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Option 1: Finish now.Option 2: Proeed with leture.
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0. `Philosophy'I. Non-abelian desentII. Diophantine �nitenessIII. Preliminary remarks on non-abelian dualityIV. Expliit formulas.
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0. `Philosophy'Objets of study:Various Hom(Y;X), say for X and Y shemes;! X and Y anabelian shemes (Grothendiek);...! X a generially smooth urve over Y = Spe(ZS ), where ZS isthe ring of S integers for some �nite set S of primes.The last ase is the Diophantine geometry of urves: the study ofits S-integral points.aaWhen X is projetive, an S-integral point is the same as a rational point.
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Usual approah emphasizes the di�erenes between three ases:genus zero, genus one, and genus � 2.However, we wish to fous on the parallels, espeially between(E; e);a ompat urve of genus one equipped with an integral point, and(X; b);a hyperboli urvea equipped with an integral point.aThat is, X(C ) has a hyperboli metri. Equivalently, X is genus zero minusat least three points, genus one minus at least one point, or genus � 2.
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I. Non-abelian desent(E; e) ellipti urve over ZS . p prime not in S. T = S [ fpg.G := Gal( �Q =Q ). Kummer theory provides an injetionE(ZS)=pnE(ZS),!H1(GT ; E[Pn℄):BSD onjetured an isomorphismE(ZS )
 Zp ' H1f (G; Tp(E))where Tp(E) := lim �E[pn℄is the p-adi Tate module of E and the subsript f refers to loal`Selmer' onditions.
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When X=ZS is a smooth hyperboli urve and b 2 X(ZS), analogueof above onstrution isX(ZS ) �! H1f (G;Het1 ( �X;Zp))using the p-adi étale homologyHet1 ( �X;Zp) := �et;p1 ( �X; b)abof �X := X �Spe(Q) Spe( �Q ).Several di�erent desriptions of this map.
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But in any ase, it fators through the JaobianX(ZS )!J(ZS)!H1f (G; TpJ)using the isomorphism Het1 ( �X;Zp) ' TpJ;where the �rst map is the Albanese mapx 7! [x℄� [b℄and the seond is again provided Kummer theory on the abelianvariety J .Consequently, di�ult to disentangle X(ZS ) from J(ZS ).E�orts of Weil, Mumford, Vojta.
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The theory of Selmer varieties re�nes this to a tower:...... H1f (G;U4)H1f (G;U3)?
H1f (G;U2)?

X(ZS ) �1 -
� 4

-
�3 -

�2 - H1f (G;U1)? = H1f (G; TpJ 
 Q p)where the system fUng is the Q p-unipotent étale fundamental group�u;Qp1 ( �X; b) of �X.
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Brief remarks on the onstrutions.1. The étale site of �X de�nes a ategoryUn( �X; Q p)of loally onstant unipotent Q p-sheaves on �X. A sheaf V isunipotent if it an be onstruted using suessive extensions bythe onstant sheaf [Q p℄ �X .2. We have a �ber funtorFb : Un( �X; Q p)!VetQpthat assoiates to a sheaf V its stalk Vb. ThenU := Aut
(Fb);the tensor-ompatible automorphisms of the funtor. U is apro-algebrai pro-unipotent group over Q p .10



3. U = U1 � U2 � U3 � � � �is the desending entral series of U , andUn = Un+1nUare the assoiated quotients. There is an identi�ationU1 = Het1 ( �X; Q p) = V := TpJ 
 Q pat the bottom level and exat sequenes0!Un+1nUn!Un!Un�1!0for eah n.
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For example, for n = 2,0!^2 V!U2!V!0;for a�ne X.When X = E n feg for an ellipti urve E, this beomes0!Q p(1)!U2!V!0:When X is ompat, we get0![^2V=Q p(1)℄!U2!V!0;where Q p(1),!^2 Vomes from the Weil pairing.
12



4. U has a natural ation of G lifting the ation on V , andH1(G;Un) denotes ontinuous Galois ohomology with values inthe points of Un. For n � 2, this is non-abelian ohomology, andhene, does not have the struture of a group.5. H1f (G;Un) � H1(G;Un) denotes a subset de�ned by loal`Selmer' onditions that require the lasses to be(a) unrami�ed outside a set T = S [ fpg, where S is the set ofprimes of bad redution;(b) and rystalline at p, a ondition oming from p-adi Hodgetheory.
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6. The system� � �!H1f (G;Un+1)!H1f (G;Un)!H1f (G;Un�1)!� � �is a pro-algebrai variety, the Selmer variety of X. That is, eahH1f (G;Un) is an algebrai variety over Q p and the transition mapsare algebrai. H1f (G;U) = fH1f (G;Un)gis the moduli spae of prinipal bundles for U in the étale topologyof Spe(Z[1=S℄) that are rystalline at p.If Q T denotes the maximal extension of Q unrami�ed outside Tand GT := Gal(Q T =Q ), then H1f (G;Un) is naturally realized as alosed subvariety of H1(GT ; Un).
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For the latter, there are exat sequenes0!H1(GT ; Un+1nUn)!H1(GT ; Un)!H1(GT ; Un�1) Æ!H2(GT ; Un+1nUn)in the sense of �ber bundles, and the algebrai strutures are builtup iteratively from the Q p-vetor spae struture on theHi(GT ; Un+1nUn)and the fat that the boundary maps Æ are algebrai. (It isnon-linear in general.)So the underlying arhimedean input is of Hermite-Minkowski type,leading to �nite-dimensionality of the Hi(GT ; Un+1nUn).
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7. The map �na = f�ng : X(ZS ) - H1f (G;U)is de�ned by assoiating to a point x the prinipal U -bundleP (x) = �u;Qp1 ( �X; b; x) := Isom
(Fb; Fx)of tensor-ompatible isomorphisms from Fb to Fx, that is, theQ p-pro-unipotent étale paths from b to x.For n = 1, �1 : X(ZS )!H1f (G;U1) = H1f (G; TpJ 
 Q p)redues to the map from Kummer theory. But the map �n forn � 2 does not fator through the Jaobian. Hene, suggests thepossibility of separating the struture of X(ZS ) from that of J(ZS ).
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8. If one restrits U to the étale site of Q p , there are loal analogues�nap : X(Zp)!H1f (Gp; Un)that an be expliitly desribed using non-abelian p-adi Hodgetheory. More preisely, there is a ompatible family of isomorphismsD : H1f (Gp; Un) ' UDRn =F 0to homogeneous spaes for quotients of the De Rham fundamentalgroup UDR = �DR1 (X 
 Q p; b)of X 
 Q p.UDR lassi�es unipotent vetor bundles with �at onnetions onX 
 Q p, and UDR=F 0 lassi�es prinipal bundles for UDR withompatible Hodge �ltrations and rystalline strutures.
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Given a rystalline prinipal bundle P = Spe(P) for U ,D(P ) = Spe([P 
Br℄Gp);where Br is Fontaine's ring of p-adi periods. This is a prinipalUDR bundle.The two onstrutions �t into a diagramX(Zp) �nap- H1f (Gp; U)
UDR=F 0D ?

� nadr=r -

whose ommutativity redues to the assertion that�DR1 (X
; b; x)
Br ' �u;Qp1 ( �X; b; x)
Br:
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9. The map �nadr=r : X(Zp)!UDR=F 0is desribed using p-adi iterated integralsZ �1�2 � � ��nof di�erential forms on X, and has a highly transendental natural:For any residue disk ℄y[� X(Zp),�nadr=r;n(℄y[) � UDRn =F 0is Zariski dense for eah n and its oordinates an be desribed asonvergent power series on the disk.
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10. The loal and global onstrutions �t into a family ofommutative diagramsX(ZS) - X(Zp)

H1f (G;Un)? lop- H1f (Gp; Un)? D- UDRn =F 0-

where the bottom horizontal maps are algebrai, while the vertialmaps are transendental. Thus, the di�ult inlusionX(ZS ) � X(Zp) has been replaed by the algebrai map lop.
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II. Diophantine FinitenessTheorem 1 Supposelop(H1f (G;Un)) � H1f (Gp; Un)is not Zariski dense for some n. Then X(ZS ) is �nite.Theorem is a rude appliation of the methodology. Eventuallywould like re�ned desriptions of the image of the global Selmervariety, and hene, of X(ZS) � X(Zp) by extending the method ofChabauty and Coleman and the work of Coates-Wiles, Kolyvagin,Rubin, Kato on the onjeture of Birh and Swinnerton-Dyer.
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Idea of proof: There is a non-zero algebrai funtion �X(ZS ) � - X(Zp)

H1f (G;Un)
�nan ? DÆlop- H1f (Gp; Un)
�nap;n ?

Q p
9�6=0?

vanishing on lop[H1f (G;Un)℄. Hene, � Æ �nap;n vanishes on X(ZS ).But using the omparison with the De Rham realization, we seethat this funtion is a non-vanishing onvergent power series oneah residue disk. 2 22



-Hypothesis of the theorem expeted to always hold for nsu�iently large, but di�ult to prove. For example, Bloh-Katoonjeture on surjetivity of p-adi Chern lass map, orFontaine-Mazur onjeture on representations of geometri originall imply the hypothesis for n >> 0.That is, Grothendiek expetedNon-abelian `�niteness ofX' (= setion onjeture) )�niteness of X(ZS).Instead we have:`Higher abelian �niteness ofX' ) �niteness of X(ZS ).
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Can prove the hypothesis in ases where the image of G insideAut(H1( �X;Zp)) is essentially abelian. That is, when-X has genus zero;-X = E n feg where E is an ellipti urve with omplexmultipliation;-(with John Coates) X ompat of genus � 2 and JX fators intoabelian varieties with omplex multipliation. For example, Xmight be axn + byn = zn;for n � 4.In the CM ases, need to hoose p to split inside the CM �elds.
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Idea: Construt a quotient U!W!0and a diagramX(ZS) � - X(Zp)

H1f (G;Un)
�nan ? lop- H1f (Gp; Un)
�nap;n ? D- UDRn =F 0

H1f (G;Wn)? lop- H1f (Gp;Wn)? D- WDRn =F 0?
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suh that dimH1f (G;Wn) < dimWDRn =F 0for n >> 0.When JX has CM, an onstrut a `polylogarithmi quotient'aW = U=[[U;U ℄; [U;U ℄℄suh that all CM haraters�i1�i2 � � ��inappearing in Wn=Wn+1 have multipliity one.aThe terminology is adopted by analogy with the quotient of the fundamen-tal group of P1 n f0; 1;1g that provides the natural setting for the theory ofpolylogarithms aording to Beilinson and Deligne.
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Elementary Iwasawa theory an be used to show thatH2(GT ; �i1�i2 � � ��in) = 0rather generially, allowing us to ontroldimH1f (G;Wn) � nXi=1 dimH1f (G;W i=W i+1):

� nXi=1 dimH1(GT ;W i=W i+1)and show that it grows more slowly thandimWDRn =F 0:
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III. Preliminary remarks on non-abelian dualityAs far as the arithmeti of urves is onerned one major goal ofthe theory is to give an expliit desription ofX(ZS) � X(Zp):This should ome from a non-abelian loal-global duality togetherwith a non-abelian expliit reiproity law.a Wish to provide a hintof this idea using a very speial situation:X = E n feg;where EQ is an ellipti urve suh thatL(EQ ; 1) = 0; L0(EQ ; 1) 6= 0:Here, we will assume that E is in fat a minimal Z-model of EQand X = E n feg.aOf ourse both notions are highly speulative at present.28



Choose S so that ES := E �Spe(Z) Spe(ZS ) is smooth. Ourassumptions imply that X(E)is �nite and rankE(Z) = rankE(ZS) = rankE(Q ) = 1;but still di�ult to analyze the inlusionX(Z) � E(Z):Some arhimedean progress using Diophantine approximationsupplemented by LLL-algorithm. Here, we fous onnon-arhimedean tehniques and the inlusionX(Z) � X(Zp):
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Pik a tangential base-point b 2 TeE and only use U2, identi�edwith its Lie algebra L2. L2 has a natural graded strutureL2 = L[1℄� L[2℄suh that L[1℄ ' L1 ' V (E) and L[2℄ ' Q p(1) is theone-dimensional enter of L2. The group law on U2 an be thoughtof as a twisted operation on L2 given bya(l1 + l2) � (l01 + l02) = l1 + l01 + l2 + l02 + (1=2)[l1; l01℄:The grading is ompatible with the Galois ation (in fat, with themotivi struture): g(l1 + l2) = g(l1) + g(l2):aThis kind of struture is often referred to as a Heisenberg group.
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If a is a ohain on GT or Gp with values in U2, then we an writea = a1 + a2with a1 taking values in L[1℄ and a2 taking values in L[2℄. Theoyle ondition for the group law is written in terms of theseomponents as da1 = 0da2 = �(1=2)a1 [ a1;where the up produt of two ohains � and � is de�ned by� [ �(g; h) = [�(g); g�(h)℄:
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We will onstrut a funtion on H1f (Gp; U2) using seondaryohomologial operations.Let  : GT!Q p be the log of the p-adi ylotomi harater andp = jGp. Given a oyle � = �1 + �2 : Gp!U2, the funtion is, inessene, � 7! (; �1; �1);where the braket refers to a Massey triple produt, taking values inH2(Gp; L[2℄) ' Q p :This notion omes from rational homotopy theory, and is usuallyde�ned for ohomology lasses of an assoiative di�erential gradedalgebra A.
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If [a℄ 2 H1(A); [b℄ 2 H1(A); [℄ 2 H1(A)are lasses with the property that[a℄[b℄ = 0; [b℄[℄ = 0;then we an solve the equationsdx = ab; dy = b:We see then that x+ ayis a oyle, de�ning a lass in H2(A). Note that the lass dependson the hoie of x and y, a de�ning system. Well-de�ned lass livesonly inside H2(A)=[aH1(A) +H1(A)℄:
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In our situation, the omplex of ohains on Gp with values inQ p � L(1)� L(2)forms an assoiative di�erential graded algebra. Given a oyle� = �1 + �2 : Gp!U2;we have [p℄ [ [�1℄ = 0;sine H2(Gp; L(1)) = 0: Also,[�1℄ [ [�1℄ = 0;sine d(�2�2) = �1 [ �1:Therefore, we an form the Massey triple produt(p; �1; �1) 2 H2(Gp; L[2℄)=[p [H1(Gp; L[1℄)) + �1 [H1(Gp; L[1℄℄:Unfortunately, zero. 34



But note that this naive Massey produt does not use the full dataof � or the strength of our assumptions. Firstly, part of a de�ningsystem for the Massey produt is enoded in �:d(�2�2) = �1 [ �1:Seondly, if [�℄ 2 H1f (Gp; U2), then [�1℄ 2 H1f (Gp; L[1℄) is in theimage of the loalization mapH1f (G;L[1℄) ' H1f (Gp; L[1℄):Hene, the equation dx =  [ �1makes sense globally.
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Key point:Using Using our restritive hypotheses, there is a global solutionxglob : GT!L[1℄to the equation dx =  [ �1:Uses the �niteness ofX and a generator for E(Z).
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Proposition 2 The lass p(�) := [lop(xglob) [ �1 + p [ (�2�2)℄ 2 H2(Gp; L[2℄)is independent of all hoies.Thus,  p : H1f (Gp; U2)!Q pis a well-de�ned algebrai funtion on the loal Selmer variety.Remark: The mapZ�p 
 Q p ' H1f (Gp; L[2℄),!H1f (Gp; U2)  p! Q pis the log map, and hene,  p is non-zero.
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De�ne (`re�ned Selmer variety')H1f;Z(G;U2) � H1f (G;U2)to be the intersetion of the kernels oflol : H1f (G;U2)!H1f (Gl; U2)for all l 6= p.In fat, we have a ommutative diagramX(Z) � - X(ZS )

H1f;Z(G;U2)? �- H1f (G;U2)?

Joint work with A. Tamagawa. 38



Theorem 3 (loal-global duality) The mapH1f;0(G;U2) lop! H1f (Gp; U2)  p! Q pis zero.Proof is straightforward using the standard the exat sequene0!H2(GT ; Q p(1),!�v2T H2(Gv; Q p(1))!Q p!0:
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IV. Expliit formulasChoose a Weierstrass equation for E and let� = dx=y; � = xdx=y:De�ne log�(z) := Z zb �; log�(z) := Z zb �;

D2(z) := Z zb ��;via (iterated) Coleman integration.
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Corollary 4 Suppose we have a point y 2 X(Z) of in�nite order.Then the set X(Z) � X(Zp)lies inside the zero set of the analyti funtionlog2�(y))(D2(z)� log�(z) log�(z))� log2�(z)(D2(y)� log�(y) log�(y)):Atually,  p ÆD�1 Æ �naDR=r;2 = Rese(vdx=y)�[D2(z)� log�(z) log�(z)� ( log�(z)log�(y) )2(D2(y)� log�(y) log�(y))℄;where dv = xdx=y.
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Remarks:-In partiular, the funtion(D2(z)� log�(z) log�(z))=(log�(z))2is onstant on the integral points of in�nite order.-Parts of this onstrution generalize to a�ne urves X of genusg � 2 whose Jaobians have Mordell-Weil rank g.-Also to ompat urves X providedrankNS(JX) � 2:! Possibility of omputing points on urves of genus 2 with rank 2Jaobians.
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