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Diophantine geometry and abelian duality

E : elliptic curve over a number field F .

Kummer theory:

E (F )⊗ Zp
- H1

f (G ,Tp(E ))

conjectured to be an isomorphism.

Should allow us, in principle, to compute E (F ).

Furthermore, size of H1

f (G ,Tp(E )) should be controlled by an
L-function.



Diophantine geometry and abelian duality

In the theorem

L(E/Q, 1) 6= 0 ⇒ |E (Q)| <∞,

key point is that the image of

locp : H1

f (G ,Tp(E )) - H1

f (Gp ,Tp(E ))

is annihilated using Poitou-Tate duality by a class

c ∈ H1(G ,Tp(E ))

whose image in

H1(Gp ,Tp(E ))/H1

f (Gp ,Tp(E ))

is non-torsion.



Diophantine geometry and abelian duality

An explicit local reciprocity law then translates this into an analytic
function on E (Qp) that annihilates E (Q).

Exp∗ : H1(Gp ,Tp(E ))
≃
- F 1H1

DR(E/Qp);

c 7→
L(E , 1)

Ω(E )
α

where α is an invariant differential form on E .



Diophantine geometry and abelian duality

E (Q) - E (Qp)

↓ ↓

H1

f (G ,Tp(E )) - H1

f (Gp ,Tp(E ))
∪c

- Qp

L(E
,1)

Ω(E)
∫
(·)0
α
-



Non-abelian analogue?

Wish to investigate an extension of this phenomenon to hyperbolic

curves. That is, curves of

-genus zero minus at least three points;

-genus one minus at least one point;

-genus at least two.



Notation

F : Number field.

S0: finite set of primes of F .

R := OF [1/S0], the ring of S integers in F .

p: odd prime not divisible by primes in S0; v : a prime of F above p

with Fv = Qp..

G := Gal(F̄/F ); Gv = Gal(F̄v/Fv ).

GS := Gal(FS/F ), where FS is the maximal extension of F

unramified outside S = S0 ∪ {v |p}.
X : smooth curve over Spec(R) with good compactification.
(Might be compact itself.)

X : generic fiber of X , assumed to be hyperbolic.

b ∈ X (R), possibly tangential.



Grothendieck’s section conjecture

Suppose X is compact. Then the map

ĵ : X (R) - H1(G , π̂1(X̄ , b));

x 7→ [π̂1(X̄ ; b, x)]

is a bijection.



Unipotent descent tower

...
... H1

f (G ,U4)

H1

f (G ,U3)

?

H1

f (G ,U2)

?

X (R)
j1

-

j 4

-

j 3

-

j2 -

H1

f (G ,U1)

?



Unipotent descent tower

U = “π̂1(X̄ , b)⊗Qp”, is the Qp-pro-unipotent étale fundamental
group of

X̄ = X ×Spec(F ) Spec(F̄ )

with base-point b.

The universal pro-unipotent pro-algebraic group over Qp equipped
with a map from π̂1(X̄ , b).



Unipotent descent tower

U = “π̂1(X̄ , b)⊗Qp”, is the Qp-pro-unipotent étale fundamental
group of

X̄ = X ×Spec(F ) Spec(F̄ )

with base-point b.

The universal pro-unipotent pro-algebraic group over Qp equipped
with a map from π̂1(X̄ , b).

The map
j : x ∈ X (R) 7→ [P(x)] ∈ H1

f (G ,U),

associates to a point x , the U-torsor

P(x) := π̂1(X̄ ; b, x) ×π̂1(X̄ ,b) U

of Qp-unipotent étale paths from b to x .



Unipotent descent tower

Un := Un+1\U, where Un is the lower central series with U1 = U.

So U1 = Uab = TpJX ⊗Qp.



Unipotent descent tower

Un := Un+1\U, where Un is the lower central series with U1 = U.

So U1 = Uab = TpJX ⊗Qp.

All these objects have natural actions of G so that P(x) defines a
class in

H1

f (G ,U),

the continuous non-abelian cohomology of G with coefficients in U

satisfying local ’Selmer conditions’, the Selmer variety of X , which
must be controlled in order to control the points of X .



Algebraic localization

X (R) - X (Rv )

H1

f (G ,Un)

j

?
locv
- H1

f (Gv ,Un)

jv

?



Algebraic localization

X (R) - X (Rv )

H1

f (G ,Un)

j

?
locv
- H1

f (Gv ,Un)

jv

?

Goal:
Compute the image of locv .



Algebraic localization

One essential fact is that the local map

X (Rv )
jv
- H1

f (Gv ,Un)

can be computed via a diagram

X (Rv )

H1

f (Gv ,Un)

jv

?
≃
- UDR

n /F 0

j D
R

-

≃ AN

where UDR
n /F 0 is a homogeneous space for the De

Rham-crystalline fundamental group, and the map jDR can be
described explicitly using p-adic iterated integrals.



Non-abelian method of Chabauty

Meanwhile, the localization map is an algebraic map of varieties
over Qp making it feasible, in principle, to discuss its computation.



Non-abelian method of Chabauty

Meanwhile, the localization map is an algebraic map of varieties
over Qp making it feasible, in principle, to discuss its computation.

Knowledge of
Im(locv) ⊂ H1

f (Gv ,Un)

will lead to knowledge of

X (R) ⊂ [jv ]
−1(Im(locv )) ⊂ X (Rv ).

For example, when Im(locv ) is not Zariski dense, immediately
deduce finiteness of X (R).



Non-abelian method of Chabauty

This deduction is captured by the diagram

X (R) - X (Rv )

H1

f (G ,Un)

?
locv
- H1

f (Gv ,Un)

jetv

?

Qp

∃ψ 6= 0

?

such that ψ ◦ jetv kills X (R).



Non-abelian method of Chabauty

Can use this to give a new proof of finiteness of points in some
cases:

F = Q and the Jacobian of X has potential CM. (joint with John
Coates)

F = Q and X , elliptic curve minus one point.

F totally real and X of genus zero.



Non-abelian method of Chabauty

Can use this to give a new proof of finiteness of points in some
cases:

F = Q and the Jacobian of X has potential CM. (joint with John
Coates)

F = Q and X , elliptic curve minus one point.

F totally real and X of genus zero.

In each of these cases, non-vanishing of a p-adic L-function seems
to play a key role.
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By analogy with the abelian case:

Non-vanishing of L-function ⇒ control of Selmer group
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Non-abelian method of Chabauty

By analogy with the abelian case:

Non-vanishing of L-function ⇒ control of Selmer group

⇒ finiteness of points;

one has

Non-vanishing of L-function ⇒ control of Selmer variety

⇒ finiteness of points.

But would like to construct ψ in some canonical fashion.
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Motivation: Effective computation of points?

The goal is to find an effectively compute m(X , v) such that

min{dv (x , y) | x 6= y ∈ X (R) ⊂ X (Rv )} > m(X , v).

Key point:

Computation of m(X , v) + section conjecture ⇒
computation of X (R).

Remark: Section conjecture can also be used to effectively
determine the existence of a point (A. Pal, M. Stoll).
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Hope that Im(locv ) might be computed using a sort of non-abelian

Poitou-Tate duality.

In the abelian case, we know that Poitou-Tate duality is the basic
tool for computing the global image inside local cohomology:

Say c ∈ H1(G ,V ∗(1)) has local component cw = 0 for all w 6= v

and cv 6= 0.
Then Im(H1(G ,V )) ⊂ H1(Gv ,V ) lies in the hyperplane

(·) ∪ cv = 0.

Would like a non-abelian analogue.



Non-abelian duality?

Hope that Im(locv ) might be computed using a sort of non-abelian

Poitou-Tate duality.

In the abelian case, we know that Poitou-Tate duality is the basic
tool for computing the global image inside local cohomology:

Say c ∈ H1(G ,V ∗(1)) has local component cw = 0 for all w 6= v

and cv 6= 0.
Then Im(H1(G ,V )) ⊂ H1(Gv ,V ) lies in the hyperplane

(·) ∪ cv = 0.

Would like a non-abelian analogue.

Difficulty is that duality for Galois cohomology with coefficients in
various non-abelian groups can be interpreted as a sort of
non-abelian class field theory.



Non-abelian duality: example

E/Q: elliptic curve with

rankE (Q) = 1,

trivial Tamagawa numbers, and

|X(E )[p∞]| <∞

for a prime p of good reduction.

X =: E \ {0} given as a minimal Weierstrass model:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6.

So
X (Z) ⊂ E (Z) = E (Q).



Non-abelian duality: example

Let

α = dx/(2y + a1x + a3), β = xdx/(2y + a1x + a3).

Get analytic functions on X (Qp),

logα(z) =

∫ z

b

α; logβ(z) =

∫ z

b

β;

D2(z) =

∫ z

b

αβ.

Here, b is a tangential base-point at 0, and the integral is (iterated)
Coleman integration.
Locally, the integrals are just anti-derivatives of the forms, while for
the iteration,

dD2 = (

∫ z

b

β)α.



Non-abelian duality: example

Theorem
Suppose there is a point y ∈ X (Z) of infinite order in E (Q). Then

the subset

X (Z) ⊂ X (Zp)

lies in the zero set of the analytic function

ψ(z) := D2(z)−
D2(y)

(
∫ y

b
α)2

(

∫ z

b

α)2.



Non-abelian duality: example

Theorem
Suppose there is a point y ∈ X (Z) of infinite order in E (Q). Then

the subset

X (Z) ⊂ X (Zp)

lies in the zero set of the analytic function

ψ(z) := D2(z)−
D2(y)

(
∫ y

b
α)2

(

∫ z

b

α)2.

A fragment of non-abelian duality and explicit reciprocity.



Non-abelian duality: example

Function ψ is actually a composition

X (Zp) - H1

f (Gp ,U2)
φ

- Qp

UDR
2 /F 0

≃

?

ψ

-

-

where φ is constructed using secondary cohomology products and
has the property that

φ(locp(H
1

f (G ,U2))) = 0.



Non-abelian duality: example

X (Z) - H1

f (G ,U2)

X (Zp)
?

- H1

f (Gp ,U2)

?
φ

- Qp

UDR
2 /F 0

≃

?

ψ

-

-



Non-abelian duality: example

U2 ≃ V ×Qp(1)

where V = Tp(E )⊗Qp, with group law

(X , a)(Y , b) = (X + Y , a + b + (1/2) < X ,Y >).

A function
a = (a1, a2) : Gp→U2

is a cocycle if and only if

da1 = 0; da2 = −(1/2)[a1, a1].



Non-abelian duality: example

For a = (a1, a2) ∈ H1

f (Gp ,U2), we define

φ(a1, a2) := [b, a1] + logχp ∪ (−2a2) ∈ H2(Gp ,Qp(1)) ≃ Qp,



Non-abelian duality: example

For a = (a1, a2) ∈ H1

f (Gp ,U2), we define

φ(a1, a2) := [b, a1] + logχp ∪ (−2a2) ∈ H2(Gp ,Qp(1)) ≃ Qp,

where
logχp : Gp→Qp

is the logarithm of the p-adic cyclotomic character and

b : G→V

is a solution to the equation

db = logχp ∪ a1.



Non-abelian duality: example

The annihilation comes from the standard exact sequence

0→H2(G ,Qp(1))→
∑
v

H2(Gv ,Qp(1))→Qp→0.

That is, our assumptions imply that the class

[π1(X̄ ; b, x)]2

for x ∈ X (Z) is trivial at all places l 6= p.
On the other hand

φ(locp([π1(X̄ ; b, x)]2)) = locp(φ
glob([π1(X̄ ; b, x)]2)).



Non-abelian duality: example

With respect to the coordinates

H1

f (Gp ,U2) ≃ UDR
2 /F 0 ≃ A2 = {(s, t)}

the image
locp(H

1

f (G ,U2)) ⊂ H1

f (Gp ,U2)

is described by the equation

t −
D2(y)

(
∫ y

b
α)2

s2 = 0.



Non-abelian duality: abstract framework

Let
L = ⊕n∈NLn

be graded Lie algebra over field k . The map D : L→L such that

D|Ln = n

is a derivation, i.e., an element of H1(L, L). Can be viewed as an
element of H2(L∗ ⋊ L, k), that is, a central extension of L∗ ⋊ L:

0 - k - E ′ - L∗ ⋊ L - 0.



Non-abelian duality: abstract framework

Explicitly described as follows:

[(a, α,X ), (b, β,Y )] = (α(D(Y ))−β(D(X )), adX (β)−adY (α), [X ,Y ]).

When L = L1 and D = I , then this gives a standard Heisenberg
extension.



Non-abelian duality: abstract framework

Explicitly described as follows:

[(a, α,X ), (b, β,Y )] = (α(D(Y ))−β(D(X )), adX (β)−adY (α), [X ,Y ]).

When L = L1 and D = I , then this gives a standard Heisenberg
extension.
When k = Qp and we are given an action of G or Gv , can twist to

0 - Qp(1) - E - L∗(1)⋊ L - 0.

Also have a corresponding group extension

0 - Qp(1) - E - L∗(1)⋊ U→0.

(L = Lie(U))



Non-abelian duality: abstract framework

From this, we get a boundary map

H1(Gv , L
∗(1)⋊ U)

δ
- H2(Gv ,Qp(1)) ≃ Qp.

This boundary map should form the basis of (unipotent)
non-abelian duality.



Non-abelian duality: abstract framework

From this, we get a boundary map

H1(Gv , L
∗(1)⋊ U)

δ
- H2(Gv ,Qp(1)) ≃ Qp.

This boundary map should form the basis of (unipotent)
non-abelian duality.

H1(Gv , L
∗(1)) - H1(Gv , L

∗(1)⋊ U)
δ

- Qp

H1(Gv ,U)

?



Non-abelian duality: difficulties

1. How to get functions on

H1

f (Gv ,U)?



Non-abelian duality: difficulties

1. How to get functions on

H1

f (Gv ,U)?

2. When U is a unipotent fundamental group, L is not graded in
way that’s compatible with the Galois action.
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This second difficulty is partially resolved by Hain’s theory of
weights completions.
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Non-abelian duality: weighted completions

This second difficulty is partially resolved by Hain’s theory of
weights completions.

Let R be the Zariski closure of the image of

GS→Aut(H1(X̄ ,Qp)).

Then R contains the center Gm of Aut(H1(X̄ ,Qp)).



Non-abelian duality: weighted completions

Consider the universal pro-algebraic extension

0→T→GS→R→0

equipped with a lift
GS

GS
-

-

R
?

such that T is pro-unipotent and the action of Gm on H1(T ) has
negative weights.



Non-abelian duality: weighted completions

Then
H1(GS ,U) ≃ H1(GS ,U).

Easy to see by comparing the splittings of the two rows in

1 - U - U ⋊ GS
- GS

- 1

1 - U

=

?

- U ⋊ GS

?

- GS

?

- 1



Non-abelian duality: weighted completions

Furthermore, the exact sequence

0→T→GS→R→0

splits to give R̃ ⊂ GS that maps isomorphically to R , and

GS ≃ T ⋊ R̃ .

In particular, there is a lifted one-parameter subgroup Gm ⊂ GS ,
which gives a grading on all GS modules. (Actually, the Gm-lifting
determines R̃ .)



Non-abelian duality: weighted completions

Corollary

Let N = LieT . The lifting Gm ⊂ GS determines a grading on

[N∗(1)× L∗(1)]⋊ L ⋊ N.
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Non-abelian duality: weighted completions

Corollary

Let N = LieT . The lifting Gm ⊂ GS determines a grading on

[N∗(1)× L∗(1)]⋊ L ⋊ N.

One can use this to construct, in turn, central extensions of

[N∗(1)× L∗(1)]⋊ L ⋊ N;

[N∗(1)× L∗(1)]⋊ U ⋊ T ;

and

[N∗(1)× L∗(1)]⋊ U ⋊ GS ;

which can then be pulled back to

[N∗(1)× L∗(1)]⋊ U ⋊ GS .



Non-abelian duality: weighted completions

Proposition

The Gm lift determines a central extension

0→Qp(1)→E→[N∗(1)× L∗(1)] ⋊ U ⋊ GS→0

giving rise to a boundary map

H1(GS , [N
∗(1)× L∗(1)] ⋊ U)→H2(GS ,Qp(1)).



Non-abelian duality: weighted completions

The central extension can be pulled back to each Gw for w ∈ S , to
give boundary maps

H1(Gw ,N
∗(1)× L∗(1))→H1(Gw , [N

∗(1)× L∗(1)] ⋊ U)
δw

- Qp

H1(Gw ,U)

?



Non-abelian duality: remarks
1. Applying the constructions to the finite level quotients, we get
maps

H1(Gw , [N
∗

n (1)× L∗n(1)] ⋊ Un)
δw ,n

- Qp

and

H1(GS , [N
∗

n (1) × L∗n(1)]⋊ Un)
δn
- H2(GS ,Qp(1)).



Non-abelian duality: remarks
1. Applying the constructions to the finite level quotients, we get
maps

H1(Gw , [N
∗

n (1)× L∗n(1)] ⋊ Un)
δw ,n

- Qp

and

H1(GS , [N
∗

n (1) × L∗n(1)]⋊ Un)
δn
- H2(GS ,Qp(1)).

2. These maps are compatible in the following sense: δn restricted
to

H1(GS , [N
∗

n−1(1)× L∗n−1(1)] ⋊ Un)

is the composition

H1(GS , [N
∗

n−1(1)×L∗n−1(1)]⋊Un)→H1(GS , [N
∗

n−1(1)×L∗n−1(1)]⋊Un−1)

δn−1
- H2(GS ,Qp(1));

and the same for the local versions.



Non-abelian duality: remarks

H1(Gw , [N
∗

n−1
(1)× L∗n−1

(1)]⋊ Un)→֒ H1(Gw , [N
∗

n (1)× L∗n(1)]⋊ Un)
↓ ↓

H1(Gw , [N
∗

n−1
(1)× L∗n−1

(1)]⋊ Un−1)→ Qp



Non-abelian duality: remarks
3. These boundary maps are quite non-trivial. For example,
considering the central subgroup

Ln
n = Un

n := Un+1\Un ⊂ Un,

when the boundary map on

H1(Gw , [N
∗

n (1)× L∗n(1)]⋊ Un)

is restricted to

H1(Gw , [N
∗

n (1)× L∗n(1)] × Ln
n),



Non-abelian duality: remarks
3. These boundary maps are quite non-trivial. For example,
considering the central subgroup

Ln
n = Un

n := Un+1\Un ⊂ Un,

when the boundary map on

H1(Gw , [N
∗

n (1)× L∗n(1)]⋊ Un)

is restricted to

H1(Gw , [N
∗

n (1)× L∗n(1)] × Ln
n),

then it factors through

H1(Gw ,N
∗

n (1)× (Ln
n)

∗(1)× Ln
n).



Non-abelian duality: remarks
On the subspace

H1(Gw , (L
n
n)

∗(1)× Ln
n) ⊂ H1(Gw ,N

∗

n (1)× (Ln
n)

∗(1)× Ln
n),

the induced map is usual Tate duality multiplied by n.



Non-abelian duality: remarks
On the subspace

H1(Gw , (L
n
n)

∗(1)× Ln
n) ⊂ H1(Gw ,N

∗

n (1)× (Ln
n)

∗(1)× Ln
n),

the induced map is usual Tate duality multiplied by n.

H1(Gw , (L
n
n)

∗(1)× Ln
n)

H1(Gw , [N
∗

n (1)× L∗n(1)] × Ln
n)

- H1(Gw ,N
∗

n (1)× (Ln
n)

∗(1)× Ln
n)

?

H1(Gw , [N
∗

n (1)× L∗n(1)]⋊ Un)

?
δw ,n

- Qp

?



Non-abelian duality: a reciprocity law

Theorem
The image of

H1(GS , [N
∗

n (1)× L∗n(1)]⋊ Un)

in ∏
w∈S

H1(Gw , [N
∗

n (1) × L∗n(1)]⋊ Un)

is annihilated by ∑
w

δw .


