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0. ‘Philosophy’
Objects of study:
Various Hom(Y, X), say for X and Y schemes;

— X and Y anabelian schemes (Grothendieck);

— X a generically smooth curve over Y = Spec(Zg), where Zg is

the ring of S integers for some finite set S of primes.

The last case is the Diophantine geometry of curves: the study of

its S-integral points.?

@When X is projective, an S-integral point is the same as a rational point.




Usual approach emphasizes the differences between three cases:

genus zero, genus one, and genus > 2.

However, we wish to focus on the parallels, especially between
(E,e),

a compact curve of genus one equipped with an integral point, and

(X,0),

a hyperbolic curve® equipped with an integral point.

2That is, X(C) has a hyperbolic metric. Equivalently, X is genus zero minus

at least three points, genus one minus at least one point, or genus > 2.




I. Non-abelian descent
(F, e) elliptic curve over Zg. p prime not in S. T'= S U {p}.
G := Gal(Q/Q). Kummer theory provides an injection

E(Zs)/p"E(Zs)—H*(Gr, E[P™]).
BSD conjectured an isomorphism
E(Zs) © 7, ~ H(G,T,(E))

where

1,(E) = lim E[p")
is the p-adic Tate module of £ and the subscript f refers to local

‘Selmer’ conditions.




When X/Zs is a smooth hyperbolic curve and b € X (Zg), analogue
of above construction is

X(Zs) = Hj(G, HY' (X, Zy))

using the p-adic étale homology
H{ (X ,Z,) := P (X, b)e

of X := X XSpec() Spec(Q)

Several different descriptions of this map.




But in any case, it factors through the Jacobian

X(Zs)—J(Zs)—~H; (G, T,J)

using the isomorphism
H{' (X, Zp) = Ty, J,
where the first map is the Albanese map
z > [z] — [b)

and the second is again provided Kummer theory on the abelian
variety J.
Consequently, difficult to disentangle X (Zg) from J(Zg).

Efforts of Weil, Mumford, Vojta.




The theory of Selmer varieties refines this to a tower:

HY(G, Uy)

Y
HY(G, Us)

Y
HY(G, Uy)

v
X (Zs) - HYG,U1)= H}G,T,J ® Qp)

where the system {U,} is the Q,-unipotent étale fundamental group
W;L’Qp (X,b) of X.




Brief remarks on the constructions.

1. The étale site of X defines a category

Un(X,Q,)

of locally constant unipotent @Q,-sheaves on X. A sheaf V is
unipotent if it can be constructed using successive extensions by
the constant sheaf [Q,] 5.

2. We have a fiber functor

F, : Un(X,Q,)—Vectg,

that associates to a sheaf V its stalk V. Then
U = Aut®(Fp),

the tensor-compatible automorphisms of the functor. U is a

pro-algebraic pro-unipotent group over Q.




U=U'DU*>U’>---
is the descending central series of U, and
U, =U"™\U

are the associated quotients. There is an identification

U= HX,Q,) =V =T, Q,

at the bottom level and exact sequences
0—-U"tN\U"=U,—U,_1—0

for each n.
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For example, for n = 2,
0— A? V—=Uy—V —0,

for affine X.
When X = E'\ {e} for an elliptic curve E, this becomes

0—Q, (1)—=U;—V —0.

When X is compact, we get

0—=[A*V/Q,(1)]—=Us—V —0,

where
Q,(1)— A*V

comes from the Weil pairing.




4. U has a natural action of G lifting the action on V', and

H'(G,U,) denotes continuous Galois cohomology with values in

the points of U,,. For n > 2, this is non-abelian cohomology, and

hence, does not have the structure of a group.

5. H}(G, U,) C H'(G,U,) denotes a subset defined by local
‘Selmer’ conditions that require the classes to be

(a) unramified outside a set T'= S U {p}, where S is the set of
primes of bad reduction;

(b) and crystalline at p, a condition coming from p-adic Hodge
theory.




6. The system

o H i (G, Upy1)—H; (G, Up)—Hi (G, Up—1)— - -

is a pro-algebraic variety, the Selmer variety of X. That is, each
H }(G ,Uy,) is an algebraic variety over @, and the transition maps
are algebraic.

H}(G,U) = {H}(G,Un)}
is the moduli space of principal bundles for U in the étale topology
of Spec(Z[1/S]) that are crystalline at p.

If Qr denotes the maximal extension of Q unramified outside T’
and Gt := Gal(Qr/Q), then H}(G,U,) is naturally realized as a
closed subvariety of H(G7,U,).




For the latter, there are exact sequences

0—HYGr, U"™N\U™) = HY(Gr, Uy~ HY (G, Up_1) >

H2 (GT7 Un—l—l\Un)

in the sense of fiber bundles, and the algebraic structures are built

up iteratively from the Q,-vector space structure on the
Hi(GT, Un—l—l\Un)

and the fact that the boundary maps § are algebraic. (It is

non-linear in general.)

So the underlying archimedean input is of Hermite-Minkowski type,
leading to finite-dimensionality of the H*(Gr, U"T1\U™).




7. The map
K" = {kn}: X(Zs) — Hy(G,U)

is defined by associating to a point x the principal U-bundle

P(z) = W?’Qp (X;b,2) := Isom®(F, Fy,)

of tensor-compatible isomorphisms from Fj to F,, that is, the

Qp-pro-unipotent étale paths from b to x.

For n =1,
k1 X (Zs)—H(G,Ur) = Hi (G, T,J @ Qp)

reduces to the map from Kummer theory. But the map x,, for
n > 2 does not factor through the Jacobian. Hence, suggests the
possibility of separating the structure of X (Zg) from that of J(Zg).




8. If one restricts U to the étale site of QQ,,, there are local analogues
: X (Zp)—H}(Gp, Uy)

that can be explicitly described using non-abelian p-adic Hodge

theory. More precisely, there is a compatible family of isomorphisms

D: Hy(Gp,U,) ~US"/F°

to homogeneous spaces for quotients of the De Rham fundamental

group
UPH = nP(X ® Qp,b)

of X ® Q.

UPE classifies unipotent vector bundles with flat connections on

X ®Q,, and UPE/FY classifies principal bundles for UP# with

compatible Hodge filtrations and crystalline structures.




Given a crystalline principal bundle P = Spec(P) for U,
D(P) = Spec([P ® B.,|"),

where B, is Fontaine’s ring of p-adic periods. This is a principal
UP% bundle.

The two constructions fit into a diagram

X<Zp) — H}<GP7 U)

T
e

>
e, D

Y

UDR/FO
whose commutativity reduces to the assertion that

PR(X®;b,2) @ Bey W?’Qp (X;b,7) ® B,




9. The map
/{:lbg/cr : X(Zp)_)UDR/FO

is described using p-adic iterated integrals

/alaz...an

of differential forms on X, and has a highly transcendental natural:

For any residue disk |y[C X (Z,),

/i:lbg/cr,n(]y[) - UnDR/FO

is Zariski dense for each n and its coordinates can be described as

convergent power series on the disk.




10. The local and global constructions fit into a family of

commutative diagrams

X(ZS> X(Zp)

Y 1 \ 4
HY(G,U,) =% HXG,,U,) — UPE/F®

where the bottom horizontal maps are algebraic, while the vertical
maps are transcendental. Thus, the difficult inclusion
X(Zs) C X(Zy) has been replaced by the algebraic map loc,,.




II. Diophantine Finiteness

Theorem 1 Suppose

locp(H}(G, U,)) C H}(Gp, U,)

is not Zariski dense for some n. Then X (Zg) s finite.

Theorem is a crude application of the methodology. Eventually
would like refined descriptions of the image of the global Selmer
variety, and hence, of X(Zs) C X(Z,) by extending the method of
Chabauty and Coleman and the work of Coates-Wiles, Kolyvagin,
Rubin, Kato on the conjecture of Birch and Swinnerton-Dyer.




Idea of proof: There is a non-zero algebraic function «

X(Zs) <

vanishing on loc,[H }(G, U,)|. Hence, a0 k39, vanishes on X (Zg).

But using the comparison with the De Rham realization, we see

that this function is a non-vanishing convergent power series on

each residue disk. O




-Hypothesis of the theorem expected to always hold for n
sufficiently large, but difficult to prove. For example, Bloch-Kato
conjecture on surjectivity of p-adic Chern class map, or
Fontaine-Mazur conjecture on representations of geometric origin

all imply the hypothesis for n >> 0.
That is, Grothendieck expected

Non-abelian ‘finiteness of III’ (= section conjecture) =
finiteness of X (Zs).

Instead we have:

‘Higher abelian finiteness of IIT’ = finiteness of X (Zg).




Can prove the hypothesis in cases where the image of GG inside
Aut(H,(X,Z,)) is essentially abelian. That is, when

-X has genus zero;

-X = E'\ {e} where FE is an elliptic curve with complex

multiplication;

-(with John Coates) X compact of genus > 2 and Jx factors into
abelian varieties with complex multiplication. For example, X
might be

ar" + by" = cz",

for n > 4.

In the CM cases, need to choose p to split inside the CM fields.




Idea: Construct a quotient

and a diagram

X(Zs) <




such that

dimH (G, W,,) < dimW, " /F°

for n >> 0.

When Jx has CM, can construct a ‘polylogarithmic quotient’®
W =U/[[U,U],[U,U]]
such that all CM characters
Xi1 Xiz """ Xin,

appearing in W™ /W™ have multiplicity one.

The terminology is adopted by analogy with the quotient of the fundamen-
tal group of P!\ {0,1, 00} that provides the natural setting for the theory of

polylogarithms according to Beilinson and Deligne.




Elementary Iwasawa theory can be used to show that
HZ(GTa Xii Xig """ Xln) =0

rather generically, allowing us to control

dimH {(G,Wy) < > dimH (G, W' /W),

1=1

<Y dimH"(Gr, W!/W*)

1=1

and show that it grows more slowly than

dimW 2% /O,



III. Preliminary remarks on non-abelian duality

As far as the arithmetic of curves is concerned one major goal of

the theory is to give an explicit description of
X(Zs) C X (Zy).

This should come from a non-abelian local-global duality together
with a non-abelian explicit reciprocity law.* Wish to provide a hint

of this idea using a very special situation:
X = FE\{e},

where Eq is an elliptic curve such that

L(Eg,1) =0, L'(Eqg,1)#0.

Here, we will assume that E is in fact a minimal Z-model of Eg
and X = F \ {e}.

20f course both notions are highly speculative at present.




Choose S so that Eg := FE XSpec(z) Spec(Zg) is smooth. Our

assumptions imply that
II(E)

is finite and
rankF(Z) = rankFE(Zg) = rankE(Q) = 1,
but still difficult to analyze the inclusion
X(Z) C E(Z).

Some archimedean progress using Diophantine approximation
supplemented by LLL-algorithm. Here, we focus on

non-archimedean techniques and the inclusion

X(2Z) C X(Z,).




Pick a tangential base-point b € T, E and only use U,, identified

with its Lie algebra Lo. Lo has a natural graded structure
Lo, = L|1] ® L[2]

such that L[1] ~ L; ~ V(F) and L[2] ~ Q,(1) is the
one-dimensional center of L. The group law on Us can be thought

of as a twisted operation on Lo given by?

(I + 1)« (17 +15) =1 + 17+ 1o + 15+ (1/2)[11, 17].

The grading is compatible with the Galois action (in fact, with the

motivic structure):

g(ly +12) = g(l1) + g(l2).

aThis kind of structure is often referred to as a Heisenberg group.




If a is a cochain on Gt or G, with values in Uy, then we can write
a = a1+ a2

with aq taking values in L[1] and a5 taking values in L[2]. The
cocycle condition for the group law is written in terms of these
components as

da,l:O

dCLQ = —(1/2)&1 U ai,

where the cup product of two cochains ¢ and 7 is defined by

EUn(g, h) = [£(g), gn(h)].




We will construct a function on H }(Gp, Us) using secondary

cohomological operations.

Let ¢ : Gr—Q, be the log of the p-adic cyclotomic character and
c? = c|G,. Given a cocycle £ = &; + &2 : G,—Us, the function is, in

essence,
f — (C7 517 51)7

where the bracket refers to a Massey triple product, taking values in
H*(Gy, L[2]) = Q,.

This notion comes from rational homotopy theory, and is usually
defined for cohomology classes of an associative differential graded
algebra A.




It

a] € H'(A), [b] € H'(A),

are classes with the property that

then we can solve the equations
dx = ab, dy = bc.

We see then that

xrc—+ ay
is a cocycle, defining a class in H?(A). Note that the class depends
on the choice of z and y, a defining system. Well-defined class lives
only inside

H?*(A)/[aH"(A) + H'(A)c].




In our situation, the complex of cochains on G, with values in
Q ® L(1) © L(2)
forms an associative differential graded algebra. Given a cocycle
§=&+ & Gp—Us,
we have
PlU 6] =0,
since H*(G,, L(1)) = 0. Also,
&1 U 6] =0,
since d(—2&3) = & U &;.

Therefore, we can form the Massey triple product

(P, 61,€1) € H(Gp, L[2]) /[¢" U H(Gyp, L[1])) + & U H* (G, L[1]].

Unfortunately, zero.




But note that this naive Massey product does not use the full data
of £ or the strength of our assumptions. Firstly, part of a defining

system for the Massey product is encoded in &:

d(—282) = &1 U &

Secondly, if [¢] € H} (G, Uz), then [£1] € H;(Gp, L[1]) is in the
image of the localization map

H$(G, L[1]) = Hz(G,, L[1]).

Hence, the equation
dr = cU &

makes sense globally.




Key point:

Using Using our restrictive hypotheses, there is a global solution

29 Gp— L[]

to the equation
dxr = cU¢&;.

Uses the finiteness of III and a generator for E(Z).




Proposition 2 The class
p(€) = [locy (29°) U &1 + P U (—2&,)] € H*(GY, L[2))

18 independent of all choices.

Thus,
% : H} (Gp7 U2)_>@p
is a well-defined algebraic function on the local Selmer variety.

Remark: The map

% (o
Ly ® Qp H}(GP,L[Q])%H}(GP, Us) — Qp

is the log map, and hence, 1, 1s non-zero.




Define (‘refined Selmer variety’)
H} (G, Us) C H(G,Us)

to be the intersection of the kernels of

loc; : H}(G, UQ)—>H} (Gl, UQ)

for all [ # p.
In fact, we have a commutative diagram

X(2) —— X(Zs)

Joint work with A. Tamagawa.



Theorem 3 (local-global duality) The map

loc, Y
Hi o(G,Us) =" H{(Gp,Us) = Q,

18 Zero.

Proof is straightforward using the standard the exact sequence

0—H?*(Gr,Qy(1)= Dyer H*(Gy,Q,(1))—Q,—0.




IV. Explicit formulas

Choose a Weierstrass equation for £ and let

a=dx/y, B =xdx/y.

log,, (z) := /:a, logg(2) := /:B,

Dy (z) := /bz ap,

via (iterated) Coleman integration.




Corollary 4 Suppose we have a point y € X(Z) of infinite order.
Then the set
X(Z) ¢ X(Zp)

lies inside the zero set of the analytic function
logy, (¥))(D2(2) —log, (2) logg(2)) —logy, (2)(Da(y) —log, (y) logs ().

Actually,
Yp 0o D7 0 KR e = Rese(vdz/y)

[Da(2) — log, (=) log (2) - <i§§y§ )2(Ds(y) — loga () logs (1))

where dv = xdx/y.




Remarks:

-In particular, the function

(Da2(2) — log,(2)logg(2))/(log, (2))*

is constant on the integral points of infinite order.

-Parts of this construction generalize to afline curves X of genus
g > 2 whose Jacobians have Mordell-Weil rank g.

-Also to compact curves X provided

rankNS(Jx) > 2.

— Possibility of computing points on curves of genus 2 with rank 2

Jacobians.




