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I. Preliminary remarks(i) Path torsorsM reasonable onneted topologial spae. b 2M , point.Determines a fundamental group:�1(M; b):More generally, onsider b; x 2M , and the set�1(M ; b; x)of homotopy lasses of paths from b to x.Wish to study dependene on variable x.
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Somewhat more struture:Eah �1(M ; b; x)has an ation of �1(M; b)on the right �1(M ; b; x)� �1(M; b)!�1(M ; b; x)(p; ) 7! p Æ turning it into a torsor for �1(M; b).We have a variation of torsors.
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In set-theoreti setting, problem trivial. Whenever we hoose anelement p 2 �1(M ; b; x), ation indues a bijetion�1(M; b) ' �1(M ; b; x) 7! p Æ That is to say, the hoie of any element determines a trivialization.But suh isomorphisms are not anonial, as is often emphasized inelementary topology. That is, any two torsors �1(M ; b; x1) and�1(M ; b; x2) are isomorphi, but not anonially. Usually, thisdistintion is not important.However, geometrially, these torsors form a natural family.
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(ii) Covering spaesReall another interpretation of the fundamental group. Let~M!Mbe a universal overing. Fix a point ~b 2 ~M so that we get a map( ~M;~b)!(M; b)of pointed spaes.This map is universal among pointed overing spaes.

6



That is, given any pointed overing spae(Y; y)!(M; b)there is a unique ommutative diagram( ~M;~b) - (Y; y)
(M; b)?-
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Using ( ~M;~b), we get an isomorphism�1(M ; b; x) ' ~Mxby lifting paths. Thus, the study of the variation of �1(M ; b; x) inx, beomes that of studying the �bers of~M!MThis �ber bundle is of ourse not trivial in general, i.e., theuniversal �1(M; b)-torsor is not trivial.[One onstrution of ~M onsists in~M := [x�(M ; b; x)℄
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Of ourse we are interested in the situation whereX=Qis a variety, M = X(C )and b; x 2 X(Q ) �MThat is, in �1(X(C ); b; x) for speial points x.But in this form, an't distinguish suh speial points from generiones.
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II. Arithmeti fundamental groups(i) Galois AtionsConsider the pro�nite ompletion�1(X(C ); b)^and the pushout torsor�1(X(C ); b; x)^ = �1(X(C ); b; x) ��1(X(C );b) �1(X(C ); b)^
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Then �1(X(C ); b)^ and �1(X(C ); b; x)^ end up with ompatibleations of � := Gal( �Q =Q ):Compatibility means that for g 2 �, l 2 �1(X(C ); b)^ andp 2 �1(X(C ); b; x)^, then g(p)g(l) = g(pl)Thus, �1(X(C ); b; x)^ beomes a �-equivariant torsor for^�1(X(C ); b).[Or a torsor on the �etale site of Spe(Q ).℄
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Underlying this ation are the isomorphisms�1(X(C ); b)^ ' ^�1( �X; b)and �1(X(C ); b; x)^ ' ^�1( �X; b; x)involving the pro�nite �etale fundamental group and the �etale torsorof paths for �X := X �Spe(Q) Spe(�Q )
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De�ned using Cov( �X), the ategory of �nite �etale overing spaesof �X and the �ber funtorsFb : Cov( �X)!�nite setsY Yb# 7! #�X b
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Funtorial de�nition: ^�1( �X; b) := Aut(Fb)^�1( �X; b; x) := Isom(Fb; Fx)Then � ats on the ategory preserving the �ber funtors (whenb; x 2 X(Q )) and hene ats on the group and torsor.[It is this de�nition that allows us to study exibly the base-pointdependene.℄
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(ii) Universal pro-overing spaesTo ompute this ation, again use a universal pointed overingspae ( ~�X;~b)!( �X; b)onstruted, for example, using Galois theory, with the universalproperty that given any �nite algebrai overing spae(Y; y)!( �X; b) there is a unique ommutative diagram( ~�X;~b) - (Y; y)
( �X; b)?-
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( ~�X;~b) is atually a projetive systemf( �Xi; bi)gand the diagram means that there is some index i and aommutative diagram ( �Xi; bi) - (Y; y)
( �X; b)?-

In this situation, one again, we have^�1( �X; b) ' ~�Xband the path spae ^�1( �X; b; x) ' ~�Xx16



As the notation suggests, an take the whole system ~�X, i.e., eah�Xi!X;the transition maps between them, and the base point ~b = fbig tobe de�ned over Q . And then the Galois ation just beomes thenaive ation on the �bers of ~�X! �Xover rational points.
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Example:( �E; 0) ellipti urve with origin over Q . LetEn!Ebe the overing spae given by E itself with the multipliation map[n℄ : E!EThen the system ( ~�E; ~0) := f( �En; 0)gn - ( �E; 0)is a universal pointed overing spae.Thus, for (E; 0), ^�1( �E; 0) ' ^T (E)and an element of the fundamental group is just a ompatibleolletion of torsion points of E. 18



Similarly, ^�1( �E; 0; x) ' ~�Exonsists of ompatible systems of division points of x.This example illustrates that if we take into aount the Galoisation, it is no longer possible to trivialize the torsor in general,even point-wise.That is, there will usually be no isomorphism between ^�1( �X; b) and^�1( �X; b; x) in the ategory of �-equivariant torsors. [Or as sheaveson Spe(Q ).℄
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In the ase of (E; 0), if there were an isomorphism^�1( �E; 0) ' ^�1( �E; 0; x)then there would be a Galois invariant element of^�1( �E; 0; x) ' ~�Ex:In partiular, for any n, there would be a rational point xn suhthat nxn = x. Not possible by Mordell's theorem.[In general, a �-equivariant torsor an be trivialized if and only if ithas a �-invariant element.℄
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(iii) The general formalism of arithmeti period mapsGiven a �-equivariant torsor T for ^�1( �X; b) hoose any elementt 2 T . Then for eah g 2 �, g(t) is related to t by the^�1( �X; b)-ation, i.e., g(t) = tgfor some g 2 ^�1( �X; b). The map g 7! g obtained therebydetermines a non-abelian (ontinuous) oyle : �!^�1( �X; b; x);that is, satisfying the relation(g1g2) = (g1)g1((g2))
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The set of suh oyles is denoted byZ1(�; ^�1( �X; b))^�1( �X; b) itself ats on the set of oyles via()(g) = g(�1)(g)giving rise to the set of orbitsH1(�; ^�1( �X; b)) := ^�1( �X; b)nZ1(�; ^�1( �X; b))This is a non-abelian ohomology set lassifying the �-equivarianttorsors for ^�1( �X; b).
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Thus, the previous disussion of varying torsors of paths an besummarized as a `period' mapX(Q )!H1(�; ^�1( �X; b))x 7! [^�1( �X; b; x)℄Suppose X is a ompat smooth urve of genus � 2. Then this mapis injetive by the Mordell-Weil theorem.Grothendiek's setion onjetureproposes that this map is surjetive as well, i.e., torsors of pathsoming from rational points are the only natural torsors for^�1( �X; b). Part of his anabelian program.
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(iv) The Diophantine onnetionGrothendiek expeted setion onjeture to lead to another proofof Diophantine �niteness for hyperboli urves. Somewhat explainshis disapproval of motives? Theory of motives, involvingabelianization, rarely gives information on X(Q ). Serious de�ienyindiating need to move beyond abelian motives.However, orretness of expetation unlear. Perhaps ^�1( �X; b) istoo non-abelian. Need to �nd middle ground between anabelianand motivi language, or between hyperboli and ellipti urves.
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For ellipti urves, the orresponding mapE(Q )!H1(�; ^T (E))is lassial, and its study is Kummer theory. In the theory ofellipti urves, one onstruts a natural subspaeH1f (�; ^T (E)) � H1(�; ^T (E))using loal onditions and onjetures that\E(Q ) ' H1f (�; ^T (E))(Birh and Swinnerton-Dyer)From this perspetive, the setion onjeture is a naturalnon-abelian generalization of BSD.
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Parallel piture: E(Q ) - H1(�; ^T (E))

X(Q ) - H1(�; ^�1( �X; b))

x - [^�1(�; b; x)℄
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Finiteness then should follow from a kind of non-abelian BSDpriniple:Non-vanishing of L-values ) Diophantine �niteness.Mostly speulative...
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III. Selmer varieties(i) SummaryThis idea an be implemented for-hyperboli urves of genus zero;-the `Coates-Wiles' situation:X = E n f0gwhere E=Q is an ellipti urves with omplex multipliation;-a few more sattered asesusing Selmer varieties.
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Also, �niteness for a general hyperboli urve follows from a `higherBSD onjeture' suh as the Bloh-Kato onjeture, or theFontaine-Mazur onjeture. Both of these are assertions ofsurjetivity of [e.g. regulator℄ maps from motives to some H1f (�; �).That is to say, so far, general �niteness for urves aounted for byabelian surjetivity + mildly non-abelian onstrution
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(ii) Motivi fundamental groupsFous now on a hyperboli urve X and the Q p-pro-unipotentompletion of its fundamental group.

^�1( �X; b) - UQp = �et;Qp1 ( �X; b)where UQp is de�ned using Un( �X)Qpategory of unipotent Q p-lisse sheaves of �X.[A sheaf is unipotent if it orresponds to a unipotent representationof ^�1( �X; b).℄
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Point b 2 X(Q ) again determines a linear �ber funtorFb : Un( �X)Qp!VetQpand UQp := Aut
(Fb)For x 2 X(Q ) there is a torsor of unipotent paths�et;Qp1 ( �X; b; x) := Isom
(Fb; Fx) (' ^�1( �X; b; x)�^�1( �X;b) UQp )These objets also arry ompatible �-ations.
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The previous period map is replaed byX(Q ) - H1(�; UQp )x - [�et;Qp1 ( �X; b; x)℄Can study this indutively using the desending entral seriesZ1 := UQp � Z2 := [UQp ; UQp ℄ � Z3 := [UQp ; [UQp ; UQp ℄℄ � � � �and the assoiated quotients UQpn := UQp=Zn+1 that �t into exatsequenes 0![Zn+1nZn℄!UQpn !UQpn�1!0
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and indue a tower: ...... H1(�; UQp4 )
H1(�; UQp3 )?

H1(�; UQp2 )?

X(Q ) -
--- H1(�; UQp1 )?

lifting lassial Kummer theory.
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Can also onsider the loal ation of �p := Gal( �Q p=Q p) and a loalversion of the tower ...... H1(�p; UQp4 )
H1(�p; UQp3 )?

H1(�p; UQp2 )?

X(Q p) -
--- H1(�p; UQp1 )?
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leading to a sequene of ommutative diagramsX(Q ) ! X(Q p)# #H1(�; Uetn ) ! H1(�p; Uetn )(iii) Selmer varietiesWe will utilize this diagram by way of a bit more geometriinformation. Let S be a �nite set of primes, ZS the ring ofS-integers, and X!Spe(ZS )a good model of X. [A smooth model with a smoothompati�ation having an �etale ompati�ation divisor (possiblyempty).℄Choose p =2 S and put T = S [ fpg.35



Then we get an indued diagram:X (ZS ) ! X (Zp)#�globn #�lonH1f (�; Uetn ) lo! H1f (�p; Uetn )where H1f (�p; Uetn ) � H1(�p; Uetn )lassi�es torsors that are rystalline, i.e., have a �p-invariantBr-point, and H1f (�; Uetn ) � H1(�; Uetn )lassi�es torsors that are unrami�ed outside T and rystalline at p:These notions allow us to fous the general formalism.
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Two key points:I. The loalizations H1f (�; Uetn ) - H1f (�p; Uetn )are maps of algebrai varieties over Q p .In partiular,-H1f (�; Uetn ) and H1f (�p; Uetn ) are natural geometri families intowhih the points �t:global and loal Selmer varieties;-and the diÆult inlusion X (ZS ) � X (Zp) is replaed by analgebrai map.
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II. The map �lon : X (Zp)!H1f (�p; UQpn )an be omputed using non-abelian p-adi Hodge theory.In fat, Hodge theory provides a ommutative diagram:X (Zp)
H1f (�p; Uetn )

�lon ? D- UDRn =F 0
k dr=rn -

and the map �dr=rn an be expliitly omputed using p-adiiterated integrals.
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(iv) The loal mapHere UDR = �DR1 (X 
 Q p; b)is the De Rham/rystalline fundamental group of X 
 Q p and F irefers to the Hodge �ltration.Then UDR=F 0 beomes a lassifying spae for De Rham/rystallinetorsors, and the map X (Zp)!UDR=F 0again assoiates to a point x the torsor�DR1 (X 
 Q p; b; x)of De Rham/rystalline paths.
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Example:X = P1 n f0; 1;1g. Then the oordinate ring of UDR is theQ p-vetor spae Q p [�w℄where w runs over words on two letters A;B. Also, F 0 = 0, and forw = Am1BAm2B � � �AmlBwe get �w Æ �dr=r(x)= Z xb (dz=z)m1(dz=(1� z))(dz=z)m2 � � � (dz=z)ml(dz=(1� z))a p�adi multiple polylogarithm.
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The map D : H1f (�p; UQpn )!UDRn =F 0is given by D(P ) = Spe([P 
Br℄Gp)if P = Spe(P). Commutativity of the diagram is the assertion�et;Qp1 ( �X; b; x)
Br ' �DR1 (X 
 Q p; b; x)
Brproved by Shiho, Vologodsky, Faltings, Olsson.
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A orollary of this desription is thatTheorem 0.1 The image of eahX (Zp)!H1f (�p; UQpn )is Zariski dense. In fat, the image of eah residue disk isZariski-dense.A poor man's loal substitute for the setion onjeture.
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(v) FinitenessAnother orollary:Theorem 0.2 SupposeIm[H1f (�; UQpn )℄ � H1f (�p; UQpn )is not Zariski dense. Then X (ZS ) is �nite.
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Idea of proof: X (ZS ) � - X (Zp)

H1f (�; UQpn )
�globn ? lo- H1f (�p; UQpn )
�lon ?

Q p
9� 6= 0?
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suh that � vanishes on Im[H1f (�; UQpn )℄. Hene, � Æ �lon vanisheson X (ZS ). But this funtion is a non-vanishing onvergent powerseries on eah residue disk. 2
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(vi) Connetion to Iwasawa theoryIn all ases so far, prove non-denseness by showing

dimH1f (�; UQpn ) < dimH1f (�p; UQpn )for n >> 0. Implied by standard motivi onjetures.That is, ontrolling the Selmer variety leads to �niteness of points.Nature of the inequality suggests that proofs should go throughIwasawa theory.
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Preliminary outline:
H1f (�; UQpn ) � H1(�T ; UQpn )and 0!H1(�T ; Zn+1nZn)!H1(�T ; UQpn )!H1(�T ; UQpn�1)is an exat sequene.Euler harateristi formula:dimH1(�T ; Zn+1nZn)� dimH2(�T ; Zn+1nZn) = dim(Zn+1nZn)�Therefore, ontrolling H2(�T ; Zn+1nZn)gives a bound on the dimensions of global Selmer varieties.Meanwhile, dimension of loal Selmer varieties given by preiseombinatorial formula. 47



For X = P1 n f0; 1;1g,Zn+1nZn ' Q p(n)rnand H2(�T ; Zn+1nZn) = 0for n >> 0 follows from the �niteness of zeros of p-adi L-funtionfor ylotomi Zp-extension of Q (�p).[Can also use Soul�e's map from K-theory.℄
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IV. Ellipti urves with omplex multipliationFor X = E n f0g, E ellipti urve with CM by an imaginaryquadrati �eld K, need to hoose p to be split as p = ��� in K andreplae UQp by a natural quotient W with property thatUQp2 'W2and (for n � 3)Wn=Wn+1 ' Q p( n�2)(1)� Q p( � n�2)(1)viewed as a representation of � in the natural way, where  and � are haraters of N := Gal( �Q =K) orresponding toT�E := lim �E[�n℄ and T��E := lim �E[��n℄ respetively.
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Notation:s = jSj � 1r = dimH1f (�; UQp1 )M = K(E[�1℄); �M = K(E[��1℄)G = Gal(M=K); �G = Gal( �M=K)� = Zp [[G℄℄; �� = Zp[[ �G℄℄ : �!Q p de�ned by ation of G on T�(E)� : ��!Q p de�ned by ation of �G on T��(E)Vp = Tp(E)
 Q , V�, et.Have orresponding p-adi L-funtions:Lp 2 �; �Lp 2 ��
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Constrution of W :� = N < � >, where � is omplex onjugation.Choose a Q p-basis e of T�(E)
 Q p so that f := �(e) is a Q p-basisof T��(E)
 Q p.Reall that U := LieUan be realized as the primitive elements inT (U1) = T (Vp)where T (� � � ) refers to the tensor algebra (but with a di�erentGalois ation).
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For example, if  2 N , then[e; [e; f ℄℄ =  ()2 � ()[e; [e; f ℄℄ + Lie monomials of higher degreeand �[e; [e; f ℄℄ = [f; [f; e℄℄ + Lie monomials of higher degreeThat is, U has a bi-gradingU = �i;j�1Ui;jorresponding to e and f degrees, but whih is not preserved by theGalois ation.
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However, easy to hek that the �ltrationU�n;�m := �i�n;j�mUi;jis preserved by N , while�(U�n;�m) = U�m;�nSo U�n;�nis Galois invariant for eah n.Furthermore, it is a Lie ideal.
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Hene, there is a well-de�ned quotient W of U orresponding toU=U�2;�2We then see that Wn=Wn+1'< ad(e)n�1(f) > � < ad(f)n�1(e) > (mod Wn+1)'  n�2(1)� � n�2(1)
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Extended diagram:
X (ZS ) ,! X (Zp)# #H1f (�; Un) ! H1f (�p; UQpn )# #H1f (�;Wn) ! H1f (�p;Wn)
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Theorem 0.3 dimH1f (�;Wn) < dimH1f (�p;Wn)for n >> 0.
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Theorem 0.4 Assume(*)  �k(Lp) 6= 0 and � �k( �Lp) 6= 0 for all k > 0.Then dimH1f (�;Wn) < dimH1f (�p;Wn)for n = r + s.Finiteness follows from the previous argument applied to thesemodi�ed Selmer varieties.
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Proof of theoremsUses main onjeture for K. We will onentrate on (0.4).We need the exat sequene0!Wn=Wn+1!Wn!Wn�1!0As for the Hodge �ltration,dimWDR1 =F 0 = 1and F 0[(WDR)n=(WDR)n+1℄ = 0for n � 2, so thatdimH1f (�p;Wn) = 2 + 2(n� 2) = 2n� 2for n � 2.

58



Meanwhile, dimH1f (�;W1) = rdimH1f (�;W 1=W 2) = dimH1f (�; Q p(1)) = s� 1so that dimH1f (�;W2) � r + s� 1As we go down the lower entral series, we have, in any ase, theEuler harateristi formuladimH1(�T ;Wn=Wn+1)� dimH2(�T ;Wn=Wn+1)= dim(Wn=Wn+1)�=�1 = 1and H1f (�;Wn=Wn+1) = H1(�T ;Wn=Wn+1)for n � 2, so we need to ompute the H2 term.
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Claim (still assuming (*)):H2(�T ;Wn=Wn+1) = 0for n � 3.Clearly, it suÆes to prove this after restriting to NT � �T (withobvious notation). Then we haveWn=Wn+1 '  n�2(1)� � n�2(1)We will show H2(NT ;  n�2(1)) = 0for n � 3.
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Consider the loalization sequene0!Sha2T ( n�2(1)),!H2(NT ;  n�2(1))!�vjT H2(Nv;  n�2(1))that de�nes the vetor spae Sha2( n�2(1)). By loal duality,H2(Nv;  n�2(1)) ' H0(Nv;  2�n)� = 0sine the representation  2�n is potentially unrami�ed orpotentially rystalline.
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So we haveH2(NT ;  n�2(1)) ' Sha2T ( n�2(1)) ' Sha1T ( 2�n)�by Poitou-Tate duality. ButSha1T ( 2�n) ' Hom�(A; 2�n)where A is the Galois group of the maximal abelian unrami�edpro-p extension of M(= K(E[�1℄)) split above the primes dividingT .
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In partiular, A is annihilated by Lp.Sine we are assuming  2�n(Lp) 6= 0 for n � 3, we get the desiredvanishing: H2(NT ;  n�2(1)) = 0Similarly, H2(NT ; � n�2(1)) = 0Finally, we onlude thatdimH1f (�;Wn=Wn+1) = 1for n � 3 so that dimH1f (�;Wn) � r + s+ n� 3for n � 2.
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Thus, H1f (�p;Wn) = 2n� 2 > r + s+ n� 3 = dimH1f (�;Wn)as soon as n � r + s.Note that even without (*), we have 2�n(Lp) 6= 0 � 2�n( �Lp) 6= 0and hene, H2(�T ;Wn=Wn+1) = 0for n suÆiently large.
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Therefore, dimH1f (�;Wn) � n < dimH1f (�p;Wn) � 2nfor n suÆiently large, yielding �niteness ofX (ZS )in any ase.However, the e�etivity in n that appears in (0.4) should eventuallyapply to the problem of �nding points.
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V. Preliminary remarksNon-abelian priniple of Birh and Swinnerton-Dyer:non-vanishing of (most) L-values ) ontrol of Selmervarieties ) �niteness of integral pointsin parallel to the ase of ellipti urves, with just the substitutionof Selmer varieties for Selmer groups. But the ases studied so farshould just be a shadow of the true piture, where, for example, thenon-vanishing of L should be a non-abelian statment.Also, both impliations should eventually be diret.
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Relevane of setion onjeture: omplete omputation of pointsand non-abelian desent.
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