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Option 1: Finish now.Option 2: Pro
eed with le
ture.
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0. `Philosophy'Obje
ts of study:Various Hom(Y;X), say for X and Y s
hemes;! X and Y anabelian s
hemes (Grothendie
k);...! X a generi
ally smooth 
urve over Y = Spe
(ZS ), where ZS isthe ring of S integers for some �nite set S of primes.The last 
ase is the Diophantine geometry of 
urves: the study ofits S-integral points.aaWhen X is proje
tive, an S-integral point is the same as a rational point.
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Usual approa
h emphasizes the di�eren
es between three 
ases:genus zero, genus one, and genus � 2.However, we wish to fo
us on the parallels, espe
ially between(E; e);a 
ompa
t 
urve of genus one equipped with an integral point, and(X; b);a hyperboli
 
urvea equipped with an integral point.aThat is, X(C ) has a hyperboli
 metri
. Equivalently, X is genus zero minusat least three points, genus one minus at least one point, or genus � 2.
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I. Non-abelian des
ent(E; e) ellipti
 
urve over ZS . p prime not in S. T = S [ fpg.G := Gal( �Q =Q ). Kummer theory provides an inje
tionE(ZS)=pnE(ZS),!H1(GT ; E[Pn℄):BSD 
onje
tured an isomorphismE(ZS )
 Zp ' H1f (G; Tp(E))where Tp(E) := lim �E[pn℄is the p-adi
 Tate module of E and the subs
ript f refers to lo
al`Selmer' 
onditions.
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When X=ZS is a smooth hyperboli
 
urve and b 2 X(ZS), analogueof above 
onstru
tion isX(ZS ) �! H1f (G;Het1 ( �X;Zp))using the p-adi
 étale homologyHet1 ( �X;Zp) := �et;p1 ( �X; b)abof �X := X �Spe
(Q) Spe
( �Q ).Several di�erent des
riptions of this map.
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But in any 
ase, it fa
tors through the Ja
obianX(ZS )!J(ZS)!H1f (G; TpJ)using the isomorphism Het1 ( �X;Zp) ' TpJ;where the �rst map is the Albanese mapx 7! [x℄� [b℄and the se
ond is again provided Kummer theory on the abelianvariety J .Consequently, di�
ult to disentangle X(ZS ) from J(ZS ).E�orts of Weil, Mumford, Vojta.
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The theory of Selmer varieties re�nes this to a tower:...... H1f (G;U4)H1f (G;U3)?
H1f (G;U2)?

X(ZS ) �1 -
� 4

-
�3 -

�2 - H1f (G;U1)? = H1f (G; TpJ 
 Q p)where the system fUng is the Q p-unipotent étale fundamental group�u;Qp1 ( �X; b) of �X.
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Brief remarks on the 
onstru
tions.1. The étale site of �X de�nes a 
ategoryUn( �X; Q p)of lo
ally 
onstant unipotent Q p-sheaves on �X. A sheaf V isunipotent if it 
an be 
onstru
ted using su

essive extensions bythe 
onstant sheaf [Q p℄ �X .2. We have a �ber fun
torFb : Un( �X; Q p)!Ve
tQpthat asso
iates to a sheaf V its stalk Vb. ThenU := Aut
(Fb);the tensor-
ompatible automorphisms of the fun
tor. U is apro-algebrai
 pro-unipotent group over Q p .10



3. U = U1 � U2 � U3 � � � �is the des
ending 
entral series of U , andUn = Un+1nUare the asso
iated quotients. There is an identi�
ationU1 = Het1 ( �X; Q p) = V := TpJ 
 Q pat the bottom level and exa
t sequen
es0!Un+1nUn!Un!Un�1!0for ea
h n.
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For example, for n = 2,0!^2 V!U2!V!0;for a�ne X.When X = E n feg for an ellipti
 
urve E, this be
omes0!Q p(1)!U2!V!0:When X is 
ompa
t, we get0![^2V=Q p(1)℄!U2!V!0;where Q p(1),!^2 V
omes from the Weil pairing.
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4. U has a natural a
tion of G lifting the a
tion on V , andH1(G;Un) denotes 
ontinuous Galois 
ohomology with values inthe points of Un. For n � 2, this is non-abelian 
ohomology, andhen
e, does not have the stru
ture of a group.5. H1f (G;Un) � H1(G;Un) denotes a subset de�ned by lo
al`Selmer' 
onditions that require the 
lasses to be(a) unrami�ed outside a set T = S [ fpg, where S is the set ofprimes of bad redu
tion;(b) and 
rystalline at p, a 
ondition 
oming from p-adi
 Hodgetheory.
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6. The system� � �!H1f (G;Un+1)!H1f (G;Un)!H1f (G;Un�1)!� � �is a pro-algebrai
 variety, the Selmer variety of X. That is, ea
hH1f (G;Un) is an algebrai
 variety over Q p and the transition mapsare algebrai
. H1f (G;U) = fH1f (G;Un)gis the moduli spa
e of prin
ipal bundles for U in the étale topologyof Spe
(Z[1=S℄) that are 
rystalline at p.If Q T denotes the maximal extension of Q unrami�ed outside Tand GT := Gal(Q T =Q ), then H1f (G;Un) is naturally realized as a
losed subvariety of H1(GT ; Un).
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For the latter, there are exa
t sequen
es0!H1(GT ; Un+1nUn)!H1(GT ; Un)!H1(GT ; Un�1) Æ!H2(GT ; Un+1nUn)in the sense of �ber bundles, and the algebrai
 stru
tures are builtup iteratively from the Q p-ve
tor spa
e stru
ture on theHi(GT ; Un+1nUn)and the fa
t that the boundary maps Æ are algebrai
. (It isnon-linear in general.)So the underlying ar
himedean input is of Hermite-Minkowski type,leading to �nite-dimensionality of the Hi(GT ; Un+1nUn).
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7. The map �na = f�ng : X(ZS ) - H1f (G;U)is de�ned by asso
iating to a point x the prin
ipal U -bundleP (x) = �u;Qp1 ( �X; b; x) := Isom
(Fb; Fx)of tensor-
ompatible isomorphisms from Fb to Fx, that is, theQ p-pro-unipotent étale paths from b to x.For n = 1, �1 : X(ZS )!H1f (G;U1) = H1f (G; TpJ 
 Q p)redu
es to the map from Kummer theory. But the map �n forn � 2 does not fa
tor through the Ja
obian. Hen
e, suggests thepossibility of separating the stru
ture of X(ZS ) from that of J(ZS ).
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8. If one restri
ts U to the étale site of Q p , there are lo
al analogues�nap : X(Zp)!H1f (Gp; Un)that 
an be expli
itly des
ribed using non-abelian p-adi
 Hodgetheory. More pre
isely, there is a 
ompatible family of isomorphismsD : H1f (Gp; Un) ' UDRn =F 0to homogeneous spa
es for quotients of the De Rham fundamentalgroup UDR = �DR1 (X 
 Q p; b)of X 
 Q p.UDR 
lassi�es unipotent ve
tor bundles with �at 
onne
tions onX 
 Q p, and UDR=F 0 
lassi�es prin
ipal bundles for UDR with
ompatible Hodge �ltrations and 
rystalline stru
tures.
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Given a 
rystalline prin
ipal bundle P = Spe
(P) for U ,D(P ) = Spe
([P 
B
r℄Gp);where B
r is Fontaine's ring of p-adi
 periods. This is a prin
ipalUDR bundle.The two 
onstru
tions �t into a diagramX(Zp) �nap- H1f (Gp; U)
UDR=F 0D ?

� nadr=
r -

whose 
ommutativity redu
es to the assertion that�DR1 (X
; b; x)
B
r ' �u;Qp1 ( �X; b; x)
B
r:
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9. The map �nadr=
r : X(Zp)!UDR=F 0is des
ribed using p-adi
 iterated integralsZ �1�2 � � ��nof di�erential forms on X, and has a highly trans
endental natural:For any residue disk ℄y[� X(Zp),�nadr=
r;n(℄y[) � UDRn =F 0is Zariski dense for ea
h n and its 
oordinates 
an be des
ribed as
onvergent power series on the disk.
19



10. The lo
al and global 
onstru
tions �t into a family of
ommutative diagramsX(ZS) - X(Zp)

H1f (G;Un)? lo
p- H1f (Gp; Un)? D- UDRn =F 0-

where the bottom horizontal maps are algebrai
, while the verti
almaps are trans
endental. Thus, the di�
ult in
lusionX(ZS ) � X(Zp) has been repla
ed by the algebrai
 map lo
p.
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II. Diophantine FinitenessTheorem 1 Supposelo
p(H1f (G;Un)) � H1f (Gp; Un)is not Zariski dense for some n. Then X(ZS ) is �nite.Theorem is a 
rude appli
ation of the methodology. Eventuallywould like re�ned des
riptions of the image of the global Selmervariety, and hen
e, of X(ZS) � X(Zp) by extending the method ofChabauty and Coleman and the work of Coates-Wiles, Kolyvagin,Rubin, Kato on the 
onje
ture of Bir
h and Swinnerton-Dyer.
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Idea of proof: There is a non-zero algebrai
 fun
tion �X(ZS ) � - X(Zp)

H1f (G;Un)
�nan ? DÆlo
p- H1f (Gp; Un)
�nap;n ?

Q p
9�6=0?

vanishing on lo
p[H1f (G;Un)℄. Hen
e, � Æ �nap;n vanishes on X(ZS ).But using the 
omparison with the De Rham realization, we seethat this fun
tion is a non-vanishing 
onvergent power series onea
h residue disk. 2 22



-Hypothesis of the theorem expe
ted to always hold for nsu�
iently large, but di�
ult to prove. For example, Blo
h-Kato
onje
ture on surje
tivity of p-adi
 Chern 
lass map, orFontaine-Mazur 
onje
ture on representations of geometri
 originall imply the hypothesis for n >> 0.That is, Grothendie
k expe
tedNon-abelian `�niteness ofX' (= se
tion 
onje
ture) )�niteness of X(ZS).Instead we have:`Higher abelian �niteness ofX' ) �niteness of X(ZS ).
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Can prove the hypothesis in 
ases where the image of G insideAut(H1( �X;Zp)) is essentially abelian. That is, when-X has genus zero;-X = E n feg where E is an ellipti
 
urve with 
omplexmultipli
ation;-(with John Coates) X 
ompa
t of genus � 2 and JX fa
tors intoabelian varieties with 
omplex multipli
ation. For example, Xmight be axn + byn = 
zn;for n � 4.In the CM 
ases, need to 
hoose p to split inside the CM �elds.
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Idea: Constru
t a quotient U!W!0and a diagramX(ZS) � - X(Zp)

H1f (G;Un)
�nan ? lo
p- H1f (Gp; Un)
�nap;n ? D- UDRn =F 0

H1f (G;Wn)? lo
p- H1f (Gp;Wn)? D- WDRn =F 0?
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su
h that dimH1f (G;Wn) < dimWDRn =F 0for n >> 0.When JX has CM, 
an 
onstru
t a `polylogarithmi
 quotient'aW = U=[[U;U ℄; [U;U ℄℄su
h that all CM 
hara
ters�i1�i2 � � ��inappearing in Wn=Wn+1 have multipli
ity one.aThe terminology is adopted by analogy with the quotient of the fundamen-tal group of P1 n f0; 1;1g that provides the natural setting for the theory ofpolylogarithms a

ording to Beilinson and Deligne.
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Elementary Iwasawa theory 
an be used to show thatH2(GT ; �i1�i2 � � ��in) = 0rather generi
ally, allowing us to 
ontroldimH1f (G;Wn) � nXi=1 dimH1f (G;W i=W i+1):

� nXi=1 dimH1(GT ;W i=W i+1)and show that it grows more slowly thandimWDRn =F 0:
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III. Preliminary remarks on non-abelian dualityAs far as the arithmeti
 of 
urves is 
on
erned one major goal ofthe theory is to give an expli
it des
ription ofX(ZS) � X(Zp):This should 
ome from a non-abelian lo
al-global duality togetherwith a non-abelian expli
it re
ipro
ity law.a Wish to provide a hintof this idea using a very spe
ial situation:X = E n feg;where EQ is an ellipti
 
urve su
h thatL(EQ ; 1) = 0; L0(EQ ; 1) 6= 0:Here, we will assume that E is in fa
t a minimal Z-model of EQand X = E n feg.aOf 
ourse both notions are highly spe
ulative at present.28



Choose S so that ES := E �Spe
(Z) Spe
(ZS ) is smooth. Ourassumptions imply that X(E)is �nite and rankE(Z) = rankE(ZS) = rankE(Q ) = 1;but still di�
ult to analyze the in
lusionX(Z) � E(Z):Some ar
himedean progress using Diophantine approximationsupplemented by LLL-algorithm. Here, we fo
us onnon-ar
himedean te
hniques and the in
lusionX(Z) � X(Zp):
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Pi
k a tangential base-point b 2 TeE and only use U2, identi�edwith its Lie algebra L2. L2 has a natural graded stru
tureL2 = L[1℄� L[2℄su
h that L[1℄ ' L1 ' V (E) and L[2℄ ' Q p(1) is theone-dimensional 
enter of L2. The group law on U2 
an be thoughtof as a twisted operation on L2 given bya(l1 + l2) � (l01 + l02) = l1 + l01 + l2 + l02 + (1=2)[l1; l01℄:The grading is 
ompatible with the Galois a
tion (in fa
t, with themotivi
 stru
ture): g(l1 + l2) = g(l1) + g(l2):aThis kind of stru
ture is often referred to as a Heisenberg group.
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If a is a 
o
hain on GT or Gp with values in U2, then we 
an writea = a1 + a2with a1 taking values in L[1℄ and a2 taking values in L[2℄. The
o
y
le 
ondition for the group law is written in terms of these
omponents as da1 = 0da2 = �(1=2)a1 [ a1;where the 
up produ
t of two 
o
hains � and � is de�ned by� [ �(g; h) = [�(g); g�(h)℄:
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We will 
onstru
t a fun
tion on H1f (Gp; U2) using se
ondary
ohomologi
al operations.Let 
 : GT!Q p be the log of the p-adi
 
y
lotomi
 
hara
ter and
p = 
jGp. Given a 
o
y
le � = �1 + �2 : Gp!U2, the fun
tion is, inessen
e, � 7! (
; �1; �1);where the bra
ket refers to a Massey triple produ
t, taking values inH2(Gp; L[2℄) ' Q p :This notion 
omes from rational homotopy theory, and is usuallyde�ned for 
ohomology 
lasses of an asso
iative di�erential gradedalgebra A.
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If [a℄ 2 H1(A); [b℄ 2 H1(A); [
℄ 2 H1(A)are 
lasses with the property that[a℄[b℄ = 0; [b℄[
℄ = 0;then we 
an solve the equationsdx = ab; dy = b
:We see then that x
+ ayis a 
o
y
le, de�ning a 
lass in H2(A). Note that the 
lass dependson the 
hoi
e of x and y, a de�ning system. Well-de�ned 
lass livesonly inside H2(A)=[aH1(A) +H1(A)
℄:
33



In our situation, the 
omplex of 
o
hains on Gp with values inQ p � L(1)� L(2)forms an asso
iative di�erential graded algebra. Given a 
o
y
le� = �1 + �2 : Gp!U2;we have [
p℄ [ [�1℄ = 0;sin
e H2(Gp; L(1)) = 0: Also,[�1℄ [ [�1℄ = 0;sin
e d(�2�2) = �1 [ �1:Therefore, we 
an form the Massey triple produ
t(
p; �1; �1) 2 H2(Gp; L[2℄)=[
p [H1(Gp; L[1℄)) + �1 [H1(Gp; L[1℄℄:Unfortunately, zero. 34



But note that this naive Massey produ
t does not use the full dataof � or the strength of our assumptions. Firstly, part of a de�ningsystem for the Massey produ
t is en
oded in �:d(�2�2) = �1 [ �1:Se
ondly, if [�℄ 2 H1f (Gp; U2), then [�1℄ 2 H1f (Gp; L[1℄) is in theimage of the lo
alization mapH1f (G;L[1℄) ' H1f (Gp; L[1℄):Hen
e, the equation dx = 
 [ �1makes sense globally.
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Key point:Using Using our restri
tive hypotheses, there is a global solutionxglob : GT!L[1℄to the equation dx = 
 [ �1:Uses the �niteness ofX and a generator for E(Z).
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Proposition 2 The 
lass p(�) := [lo
p(xglob) [ �1 + 
p [ (�2�2)℄ 2 H2(Gp; L[2℄)is independent of all 
hoi
es.Thus,  p : H1f (Gp; U2)!Q pis a well-de�ned algebrai
 fun
tion on the lo
al Selmer variety.Remark: The mapZ�p 
 Q p ' H1f (Gp; L[2℄),!H1f (Gp; U2)  p! Q pis the log map, and hen
e,  p is non-zero.
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De�ne (`re�ned Selmer variety')H1f;Z(G;U2) � H1f (G;U2)to be the interse
tion of the kernels oflo
l : H1f (G;U2)!H1f (Gl; U2)for all l 6= p.In fa
t, we have a 
ommutative diagramX(Z) � - X(ZS )

H1f;Z(G;U2)? �- H1f (G;U2)?

Joint work with A. Tamagawa. 38



Theorem 3 (lo
al-global duality) The mapH1f;0(G;U2) lo
p! H1f (Gp; U2)  p! Q pis zero.Proof is straightforward using the standard the exa
t sequen
e0!H2(GT ; Q p(1),!�v2T H2(Gv; Q p(1))!Q p!0:
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IV. Expli
it formulasChoose a Weierstrass equation for E and let� = dx=y; � = xdx=y:De�ne log�(z) := Z zb �; log�(z) := Z zb �;

D2(z) := Z zb ��;via (iterated) Coleman integration.
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Corollary 4 Suppose we have a point y 2 X(Z) of in�nite order.Then the set X(Z) � X(Zp)lies inside the zero set of the analyti
 fun
tionlog2�(y))(D2(z)� log�(z) log�(z))� log2�(z)(D2(y)� log�(y) log�(y)):A
tually,  p ÆD�1 Æ �naDR=
r;2 = Rese(vdx=y)�[D2(z)� log�(z) log�(z)� ( log�(z)log�(y) )2(D2(y)� log�(y) log�(y))℄;where dv = xdx=y.
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Remarks:-In parti
ular, the fun
tion(D2(z)� log�(z) log�(z))=(log�(z))2is 
onstant on the integral points of in�nite order.-Parts of this 
onstru
tion generalize to a�ne 
urves X of genusg � 2 whose Ja
obians have Mordell-Weil rank g.-Also to 
ompa
t 
urves X providedrankNS(JX) � 2:! Possibility of 
omputing points on 
urves of genus 2 with rank 2Ja
obians.
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