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The paper [6] contains a few errors in the basic assumptions as well as in the formula of corollary 0.2.
First of all, it should have been made clear at the outset that the regular model E for the elliptic curve
E must be the minimal regular model, and X the complement of the origin in the regular minimal
model. Similarly, the tangential base-point b must be integral, in that it is a Z−basis of the relative
tangent space e∗TE/Z. It could also be an integral two-torsion point for the arguments of the paper
to hold verbatim.

The most significant error is in the contribution of the local terms at l 6= p, that is, Lemma 1.2.
The problem is that a point that is integral on X may not be integral on a smooth model over a field
of good reduction. As it stands, the lemma will only apply to points that are integral in this stronger
sense.

However, to get immediate examples, one can replace the lemma by

Lemma 1.2′ Suppose the Neron model of E has only one rational component for each prime. (Equiv-
alently, the Tamagawa number is one at each prime.) Then the map

X (Zl)→H1(Gl, U2)

is trivial for every l 6= p.

Therefore, for the function

X (Zp)
jet

2,loc
- H1

f (Gp, U2)
ψp

- H2(Gp,Qp(1)) ≃ Qp,

constructed via the refined Massey product, we get

Theorem 0.1′ Suppose the Neron model of E has only one rational component for each prime. Then
the map

ψp ◦ jet
2,loc

vanishes on the global points X (Z) ⊂ X (Zp).

The assumption can be easily verified if the elliptic curve has square-free minimal discriminant,
since the Neron model will then have only one geometric component in the special fiber. We point
out that the integral j-invariant hypothesis is no longer necessary in this version.

Some carelessness with the Hodge theory also requires a modification of the explicit formula in
Corollary (0.2). Recall the notation

D2(x) =

∫ x

b

αβ
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and

logα(x) =

∫ x

b

α

of the paper.

Corollary 0.2′ In addition to the assumptions of the theorem, suppose there is a point y of infinite
order in E(Z). Then

X (Z) ⊂ E(Zp)

is in the zero set of
(logα(y))2D2(z) − (logα(z))2D2(y).

The proof of Theorem (0.1′) is identical to that of Theorem (0.1), once we have replaced Lemma
(1.2) by Lemma (1.2′).

Proof of Lemma (1.2′). We follow essentially the argument in [6], supplemented in a few places by
the methods of [7].

Let Il ⊂ Gl be the inertia subgroup. We have the exact sequence

0→H1(Gl/Il, (U2)
I)→H1(Gl, U2)→H1(Il, Ul).

On the other hand, there is also the exact sequence

0→(U3\U2)I→(U2)
I→(U1)

I ,

and the Frobenius weights on the left and right terms are negative. Therefore,

H1(Gl/Il, (U2)
I) = 0,

and it suffices to show that the map
X (Zl)→H1(Il, U2)

is trivial.
For this, it suffices to show the triviality of the map

X (Zl)→H1(Il, π
p
2)

where
πp2 := [πet,p1 (X̄, b), [πet,p1 (X̄, b), πet,p1 (X̄, b)]]\πet,p1 (X̄, b)

is the quotient of the pro-p étale fundamental group of X̄ by the second level of its descending central
series, that is, the group classifying the abelian-by-central pro-p covers of X̄. Here, the terminology
abelian-by-central refers to Galois covers with Galois groups D having the property that [D,D] is
central in D.

Denote by E0 the scheme whose special fibers are the connected components of the identity in
the Neron model of E. Since X (Zl) = (E0 \ {e})(Zl), we may replace X by E0 \ {e} in the following
discussion, which then has connected fibers. Also, for ease of notation in this purely local proof, we will
now take the base field to be K, the maximal unramified extension of Ql in Q̄l. Any abelian-by-central
p-power covering of X̄ with a lift of the base-point is dominated by a covering of the form

Z̄ - Ȳ - X̄,

each map being actually defined over K, where

Y = E \ E[pm] - X
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is the map induced by the pm map of E and h : Z→Y is a cyclic unramified pn-covering (again, with
a lift of the base-point). As in [7], it suffices to show that Z(K) surjects onto X (OK) ⊂ X(K), for
which it suffices to construct an étale model

Z - X

over OK that is surjective on the special fibers.
The map Y→X extends to an étale map

[pm] : Y = E0 \ E0[pm] - E0 \ {e} = X .

The map on special fibers
(E0 \ E0[pm])s - Xs

is surjective, from which we see that any point in X (OK) ⊂ X(K) lifts to a point of Y(OK).
We go on to lift to Z. Since K contains all p-power roots of 1, we know that that Z→Y is a

composition of cyclic p-covers. Consider first the case where the base-point b′ on Y is an integral
point in Y(OK). By induction, it suffices to show the following:

Let Y be a smooth irreducible curve over OK with generic fiber Y , connected special fiber Ys,
and integral base-point b′ ∈ Y(OK). Let Z→Y be a cyclic p-cover with a lift of the base-point b′

to b′′ ∈ Z(K). Then there is a smooth OK-model Z of Z with connected special fiber such that
Z is étale over Y, b′′ ∈ Z(OK), and the map Zs→Ys of special fibers is surjective. In particular,
Z(OK)→Y(OK) is surjective.

To see this, note that
Z = SpecY (⊕p−1

i=0L
−i)

for a line bundle L on Y with a trivialization

s : OY ≃ Lp

that defines the algebra structure. Extend L to a line bundle L on Y. Then s extends to an isomor-
phism

s : OY(kYs) ≃ Lp

for some k, so that we have a trivialization

t = l−ks : OY ≃ Lp.

Let v be an OK-basis for L|b′ . The points of Z above b′ ∈ Y (K) are the inverse image in the fiber
L|b′ of s(b′) ∈ (L|b′)

p under the p-power map

L|b′→(L|b′)
p.

Since b′ lifts to a rational point of Z, if we write s = cvp, the coefficient c ∈ K must be a p-th power.
On the other hand, since t(b′) is an OK-basis for (L|b′)

p, we know that l−kc must be a unit. Hence,
we must have p|k. Therefore, the finite étale covering

Z := SpecY(⊕p−1
i=0 (L)−i)

of Y with the algebra structure defined by t is isomorphic to Z over the generic fiber, and b′′ ∈ Z(OK).
By removing the components of the special fiber except the one containing the specialization of b′′,
we can assume that Z has connected special fiber. Since the map of special fibers is still surjective,
we see that Z(OK)→Y(OK) is surjective.

Now consider the situation where the base-point b′ is tangential at e ∈ E. We let Y ′ be the smooth
partial compactification of Y obtained by adding the point e, and Y ′ the generic fiber.
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Once again, by induction, it suffices to show:

Let Y ′ be a smooth irreducible curve over OK with connected special fiber. Let e ∈ Y ′(OK) be a
point in the smooth locus and Y = Y ′ \ {e}. Let b′ ∈ e∗(TY/OK

) be an OK-basis of the tangent space
at e. Let Z ′→Y ′ be a cyclic p-cover, unramified over the generic fiber Y of Y, equipped with a lift b′′

of the tangent vector b′ to a tangent vector at a rational point e′ ∈ Z(K). Then there is a smooth
OK-model Z ′ for Z ′ with connected special fiber such that e′ ∈ Z ′(OK), b′′ is a basis for (e′)∗(TZ′/OK

),
Z := Z ′ \ Z ′

e′ is finite étale over Y, and the map Zs→Ys of special fibers is surjective.

This time as well,
Z ′ = SpecY ′(⊕

p−1
i=0 (L′)−i),

where we have
s : (L′)−p ≃ OY ′(D)

with D = 0 or D = −e. If D = 0 then an identical argument to that above will yield a scheme
Z ′ and Z with exactly the same properties as in the integral base-point case. Otherwise, Z ′→Y ′ is
totally ramified over e. Once again, we extends L′ to L′ on Y ′ and find a k such that t := lks gives
an isomorphism

(L′)−p ≃ OY′(−e).

Written in terms of a local basis v for L′, we have t = zvp where (z) = e, and s = l−kzvp. In terms
of the dual (b′)∗ to the tangential base-point b′, we must have dz(e′) = c(b′)∗ for some unit c. A local
basis w for (L′)−1 can be regarded as a local uniformizer at e′ on Z ′, so that Z ′ is locally defined by
wp = l−kz. The principal part map takes w 7→ l−kwp in the coordinates given by w on Te′Z

′ and z
on TeY

′. We have b′ = c in these coordinates. Since b′ is liftable to a K-rational b′′, we deduce that
lkc must be a p-th power, so that p|k again. Hence,

Z ′ = SpecY′(⊕
p−1
i=0 (L′)−i),

with the algebra structure defined by t gives a covering of Y ′ smooth over OK , whose generic fiber is
isomorphic to Z ′. If we define L = L′|Y, we see that

Z = SpecY(⊕p−1
i=0 (L)−i)

is finite and étale over Y. A local basis w for (L′)−1 can be regarded as a local uniformizer at e′ on
Z ′, so that Z is locally defined by wp = z. The coordinates on Z ′ of the point e′ is w = 0, z = 0,
which is an integral point. The principal part map takes w 7→ wp in the coordinates given by w on
Te′Z

′ and z on TeY
′. We have b′ = c in these coordinates, so the base-point lift b′′ is an OK-integral

basis for Te′Z
′ at the smooth point e′ ∈ Z ′(OK). By removing from Z ′

s all components except that
containing the specialization of e′, we can assume that Z ′, and hence, Z = Z ′ \ {e}, has connected
special fiber. Clearly, Zs→Ys is still surjective. 2

Proof of Corollary (0.2′) Two points require modification, the first having to do with the distinction
between left and right cosets, and the second a small confusion between the Hodge filtrations on UDR

and its Lie algebra. That is, torsors for UDR can be classified by UDR/F 0 or F 0\UDR. Now, in [6],
section 3, we described pcr ∈ Rx as the power series

G(x) =
∑

w

∫ x

b

αww,

which is actually an element of UDR. However, this identification was achieved through a trivialization
of the universal bundle with connection that is compatible with the Hodge structure, that is, an element
pH of F 0πDR1 (XQp

; b, x). So the element G(x) is the unique u that satisfies pcr = pHu, rather than
pcru = pH as written there. With this normalization, the correct classifying space becomes

F 0\UDR.
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The computation of pcr2 then becomes

pcr2 = 1 +

∫ x

b

αA+

∫ x

b

βB +

∫ x

b

ααA2 +

∫ x

b

ββB2 +

∫ x

b

αβAB +

∫ x

b

βαBA

= 1+

∫ x

b

αA+

∫ x

b

βB+(

∫ x

b

α)2A2/2+(

∫ x

b

β)2B2/2+

∫ x

b

αβAB−

∫ x

b

αβBA+

∫ x

b

αβBA+

∫ x

b

βαBA

= 1 +

∫ x

b

αA+

∫ x

b

βB + (

∫ x

b

α)2A2/2 + (

∫ x

b

β)2B2/2 +

∫ x

b

αβ[A,B] +

∫ x

b

β

∫ x

b

αBA

= (1 +

∫ x

b

βB + (

∫ x

b

β)2B2/2)(1 +

∫ x

b

αA+ (

∫ x

b

α)2A2/2)(1 +

∫ x

b

αβ[A,B])

= exp(

∫ x

b

βB) exp(

∫ x

b

αA+

∫ x

b

αβ[A,B]).

Therefore,

j
dr/cr
2 (x) =

∫ x

b

αA+

∫ x

b

αβ[A,B],

and we see that the formula for the function in corollary 0.2 should be

(logα y)
2D2(z) − (logα z)

2D2(y).

(Fortunately, this is simpler than the one originally given.) In other words, the quantity

D2(z)/(logα z)
2

is the same for all integral points z of infinite order. 2

Finally, we remarked at the beginning that the vanishing of the function works also for an integral
base-point of order 2. Such a possibility was explicitly included in Lemma (1.2′). However, since
Corollary (0.2) was originally written just for a tangential base-point, it may be useful to see directly
why it carries over to a base-point of order 2. For this, it is useful to note another proof of the explicit
formula due to Gerd Faltings.

With either kind of base-point, the class

j2(z) −
logα z

logα y
j2(y)

lies in H1
f (G,Qp(1)) and vanishes at all l 6= p. In particular, it must come from a number in Q∗ that is

a local unit at all primes. But then, the number must be ±1, and hence, the class in H1
f (G,Qp(1)) is

zero. Going over to the De Rham side at p, the formula for j
dr/cr
2 shows that the difference in classes

is captured by
∫ z

b

αβ − (
logα z

logα y
)2

∫ y

b

αβ

as in section 3 of the paper, which therefore must vanish.

1 Some examples

The following computations were carried out using Sage [8]. Sage includes an implementation of single
Coleman integration for hyperelliptic curves developed by Balakrishnan, Bradshaw, and Kedlaya [3];
the computations here rely on a generalization to multiple integrals suggested in op. cit. (cf. [2]).
They also depend on Cremona’s tables of elliptic curves [5], which are included in Sage. See [1] for
the full Sage source code used in the computations, which will appear in a future release of Sage. An
integral two-torsion base-point is used in each of the first three examples.
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Example 1 Let E be the elliptic curve y2 = x3 − 1323x+ 3942, with minimal model

E : y2 + xy = x3 − x

(Cremona label ‘65a1’). Let b = (3, 0), P = (39, 108), Q = (−33,−108), R = (147, 1728), S =
(103, 980), T = (−6,−108) be points on E, which arise from points on E in the following manner:

E −→ E

(0, 0) 7→ (3, 0)

(1, 0) 7→ (39, 108)

(−1, 0) 7→ (−33,−108)

(4, 6) 7→ (147, 1728)
(

25

9
,
85

27

)

7→ (103, 980)

(

−
1

4
,−

3

8

)

7→ (−6,−108).

Note that p = 11 is a prime of good reduction for E. We compute

D2(P )

(logα(P ))
2 =

D2(Q)

(logα(Q))
2 =

D2(R)

(logα(R))
2 = 3 · 11−1 + 6 + 2 · 11 + 10 · 112 + 3 · 113 + 5 · 114 +O(115).

However,
D2(S)

(logα(S))2
= 3 · 11−1 + 10 + 6 · 11 + 9 · 112 + 8 · 113 + 6 · 114 +O(115),

and
D2(T )

(logα(T ))
2 = 6 · 11−1 + 1 + 4 · 11 + 4 · 112 + 113 + 7 · 114 +O(115).

Example 2 Let E be the elliptic curve y2 = x3 − 3483x+ 74358, with minimal model

E : y2 + xy + y = x3 − x2 − 3x+ 2

(Cremona label ‘145a1’). Let b = (27, 0), P = (63, 324), Q = (−9, 324), R = (−9,−324), S =
(43, 64), T = (−54, 324) be points on E, which arise from points on E in the following manner:

E −→ E

(1,−1) 7→ (27, 0)

(2, 0) 7→ (63, 324)

(0, 1) 7→ (−9, 324)

(0,−2) 7→ (−9,−324)
(

13

9
,−

25

27

)

7→ (43, 64)

(

−
5

4
,
13

8

)

7→ (−54, 324).

Note that p = 7 is a prime of good reduction for E. We compute

D2(P )

(logα(P )α)
2 =

D2(Q)

(logα(Q)α)
2 =

D2(R)

(logα(R))
2 = 6 · 7−2 + 7−1 + 5 + 72 + 2 · 73 + 5 · 74 +O(75).
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However,
D2(S)

(logα(S))
2 = 3 · 7−3 + 3 · 7−2 + 5 + 6 · 7 + 2 · 72 + 3 · 73 + 6 · 74 +O(75),

and
D2(T )

(logα(T ))2
= 7−3 + 4 · 7−2 + 2 · 7 + 3 · 72 + 3 · 74 +O(75).

Example 3 Let E be the elliptic curve y2 = x3 − 18171x+ 940950, with minimal model

E : y2 + xy = x3 − 14x+ 19

(Cremona label ‘689a1’). Let b = (75, 0), P = (39, 540), Q = (111,−540), R = (39,−540), S =
(−150, 540), T = (−150,−540) be points on E, which arise from points on E in the following manner:

E −→ E

(2,−1) 7→ (75, 0)

(1, 2) 7→ (39, 540)

(3,−4) 7→ (111,−540)

(1,−3) 7→ (39,−540)
(

−
17

4
,
37

8

)

7→ (−150, 540)

(

−
17

4
,−

3

8

)

7→ (−150,−540).

Note that p = 17 is a prime of good reduction for E. We compute

D2(P )

(logα(P ))
2 =

D2(Q)

(logα(Q))
2 =

D2(R)

(logα(R))
2 = 12 · 17−1 + 13 + 3 · 17 + 9 · 172 + 9 · 173 + 3 · 174 +O(175).

However,

D2(S)

(logα(S))2
=

D2(T )

(logα(T ))2
= 11 · 17−1 + 11 + 13 · 17 + 5 · 172 + 2 · 173 + 11 · 174 +O(175).

Together with the non-trivial examples, we have included above some comparison of points x and
−x, for which the quotients are equal for purely local reasons. That is, equality occurs for these simply
because

∫ −x

b

α = −

∫ x

b

α

and
∫ −x

b

αβ =

∫ −x

b

[−1]∗(α)[−1]∗(β) =

∫ x

b

αβ.

We note that the denominator (
∫ x

b α)2 is in any case quadratic as a function of x. However, the
numerator is definitely not quadratic. If it were, we would get the same quotients even for rational
points in this rank one situation, which the computations show not to be the case. In fact, as noted
already in [6], for a fixed y, the equality

D2(z) = (logα(z))2
D2(y)

(logα(y))2

can hold only for finitely many points in X (Zp). That is to say, there is no local explanation for the
constancy of the ratio on general pairs of integral points. It is unquestionably a global phenomenon,
akin to a non-abelian reciprocity law.
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Even though it is presently difficult to compute with a tangential base-point, it is possible to
circumvent its direct use when we are given two integral points x and y of infinite order such that x
is not of the form ±y + t where t is torsion.

This uses the co-product formula by viewing the path from the tangent vector b to y as the path
from b to x followed by the path from x to y. That is,

∫ y

b

αβ =

∫ y

x

αβ +

∫ y

x

α

∫ x

b

β +

∫ x

b

αβ.

Since
∫ y

b

αβ/(

∫ y

b

α)2 =

∫ x

b

αβ/(

∫ x

b

α)2,

we then get
∫ y

b

αβ(1 − (

∫ x

b

α)2/(

∫ y

b

α)2)) =

∫ y

x

αβ +

∫ y

x

α

∫ x

b

β,

or
∫ y

b

αβ/(

∫ y

b

α)2 = (

∫ y

x

αβ +

∫ y

x

α

∫ x

b

β)/((

∫ y

b

α)2 − (

∫ x

b

α)2).

Since α is regular at e, the term
∫ y

b α =
∫ y

e α and
∫ x

b α =
∫ x

e α. Furthermore,

∫ z

b

β = (1/2)

∫ z

−z

β

for any z. To see this, note that

∫ z

−z

β =

∫ b

−z

β +

∫ z

b

β = −

∫ −z

b

β +

∫ z

b

b =

∫ −z

b

[−1]∗(β) +

∫ z

b

β

=

∫ z

−b

β +

∫ z

b

β =

∫ b

−b

β + 2

∫ z

b

β.

The integral here between tangential base-points is zero: Recall briefly the definition of the fiber
functor associated to a tangential base point. There is a functor

Res : Un(X)→Un(D∗)

from unipotent bundles with connection on X to those on the punctured tangent space D∗ = T 0
e (E),

which associates to (V,∇),
(Ve ⊗OD, d−Ndz/z),

where N is the residue of the canonical logarithmic extension of (V,∇) and z is any linear coordinate
on the tangent space. For a tangent vector b ∈ D∗, we then have

Fb : (V,∇) 7→ Res(V,∇) 7→ (Ve ⊗O∗
D)|b ≃ Ve.

Therefore, if b and b′ are two tangential base-points, then the Frobenius invariant path from b, b′ is
induced by the one coming from the category Un(D∗). That is to say, Res induces a map

πDR1 (D∗; b, b′)→πDR1 (X ; b, b′)

and the Frobenius invariant path comes from the first space. Therefore, for any (V,∇), we get that
pbb′ is given by multiplication by

exp(N

∫ b′

b

dz/z).
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Now, since
∫ x

b

dz/z

is a homomorphism in x for the group law where b is the origin, we get that

∫ ζb

b

dz/z = 0

and hence, pb(ζb) = 1 for any root ζ of 1.

To use this formula, note that for a third integral point z of infinite order, we have

(
∫ y

x αβ +
∫ y

x α
∫ x

b β)

((
∫ y

b α)2 − (
∫ x

b α)2)
=

(
∫ z

x αβ +
∫ z

x α
∫ x

b β)

((
∫ z

b α)2 − (
∫ x

b α)2)

as long as the denominator is non-zero. So if we had x and y in hand, we could search for such z in
the zero set of the function

((

∫ z

b

α)2 − (

∫ x

b

α)2)
(
∫ y

x
αβ +

∫ y

x
α

∫ x

b
β)

((
∫ y

b
α)2 − (

∫ x

b
α)2)

− (

∫ z

x

αβ +

∫ z

x

α

∫ x

b

β)

of z, where everything can be computed without the direct use of the tangential base-point.
Furthermore, we can express the quotient D2(z)/(logα(z))2 for an arbitrary point z using the two

integral points x and y as follows. The coproduct formula again gives

∫ z

b

αβ =

∫ z

y

αβ +

∫ z

y

α

∫ y

b

β +

∫ y

b

αβ,

but we have already a formula for the last integral that eliminates the direct use of the tangential
base-point. So

∫ z

b

αβ =

∫ z

y

αβ +

∫ z

y

α

∫ y

b

β + (

∫ y

b

α)2
(
∫ y

x
αβ +

∫ y

x
α

∫ x

b
β)

((
∫ y

b α)2 − (
∫ x

b α)2)

and
D2(z)

(logα(z))2
=

∫ z

y
αβ

(logα(z))2
+

∫ z

y
α

∫ y

b
β

(logα(z))2
+

(logα(y))2

(logα(z))2
(
∫ y

x
αβ +

∫ y

x
α

∫ x

b
β)

((logα(y))2 − (logα(x))2)
.

Example 4 We are now able to give an example without integral 2-torsion, using the tangential base-
point implicitly. Consider the curve E : y2 = x3 − 16x+ 16, with minimal model given by

E : y2 + y = x3 − x

(Cremona label ‘37a1’). Let P = (0, 4), 2P = (4, 4), 3P = (−4,−4), 4P = (8,−20), 6P = (24, 116) be
points on E, which arise from points on E in the following manner:

E −→ E

(0, 0) 7→ (0, 4)

(1, 0) 7→ (4, 4)

(−1,−1) 7→ (−4,−4)

(2,−3) 7→ (8,−20)

(6, 14) 7→ (24, 116).
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Note that p = 7 is a prime of good reduction. For each of the ten (unordered) pairs (x, y), where
x 6= y, x, y ∈ {P, 2P, 3P, 4P, 6P}, we see

∫ y

x αβ +
∫ y

x α
∫ x

b β
(∫ y

b α
)2

−
(∫ x

b α
)2 = 7−1 + 1 + 3 · 7 + 6 · 72 + 5 · 74 +O(75).

This implies that

D2(P )

(logα(P ))2
=

D2(2P )

(logα(2P ))2
=

D2(3P )

(logα(3P ))2
=

D2(4P )

(logα(4P ))2
=

D2(6P )

(logα(6P ))2

= 7−1 + 1 + 3 · 7 + 6 · 72 + 5 · 74 +O(75).

However, we also have the non-integral points with minimal coordinates

5P = (
1

4
,
5

8
), 7P = (

−5

9
,

8

27
), 8P = (

21

25
,
−69

125
), 9P = (

−20

49
,
−435

343
), 10P = (

161

16
,
−2065

64
)

with which one can compute

D2(5P )

(logα(5P ))2
= 2 ∗ 7−1 + 5 + 3 ∗ 7 + 6 ∗ 72 + 3 ∗ 73 + 5 ∗ 74 + 4 ∗ 75 + 2 ∗ 76 +O(77)

D2(7P )

(logα(7P ))2
= 5 ∗ 7−3 + 3 ∗ 7−1 + 1 + 4 ∗ 7 + 3 ∗ 72 + 73 + 6 ∗ 74 +O(75)

D2(8P )

(logα(8P ))2
= 6 ∗ 7−1 + 4 + 7 + 72 + 5 ∗ 73 + 4 ∗ 74 + 2 ∗ 75 + 5 ∗ 76 +O(77)

D2(9P )

(logα(9P ))2
= 3 ∗ 7−8 + 7−6 +O(7−5)

D2(10P )

(logα(10P ))2
= 5 ∗ 7−1 + 6 + 6 ∗ 7 + 2 ∗ 72 + 2 ∗ 73 + 5 ∗ 74 + 5 ∗ 75 + 4 ∗ 76 +O(77)

to see the values fluctuating over the non-integral points.
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