,becausdik elihoodscanonly be usedto comparemodelsthathave beenfitted to
the samedatavalues.In Model 1, we canonly fit modelsto casesvherethe valuesof each
of the 3 previous Y valuesareknown. Sincesomedataare missing,we thereforehave to
discardsomedaysfrom the databaseo fit the model,andthe samplesizedecreaseffrom
125,181to 123,311). Therefore,we cannotcomparethe likelihood from Model 1 to that
from Model 0. However, all remainingmodelswill befitted to the samedataasModel 1, so
comparisonganbe madebetweernthese.

2. After accountingfor autocorrelationwe add predictorsrepresentingseasonalityand site
effects. Fromthe preliminaryanalysisin Section2.3.4,theseobviously affect windspeed.
Thelinearrepresentatioof site effectsseemsgeasonablefrom Figure2.7.

3. Thegeneraprocedurdor dealingwith interactionds to adda groupof thematatime, then
deletethe onesthatappeaitinsignificant.

4. Model 8 is a‘baseline’model,thatis deemedo accountfor seasonalityregional variability
and autocorrelation. We can investigatequestionsof climatologicalinterest,suchasthe
effectof the NAO, by comparingextendedmodelswith this baseline.

5. Model 17 is the sameas Model 14, exceptthat the fitting programwill alsoestimatethe
correlationsbetweenAnscomberesidualsat eachpair of sites. Theseare storedin file
cor _gamm.dat , and may be usedsubsequentlyo simulatecorrelateddaily windspeed
sequenceatthese sites,if desired.Thesimulationprogramsuppliedwith the softwarecan
beusedto achieve this.

We will notdiscusghis casestudyary further It is almosttime for the statisticianto stop,and
for the climatologiststo take over!

3.2 Other statistical methods

In theselectures,we have focuseduponthe useof GLMs to analyseclimate data. Thereare, of
course mary otherstatisticalmethodshatarecommonlyusedin climatology In this sectionwe
summarisesomeof theseto placethe GLM methodologyin context.

3.2.1 Extremevaluetheory

In mary applicationsye areinterestedn studying‘extreme’events,sincetheseoftenhave alarge
impactuponsociety In CaseStudy?2, for example,we studiedthe probability of severeflooding
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in Irelandby building a GLM for daily rainfall, andsimulatingthis to estimatethe probability of
largefloodsrecurring.

Usually, extremeeventsare studiedusing ExtremeValue Theory This may involve eitherof
thefollowing techniques:

1. Splitadatasetnto K time periodseachof which containsa‘large’ numberof obsenations.
Extractthe largestobsenation from eachtime period,andfit a Generalised&ExtremeValue
(GEV) distribution to the resultingsampleof K maxima. For daily data,we will typically
take ayearto bethebasictime periodsothatwe arefit distributionsto theannualmaximum
values.Fromthesedistributions,we candeducestatementsuchas‘the probability thatthe
maximumdaily rainfall this yearwill exceedy is 0.01’, for somethresholdy.

2. Consideljustthoseobsenations(y,, . . ., ¥, say)thatexceedsomelargethresholdr, andfit
a GeneralisedParetoDistribution (GPD) to the thresholdexceedanceg, — 7, ..., 9, — 7.
Again, thefitted distribution canbe usedto make probability statementaboutlarge values.

Thesetechniquesare both baseduponlarge-sampleheory(and,in fact, are equivalentfrom
a theoreticalpoint of view). Under very generalconditions,the maximum of a large number
of identically-distriutedrandomvariableshasa GEV distribution, regardlessof the distribution
of the individual variables. A similar resultjustifiesthe useof the GPD in modellingthreshold
exceedances.Theseresultsare similar to the CentralLimit Theorem,which suggestghat we
shouldusethe normaldistributionto model‘averages’.

Historically, the methodof momentqseeSectionl.4.3)hasoftenbeenusedto fit distributions
in extremevalueanalysesln modernstatisticalpractice however, maximumlik elihoodis usually
used. Using maximumlik elihood, it is possibleto incorporatepredictorsinto the fitted distribu-
tions,andto assesshe significanceof thesepredictorsusinglik elihoodratio tests.This allows us
to assesshe effectsof predictorsuponextremesdirectly (in a GLM, we have to studyextremes
by simulatingmodelsthat arefitted to all of the data),which canbe very usefulif we areonly
interestedn extremeevents.

Themainadwantageof ExtremeValueTheoryis thatwe donothaveto chooseadistributionfor
thevariableof interest.It is known thatthe GEV distributionis theonly possibledistributionfor the
maximumof alarge numberof obsenations,andthatthe GPDis theonly possibledistribution for
thresholdexceedancesBYy fitting thesedistributions,we arecanthereforebereasonablyonfident
thatour estimateof extremeeventprobabilitieswill befairly accurate By contrast,f we derive
extremeeventprobabilitiesby simulatinga GLM, we needto be extremelycarefulthatthe model
structures correct.

ExtremeValueTheorydoeshave somedravbacks.Thesearemostly associatedavith the need
to fit distributionsto asmallsubsebdf theavailabledata,andwith difficultiesin applyingthetheory
to datafrom morethanonesite. If we fit distributionsto annualmaxima,or to obsenationsthat
exceedsomehigh threshold,thenour samplesize will be greatlyreduced.As a result,we may
notbeableto detectweakrelationshipsamongvariables Also, notethatwe canonly useExtreme
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Value Theoryif the quantity of interestis an extremeeventover a relatively smalltimescale.In
CaseStudy 2, for example,we wereinterestedn large winter rainfalls. To performan Extreme
Value Analysisof winter rainfall, we would needwinter rainfall datafor mary years,sothatwe
couldextractthe‘large’ valuesandstill have enoughdatato fit a distribution.

In summary: ExtremeValue Theory is very useful for situationswhere extremesof direct
interest. Whenits useis appropriatejt will probablyestimateextremeevent probabilitiesmore
accuratelythana GLM. However, it is notalwaysappropriateandthe needto discardmostof the
databeforefitting distributionsmeanghatweakclimatologicalrelationshipsnay not be detected
using this technique. Ideally, any analysisof extremeswould combineboth an ExtremeValue
Analysis,anda GLM.

3.2.2 Multi variate techniques

It is probablyfair to say that multivariatetechniquesare currently the most popular statistical
methodsn the climatologicalliterature. Suchtechniquesnclude Principal Component#nalysis
(PCA, alsoknown as ‘Empirical OrthogonalFunctions’,and effectively the sameasa Singular
Value Decompositionjand CanonicalCorrelationAnalysis (CCA). All of themare designedor
the analysisof high-dimensionatlatasetsin climatology the high dimensionusuallyarisesfrom
thesimultaneousbsenationof asinglevariableata network of sites.For easeof presentationywe
will only discussPrincipal Component®nalysishere. The generacommentsapplyto all similar
methodshowever.

Supposene obsene valuesof a climatologicalvariable,at S sites. The obsenationsat ary
time canbe assemblednto an S-dimensionalectory, say andwe obsene valuesof this vector
overmary timepoints.If S islarge,it canbedifficult to visualiseall of theobsenations.However,
in mary applicationsyaluesfrom neighbouringsitesat the sametime will be very similar. This
meanghateachy vectoreffectively containsfar fewerthanS piecesof information,andsuggests
that we might searchfor a way of representinghe ys in a small numberof dimensions. PCA
is a methodfor achieving this, by transformingeachy vectorinto S new variables,which are
linear combinationsof its elements. Thesenew variablesare the principal componentof the
system.They aremutually orthogonaleffectively, this meanghatthey areuncorrelated)andare
chosenin sucha way that,in somesensethefirst j principal componentgjive the bestpossible
representatiomf the entire datasetn j dimensions.It may be possibleto interpreta principal
componentpy examiningthe weightsassociatedvith eachy valuein the linear transformation.
For example,we may conducta PCA of griddedglobalseasurfacetemperaturesandfind thatthe
secondprincipal componengllocateshigh weightto all grid nodesin the equatorialEastPacific,
andlow weight everywhereelse. In this case,we may be justified in interpretingthis asan ‘El
Nifio’ component.

This approachs very differentto the oneusedin Generalised.inear Modelling. In a GLM,
eachy would be regardedasthe realisedvalue of arandomvectorY . The correspondingnean
vectoru would bederivedfrom predictorsat eachsite,andthedependencbetweersitesmight be
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specifiedby studyingsomestructureamongsuitably-definedesiduals.

In comparingheapproachesjoticethatPCAis essentiallyadescriptvetechniquelts primary
aim s to reducea high-dimensionatataseto a few variables.Thereis no notion of probability
involved here(in fact, PCA canbe embeddedvithin the framewvork of a probability model, but
the theorybehindthis is comple< andthe modelsinvolved are not particularly helpful for mary
practicalapplications) Notealsothatthedefinitionof the principalcomponentss anartificial one,
madeon purelymathematicafjrounds.lt is temptingto try andascribeameaningfulinterpretation
to eachof the principal component®f a system(aswith the El Nifio exampleabove). However,
theclimateis acomplex systemandnobodyreally believesthatit canberegardedasa collection
of uncorrelatedvariables! For this reason,it is potentially dangerougo seekinterpretationsof
principalcomponents.

The GLM approachasthe advantagethatit modelsclimatevariabledirectly, therebyavoid-
ing theatrtificiality of the PCArepresentationMoreover, uncertaintyin aGLM is easilyquantified
becauset is a probability-basedramevork. In any PCA, we oughtto ascribesomeuncertainty
to the weightsin eachlinear combination,sincethesewill changewith the time period usedfor
analysis.However, thisis rarely (if ever) done— theresultis to underestimatencertaintyin ary
analysisbasecbn PCA.

PCA canpotentially be very helpful for the climatologistusing GLMs. Supposewve wish to
usean entirefield of, say seasurfacetemperature$SSTs)to build a modelfor somevariableof
interest.We couldbuild a GLM containingeachof theindividual SSTvaluesaspredictors.How-
ever, this would leadto a hugemodel (and mary predictorswould appearinsignificant,because
the SSTvaluesat neighbouringsiteswould be highly correlated).In sucha situation,it may be
usefulto carry out a PCA of the SST field, and usea few principal componentsas predictors.
Thereis no guaranteehatthefirst principalcomponentsvill bethe onesmoststronglyassociated
with the variableof interest,soit may be necessaryo try a variety of differentmodelsusingthis
procedure However, it doesoffer the opportunityto reducea complex problemto a manageable
form. Alternatvesbasedon canonicakorrelationsarepossible.

In summary: from a statisticalperspectie, the applicationof most multivariatetechniques
in climatology shouldbe primarily descriptve, and overinterpretationof their outputshouldbe
avoidedwherepossible.In applicationsjt is moreinformatie to investigatevariablesof interest
directly, ratherthanvia anartificial constructiorthatis motivatedby mathematicaélegancerather
than practicalusefulness.The ability to reducethe numberof dimensionsn a large datasets
usefulhowever, andmaybe appliedto obtaina few predictorvariablesfrom alarge spatialfield.

3.2.3 Time seriesmodelling

When dataariseas sequencef time, it is commonto analysethem usingtime seriesmodels.
Thesearetypically baseduponthe Autoregressve-Moving Average(/ARMA) classof modelsand
its extensions.An ARMA model, for a stationarysequencef randomvariables(Y;), takesthe
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form ) .
Vi=p+Y ¢ (Yij—p)+e—Y Orers
j=1 k=1
for someparameterg, ¢y, ..., ¢,,04,...,0,. (¢;) hereis asequencef uncorrelatedidentically
distributedrandomvariableswith zeromean.
In an ARMA model,thevaluesof Y;_,,...,Y,_, ande;_4, ..., e, Will beknown attime t.

They canthereforeberegardedaspredictorsandwe canwrite

p q
EY Y1, ..., Yipera, - neq) =+ 0 (YVij— ) =D kv -
j=1 k=1
This takesthe form of a GLM, with the previous Y's andes as predictors. ThereforeARMA-
type time seriesmodelscanbe regardedas specialcasesof GLMs. Indeed,the classof GLMs
that includesprevious Y valuesas predictorsis sometimescalled the classof GENERALIZED
AUTOREGRESSIVE MODELS.

This descriptionappeardo trivialise the enormousamountof literatureon time seriesmod-
elling. However, therearemary issuesmainly regardingthetheoreticalpropertiesof models that
we have not mentionedn our discussiorof GLMs. If we really wantto understandhe structure
andimplicationsof our models,we needto addresgsheseissues.For the wider classof GLMs,
they arepoorly understood.In climatology the large size of datasetsneanshatthis lack of un-
derstandingnay be unimportant— ary sensiblemodel, fitted andchecled usinga large dataset,
is unlikely to have poorproperties We shouldbe avare,however, thatat presenthereis plenty of
theoreticawork to be done,whenusingGLMs to studytime series!

3.2.4 Stochasticmodels

Sofarwe have discussegburelystatisticatechniquesThesemaybe contrastedvith STOCHASTIC
MODELS, whoseaim is to give a simplified representationf a processn probabilisticterms. For
example,we know thatrain occursin ‘storms’. Within storms,local areasof convection (‘rain
cells’) produceenhancedainfall. The completemechanicof the rainfall processare extremely
complex. However, avery crudemodelfor arainfall sequenceatasiteis asfollows:

1. Stormoriginsfollow a PoissorProcesgseeSectionl.3.3).

2. Eachstormgivesriseto arandomnumberof rain cells,which arrive atthesitein asequence
afterthe stormorigin.

3. Eachcell hasarandomdurationandintensity

In orderto completethe descriptionof sucha model,we needto specifydistributionsfor the
numbersof cellsperstorm,andfor the cell durationsandintensities.The model’s parameterare
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physicallyinterpretablequantitiessuchasstormarrival rate,meannumberof cells per stormand
meancell duration.

It might appearthat sucha modelis far too simplistic to be useful. However, in practiceit is
found that this type of structurecando an extremelygoodjob of reproducingmary featuresof
obsenedrainfall sequencesjndera variety of differentclimateregimes. Stochastianodelsare
particularlyappropriatdor the generatiorof high-resolutiorsyntheticdata,whichis requiredin a
variety of applicationgnotablyin hydrology).

3.2.5 Bayesianmethods

In our discussiorof statisticalmodelling,we have adoptedthe view that modelsshouldbe fitted
by Maximum Likelihoodwheneer possible. This is basedon the ideathat, if we wish to usea
datavectory to learnaboutthe probability distribution that generatedt, Maximum Likelihood
estimatorsareoftenoptimalin varioussenses.

However, in mary situationswe may be able to do betterthanthis. The reasonis that our
knowledgeof a systemdoesnot just comefrom y. Pastexperiencewith similar data,andunder
standingof the processesvithin the system,may both give us someideaof realistic parameter
valuesbeforewe evenseethedata.A simpleexampleillustratesthis:

Example 3.2: Supposeve wish to find the probability thata coin comesdown headsvhenwe
tossit. To do this, we tossthe coin 100times,independently On theith toss,we recordY; = 1
if the coin shows a head,andO if it shavs atail. The Y's are thereforeindependenBernoulli
variableswith unknovn parametep.

Whenthe experimentis carriedout, we obsene valuesyy, . . ., 4100, andassembleéheminto a
vectory. Thelog-likelihoodfunctionfor p € [0, 1] is then

100

InL(ply) =Y mP(Yi=y)=> Inp+ > In(1—p)=zlnp+ (100 — z)In(1 —p),
i=1 yi=1 y;=0
wherez is thetotal numberof headsobsened. To maximisethelik elihood,we differentiatewith
respecto p andsetto zero:the maximumlik elihoodestimatas p = x/100, asexpected.

To expressour uncertaintyregardingthe value of p, we could estimatethe standarderror as-
sociatedwith p. However, asmentionedn Sectionl.4.3,it is moreaccurateo give a confidence
interval basednthelikelihood. A 95% confidencanterval is the setof valuesof p, for whichthe
null hypothesisH, : p = po is not rejectedat the 5% level. Usingthe usualtheoryfor likelihood
ratioteststhisis thesetof values{p, : 2 [In L(p|y) — In L (po|y)] < 3.84}, since3.84is theupper
5% pointof a x? distribution. Theendpointof thisinterval arethereforethevaluesof p, satisfying

x 100 — =
xln(m>+(100_x)]n( 100 )—fvlnpo—(lo(]—x)ln(l_po) = 1.92

z \°( 100-2z T 92
100py 100 (1 — po) N '
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Thesolutionsto this equationcanbe found straightforvardly usingnumericalmethods.

Supposeow thatwe carry out this experiment,andobsene 62 heads.We thereforecompute
p = 62/100 = 0.62, andthe 95% likelihood-baseaonfidenceinterval for p is (0.523,0.711).
However, mostpeoplewould not acceptthis. They would amguethatthetrue valueof p is ‘obvi-
ously’ 0.5, andthatthe resultsof this experimentaredueto chance— in effect, we have madea
Typel error(seeSectionl.4.2)in testingthe null hypothesisH, : p = 0.5 againsthealternatve
H, :p#0.5.

Thereasorfor thisreactionis thatwe have someprior understandingf the coin-tossingexper
iment. We have avery strongbeliefthatacoinis equallylik ely to shov headr tails. If we record
620 headsn 1000tossespr 620,000headsin 1,000,00tosseswe may suspecthatthe coinis
biased;however, we are unlikely to changeour prior belief on the basisof the resultsconsidered
here.Thelikelihoodanalysisgakesno accountof prior knowledge,sinceit usesonly the obsened
datafor the experiment. [ |

How canwe incorporateprior knowledgeof a parametewector@ into a statisticalanalysis?
Note first that we have someuncertaintyabout®@ (if we didn’'t, therewould be no needfor ary
analysis!). The naturalway to expressthis uncertaintyis via a probability distribution: we may
considerthat @ is itself a randomvectorwith densityr (6), say This is calledthe PRIOR DIs-
TRIBUTION of 8. Note, however, thatprobability statementsaboutd cannotbe interpretedn the
‘classical’ way. We cannotusuallyobtainmary differentvaluesof 8 by repeatingsomeexperi-
mentalargenumberof times.However, 7(6) doeshave anintuitiveinterpretationsinceit corveys
informationaboutuncertainty In Example3.2 above, we maychoosea prior distributionfor p that
is extremelyconcentrate@dbout0.5. An exampleis shavn in theleft panelof Figure3.7.

The effect of observingy is to modify our prior belief about@. Our modifiedbelief canbe
expressedy the conditionalprobability distribution of @ giveny. This conditionaldistributionis
calledthePOSTERIOR DISTRIBUTION for 8, andis denotedby 7 (8|y). By Bayes'Theorem(page
11),we have
f(y|6)7(6)

fy)

Here,f(y|0) isthedensityof y given#, andf (y) is theunconditionablensityof y (whichdepends
uponw(0), ratherthanupon@ itself). For the analysisof ary datasety, f(y) is fixed. It canbe
regardedasa constantchoserto ensurghattheposteriordensityintegratego 1 (sinceit represents
aprobability distribution). We thereforehave

™ (0ly) =

m(0ly) o f(y|6)7(6) , orequvalently m(6ly)x L(6|y)m(8),

whereL(0|y) is thelikelihoodfor 8 giveny (seepage30).

Thepointof all thisis thatthe posteriordistribution allows usto modify our prior belief using
theavailabledata.As we gathemoredata,the contritution of thelik elihoodwill tendto dominate
thatof theprior. As aresult,for very large datasetsinferencebasedon the posteriorwill oftenbe
very similar to thatbasedon the lik elihood. However, for smallor moderately-sizedatasetsthe
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Figure3.7: Left panel:a possibleprior distribution for the unknavn parametep in a coin-tossing
experiment(seeExample3.2). Right panel: the likelihood function for p when 62 headsare
recordedout of 100 tossesand the posteriordensitythat resultsfrom combiningthis with the
suggestegbrior. Thelikelihoodhereis definedup to a constanbf proportionality andis presented
onthesamescaleasthe posteriorfor easeof comparison.

prior caninfluenceresultsto a considerablextent. This is illustratedin the right-handpanelof
Figure3.7,wherethelik elihoodandposteriordensityare presentedor the coin-tossingexample
discussedabove. The strongprior information dominateghe results,andthe posterioris much
morein agreementvith our intuition thanthelik elihood.

Statisticalinferencebasedon posteriordistributionsis calledBayesiannference This caused
somecontroversyin the statisticalcommunityduring the 20th century mainly becausehe choice
of prior distribution was seenas subjectve. However, Bayesianmethodsare now generallyac-
ceptedsincethey canbevery powerful if appliedappropriately Theideahastremendougotential
in someareasof climateresearchwherealot of prior knowledgecanbeassimilatednto ananaly-
sis. Thereare,however, anumberof difficult issuesnvolved. In particular calculationof posterior
densitiesn realproblemsds usuallydifficult, andcomputationallydemandingMoreover, for large
datasetsuchasthoseconsideredn CaseStudies2, 3 and4 here,ary Bayesiarmanalysisis likely
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to be dominatedby the contribution of the likelihoodto the posteriordensity so that resultsand
conclusionsvould be very similar to thosewe have presentedlready

3.3 Relationshipswith physicaland dynamical modelling

The methodsdiscussedn theselectureshave all beenbasedon probability models. The useof
suchmodelsdoesnot meanthatwe regardthe climateas‘random’in the usualsenseof theword.
We regard our obsenationsasrealisedvaluesof randomvariables,but in this contet ‘random
variable’is aformal mathematicatonceptasdefinedin Sectionl.2.3.

As an alternatve to statisticalmodelling, we could study the climate as a systemwhich is
essentiallydeterministic. This is usually doneby writing down equationghat representwarious
laws governing the systems behaiour, and studyingthe evolution of the systemaccordingto
theseequations. We refer to suchan approachas ‘dynamical modelling’. Inevitably, thereis
somedegreeof approximationnvolvedin this, but therecanbelittle doubtthatthe more‘expert
knowledge’ canbe embeddedn a model,the betterit is likely to perform. Sinceclimatologists
areexpertson the climate, their climate modelsarelik ely to be betterthanthosedevelopedby a
statistician!Nonethelessjo climatemodelis perfect. Therewill alwaysbeuncertaintyandhence
the opportunityto incorporateprobabilitymodelling,in climateresearch.

The potentialfor incorporatingprobability into dynamicalmodelsis only just startingto be
recognised.We may begin to think abouthow to achiese this, using the framewvork setout in
Sectionl.4. Essentiallyadynamicaimodeltells uswhatto expectfrom asystem.This expectation
may be regardedasthe meanof a probability distribution. Thereis a clearconnectiorwith GLMs
here:ourobsenationsareregardedasdravn from someprobability distribution, whosemeanmay
be relatedto the valuesof variouspredictors. In a very simple casewe could take a dynamical
modelfor, say rainfall, andusethe modeloutputasa singlepredictorin a GLM. The GLM could
thenbe usedto expressthe uncertaintyin the system.

An interestingquestionthat ariseshereis: what type of probability distribution shouldwe
usein sucha scenario?To continuewith therainfall example: ‘statistical’ models,suchasthose
consideredn CaseStudy 2, typically usegammadistributions at a daily timescale. Would the
gammadistribution still be appropriatef we wereto usemesoscalenodel 24-hourforecastsas
predictorsin a GLM? If our dynamicalmodelis accuratethenits errorsover smalltime intervals
canprobablybe modelledusinga normaldistribution (sincethis hasapplicationgo ‘measurement
error’ problems— seeSectionl.3.4).Perhapsin the caseof rainfall, this normaldistribution may
be regardedasa Gammadistribution with a large shapeparametefseeSection1.3.5). If thisis
the case thenwe might expectthataswe useour mesoscalenodelto forecastrainfall at longer
andlongertime intenals, the increasinguncertaintymay resultin a steadyreductionin the shape
parameteof the gammadistributions. Thisis speculationhowever— andit makesno attemptto
dealwith the problemof forecastingdry’ intervalsin whichthereis norain.

Questiondik e thesecanonly be answeredhroughcollaborationbetweermeteorologistscli-
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matologistsandstatisticiansTo answetthemrequiresbothfamiliarity with probabilitytheory and
agoodunderstandingf theclimatesystem.

3.4 Possibilitiesfor the futur e

In theselectures,we have tried to illustrate how probability modelsmay be appliedin climate
research. From a climatological perspectie, the exampleshere are probablyrather simplistic.
However, we hopethatthey do at leastillustrate the potentialof modernstatisticalmethods.To
concludehelectureswe setout somepossibleareasvhereprobabilitymodellingmayusefullybe
appliedin climateresearch.

Thefirst areais in combiningstatisticaland dynamicalmodellingapproachesasoutlinedin
the previous section.Thiswould not necessarilaffect the ‘average’performancef climatemod-
els. However, the useof a probability-basedramevork would give us a realisticand structured
representationf uncertainty As we saidin Lecturel, we needto know how big our uncertainty
is, in orderthatwe know whetherit is important!

Thesecondareais in climatechangestudies.In CaseStudy2, we illustratedthe useof GLMs
to studychangesn the climateof anarea.Thesechangesareexpressedschangesn probability
distributions,ratherthanin meanclimate. This givesusafar morepowerful andflexible approach
thanmoretraditionalanalysedasedn monthly or annualmeanclimatedata.

The problemof downscalingGCM outputis onewhich recevesa lot of attentionin the hy-
drologicalandclimatologicalliterature. This particularprobleminvolvesan enormousamountof
uncertaintyevenwithoutaccountingor errorsin GCM output. Somecurrently-aailablemethods
do useprobability in someform, but mary do not. From the point of view of probability mod-
elling, thedownscalingproblemis actuallyratherdifficult, but alsovery interesting.This problem
is presentecsa challenge!

Finally, an applicationwhich may be of more relevanceto meteorologythan climatology is
forecasting. Thereis scopeboth for the incorporationof probability into forecastingmodels(as
alreadydiscussed)andfor the developmentof methodsfor assessinghe performanceof proba-
bility forecastsWe have mentionedsomeof theissuesnvolvedhere,in our discussion®f model
checkingfor GLMs. This areais the subjectof much currentresearchn the United States,in
particular

Thesahoughtsareinevitably arandomcollectionof itemsof personainterestitherearedoubt-
lessotherareasvhereprobabilitymayusefullybeappliedin climateresearchTheword ‘random’
hereshouldbeinterpretedn theusualsense!

3.5 Further reading

For further detailsof CaseStudy 2, seeWheateret al. (200®). This includesa descriptionof
theway in which spatialdependenceaybeincorporatedvhensimulatingfrom a GLM atseveral
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sites.Furthertechnicaldetails,includingcalculationof Anscombeaesidualpropertiesandmethods
for dealingwith ‘trace’ valuesmaybefoundin ChandleandWheater(1998:) andChandlerand
Wheater(1998). A usefulreferencedealingwith the impactof the North Atlantic Oscillation
uponEuropearprecipitationjs Hurrell (1995). TheNAO index usedin this studyis thenormalised
monthly pressuredifferencebetweenstationsin Iceland and Gibraltar definedby Joneset al.
(2997).

Theuseof probabilityplotsto checkdistributionsis astandardstatisticalprocedure Theuseof
techniquesuchasthe onepresentedn Table3.2is not, however. Suchtechniquesfor assessing
probability forecastswere largely developedin the meteorologicaliteraturethroughthe 1960s
and1970s,by Allan Murphy andco-workers. Dawid (1986) containsa goodovervien. Murphy
andEpstein(1967)is animportantreference.

We are not aware of other studiesthat useour approachto modellingtemperaturesn Case
Study3. However, themethodfor jointly modellingthemeanandvarianceof anormaldistribution
is describedn Chapterl0 of McCullaghandNelder(1989).

A goodmoderntext on ExtremeValueTheoryis Embrechtsetal. (1997).Althoughthisis pre-
dominantlytheoretical,it is very accessibl@ndgivesa thoroughoverview of the subject. Smith
(1989)illustratesthe useof the theoryto studytrendsin extremeozonelevels— this providesa
nice exampleof how the modernstatisticalapproachmay be appliedto ernvironmentalproblems.
StuartColes(currentlyatthe Universityof Bristol, UK) haswritten somesoftwarefor carryingout
extremevalueanalysis.This canbedownloadedrom http://www.sta ts .bris .ac. uk/” masgc/,
togethemwith a setof lecturenotesthatillustrateits use. The softwareis writtenin SPlus, which
is very similarto R. As provided, it doesnotrunin R, but smallmodificationsto the codeshould
fix this.

The useof multivariatetechniquesn climatologyis standard.We thereforegive a singleref-
erence: Krzanavski (1988) gives an excellent, and very readable,accountof the areafrom a
statisticalviewpoint. It givesa clearandbalancedaccountof the advantagesand disadwantages
associateavith a variety of methods.

For agoodintroductionto time seriesanalysis seeChatfield(1996). Thisbookcontainsa brief
outline of mary differenttime seriesmodellingtechniques Fahrmeirand Tutz (1994)give some
theoreticaldetailsof GeneralizedAutoregressve Models.

To date,the only climatologicalvariablefor which stochastionodelshave beenextensively
developedis rainfall. Recentdevelopmentsn this areaaresummarisedby Wheateretal. (200Qz),
andby Wheateretal. (200(0). Both of thesereferencegsontainextensve literaturesurweys.

A brief introductionto Bayesianmethodsis given in Chapterl5 of Rice (1995). A more
detailedsummaryof the areais the book by Gelmanet al. (1995),which is aimedprimarily ata
statisticalaudiencebut containssomeusefulmaterialthatis accessibléo non-statisticiansln the
climateliterature,Chandleretal. (2000)illustratetheuseof Bayesiammethodgo downscaleGCM
output.An alternatve probabilisticapproacho downscalingis presentedy Hughesetal. (1999).



Appendix A

Useful software

A.1 The Rprojectfor statistical computing

TheR packagevasintroducedn Lecture2, whereit wasusedperformsomesimpleanalysesand
fit someGLMs, in CaseStudyl. OntheR projectwebsite,the packagds describedasfollows:

“R is available as Free Software underthe termsof the Free Software Foundations
GNU GeneraPublicLicensein sourcecodeform. It compilesandrunsout of thebox
on a wide variety of UNIX platformsand similar systemg(including FreeBSDand
Linux). It alsocompilesandrunson Windows 9x/NT/2000andMacOS:

For more details, and to download the package, see the R project homepageat
http://www.R-project.org/

In Section2.7,avarietyof RcommandsverepresentedA coupleof otherpiecesof codemay
be helpful. Firstly, to illustrate how to drawv simple diagramshereis the codeusedto generate
Figurel.l:

#
# Draw the graph of a plausible probability density  function - use
# a gamma distribution for convenience, and put arrows on the axes
#

X <- seq(0,10,0.1)
fx <- dgamma(x,4,1) + 0.01

ylim <- c¢(-0.1*max(fx),1 2 *max (f x))

plot(x,fx,type= " ", axes=F, wd=2, xli m=(0, 10),y li m=yl imxl ab="", yl ab="")
text(9.5,ylim[1 1/ 2,"y",c ex=15)

text(0.6,0.95*y li m[2],"f (y)" ,cex=1.5)

arrows(0,0,10,0 | engt h=0.1)

arrows(1,ylim[1 ], 1, ylim[ 2] ,| engt h=0.1)

#

92
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# Now add a shaded polygon, with some text in it

#

ab <-c(3,6)

ba <- seqg(ab[2],ab[1] -0 .1)

absector <- dgamma(ba,4,1) + 0.01

abpoly <- list(x = c(ab,ba), y = ¢(0,0,absector) )
polygon(abpoly, col="grey ")

lines(x,fx,lwd= 2)

text(ab[1],ylim [} 2,"a" ,c ex=1.2 ,ad j= c( 0. 5, 0))
text(ab[2],ylim [1]) 2,"d" ,cex=1.2 ,ad j= c( 0. 5, 0))

text(mean(ab),m  ax(a bsect or)/ 2, "Shaded area\ncorrespo  nds to",cex=1.2)
text(mean(ab),m ax(absect or)/ 2.5, expressio n(P(a < Y <= b)),cex=1.2)

#

# And output to a Postscript file

#

dev.copy(postsc  ri pt," densi ty .p s",ho ri zont al =T, paper="a4")

dev.off()

Secondlytoillustratehow to addmathematicalabelsto plots, hereis thecodeusedio generate
Figurel.3.

#

# Initialise - set screen to 2x2, set up arrays of shape parameters
# and means, and set plotting ranges

#

par(mfrow=c(2,2 ))
nu <- ¢(0.5,1,2,5)

mu <- ¢(1,3)

xlim <- ¢(0,5)

ylim <- ¢(0,1.5)
xvals <- (1:1000)/200

#

# Now produce 1 plot for each shape parameter. Each plot contains 2
# lines - 1 for each value of mu. Also, plots get annotated with Greek
# letters.

#

for (k in nu) {
lambda <- k/mu[1]
gammden <- dgamma(xvals,k,1 /I anbda)
plot(xvals,gammd en,t ype="I" xlab="y"y lab="f (y)",
xlim=xlim,ylim =yl im,| wd=2)
lambda <- k/mu[2]
gammden <- dgamma(xvals,k,1 /Il anbda)
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lines(xvals,gamm den, It y=3,| wd=2)

title(substitute (nu == nuval,list(nuva I= k) ), cex.mai n=2)
legend(2.5,1,c(e Xpre ssio n(mu == 1),expression( mu == 3)),
lwd=c(2,2),lty =c(1, 3),c ex=1.5)
}
#
# And print to postscript file.
#

dev.copy(postsc  ri pt,” gammdens. ps",h oriz onta I=T ,p aper ="a4")
dev.off()

A.2 FORTRANModefor GeneralisedLinear Modelling

In Lecture 3, we useda suite of FORTRAN programsto fit gammaGLMs to daily data
from a network of sites. The FORTRAN source code for these programsis available
from http://www.ucl.ac.uk/ ~ucakarc/work /rai n_glm.html . Thedistributionis
zippedinto the singlefile rain _glm.zip . Downloadthis file, unzipit, readthe READMEHile,
andhopefullyeverythingwill beclear! Thesoftwarealsocontainssimulationroutineswhichwere
usedto generatehe syntheticdatain CaseStudy?2.
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