Galois Theory and Diophantine geometry ± 12

Minhyong Kim

Heidelberg, February, 2010

Notation and Review

F: Number field.

S: finite set of primes of F.

 $R := \mathcal{O}_F[1/S]$, the ring of S integers in F.

p: odd prime not divisible by primes in S and v a prime of F above p with $F_v = \mathbb{Q}_p$.

 $T := S \cup \{w|p\}.$

 $G := \operatorname{Gal}(\overline{F}/F). \ G_T := \operatorname{Gal}(F_T/T).$

 \mathcal{X} : smooth curve over $\operatorname{Spec}(R)$ with good compactification. (Itself might be compact.)

X: generic fiber of \mathcal{X} , assumed to be hyperbolic.

 $b \in \mathcal{X}(R)$, possibly tangential.

 $U := \pi_1^{et,\mathbb{Q}_p}(\bar{X}, b)$, the \mathbb{Q}_p -pro-unipotent étale fundamental group of $\bar{X} = X \otimes \overline{\mathbb{Q}}$.

 $U^i \subset U$, lower central series, normalized so that $U^1 = U$.

$$U_i = U^{i+1} \backslash U.$$

$$U_j^i = U^{i+1} \setminus U^j \text{ for } j \le i.$$

 $U^{DR} := \pi_1^{DR}(X \otimes \mathbb{Q}_p, b)$, with corresponding notation for the characteristic subquotients.

$$P(x) := \pi_1^{et, \mathbb{Q}_p}(\bar{X}; b, x), P_n(x) = P(x) \times_U U_n.$$
$$P^{DR}(x) := \pi_1^{DR}(X \otimes \mathbb{Q}_p; b, x), \text{ etc.}$$

Unipotent descent tower:

$$x \in \mathcal{X}(R) \mapsto [P(x)] \in H^1_f(G, U).$$

$$\begin{array}{c|c} \mathcal{X}(R) & \longrightarrow \mathcal{X}(R_v) \\ & & & & \\ & & & \\ & & & \\ H^1_f(G, U_n) \xrightarrow{\mathrm{loc}_v} H^1_f(G_v, U_n) \xrightarrow{\simeq} U_n^{DR} / F^0 \end{array}$$

 $H_f^1(G, U)$: moduli space of U-torsors on $\operatorname{Spec}(R[1/p])$ that are crystalline at all w|p.

 $H_f^1(G_v, U_n)$: moduli space of crystalline U-torsors on $\operatorname{Spec}(F_v)$.

The subgroup $F^0 \subset U^{DR}$ is the zeroth level of the *Hodge filtration*, so that U/F^0 classifies U^{DR} torsors with compatible action of Frobenius and reduction of structure group to F^0 . The map

$$H^1_f(G_v, U_n) \longrightarrow U^{DR}_n/F^0$$

sends a U-torsor Y = Spec(A) to

$$D(Y) := \operatorname{Spec}([A \otimes B_{cr}]^{G_v}),$$

and diagram commutes by comparison isomorphism of non-abelian p-adic Hodge theory.

The focus of the study then is the localization map

$$H^1_f(G, U_n) \xrightarrow{\operatorname{loc}_v} H^1_f(G_v, U_n)$$

and its image.

Current status:

1. Whenever the image is not Zariski dense, $\mathcal{X}(R)$ is finite.

$$\mathcal{X}(R) = \mathcal{X}(R_v) \cap \operatorname{loc}_v(H^1_f(G, U_n)).$$

Difficult to prove non-denseness in any situation where the corresponding Galois theory is genuinely non-abelian.

2. Suppose $F = \mathbb{Q}$ and

 $Im(G) \subset Aut(H_1(\bar{X}, \mathbb{Q}_p))$

is essentially abelian. Then loc_v is not dominant for n >> 0. Basic application of Euler characteristic formula

$$\dim H^0(G_T, U_n^n) - \dim H^1(G_T, U_n^n) + \dim H^2(G_T, U_n^n)$$
$$= \sum_{w \mid \infty} (H^0(G_w, U_n^n) - [F_w : \mathbb{R}] \dim U_n^n)$$

and control of H^2 . In non-abelian situations, leads to difficult questions about Galois cohomology.

3. One expects greater precision coming from some version of duality for Galois cohomology.

Example:

 E/\mathbb{Q} elliptic curve with

 $\operatorname{rank} E(\mathbb{Q}) = 1,$

integral j-invariant, and

 $|\mathrm{III}(E)[p^{\infty}| < \infty$

for a prime p of good reduction.

 $X = E \setminus \{0\}$ given as a minimal Weierstrass model:

$$y^2 = x^3 + ax + b.$$

So

$$X(\mathbb{Z}) \subset E(\mathbb{Z}) = E(\mathbb{Q}).$$

Let $\alpha = dx/y$, $\beta = xdx/y$. Get analytic functions on $X(\mathbb{Q}_p)$,

$$\log_{\alpha}(z) = \int_{b}^{z} \alpha; \quad \log_{\beta}(z) = \int_{b}^{z} \beta;$$
$$\omega(z) = \int_{b}^{z} \alpha\beta.$$

Here, b is a tangential base-point at 0, and the integral is (iterated) Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while for the iteration,

$$d\omega = (\int_b^z \beta)\alpha.$$

Suppose there is a point $y \in X(\mathbb{Z})$ of infinite order in $E(\mathbb{Q})$. Then the subset

 $X(\mathbb{Z}) \subset X(\mathbb{Q}_p)$

lies in the zero set of the analytic function

$$\psi(z) := \omega(z) - (1/2) \log_{\alpha}(z) \log_{\beta}(z)$$
$$-\frac{(\omega(y) - (1/2) \log_{\alpha}(y) \log_{\beta}(y))}{(\log_{\alpha}(y))^2} (\log_{\alpha}(z))^2.$$

A fragment of non-abelian duality and explicit reciprocity.

Linearization

Study the *tangential localization map*:

$$d \operatorname{loc}_v(c) : T_c H^1_f(G, U) \to T_{\operatorname{loc}_v(c)} H^1_f(G_v, U)$$

at a point $c \in H^1_f(G, U)$.

Formulae:

 $T_c H^1_f(G, U) \simeq H^1_f(G, L(c));$ $T_{\operatorname{loc}_v(c)} H^1_f(G_v, U) \simeq H^1_f(G_v, L(c));$

where L is the Lie algebra of U with Galois action twisted by the cocycle c.

For non-denseness, suffices to show that $d \log_v(c)$ is not surjective at generic points c.

Can formulate a criterion in terms of the cotangent space:

 $T^*_{\operatorname{loc}_v(c)}H^1_f(G_v, U) \simeq H^1(G_v, (L(c))^*(1)) / H^1_f(G_v, (L(c))^*(1))$

coming from local Tate duality.

Theorem 0.1 Assume that for generic c there is a class $z \in H^1(G_T, (L_n(c))^*(1))$

such that $loc_w(z) = 0$ for $w \neq v$ and

 $loc_v(z) \notin H^1_f(G_v, (L_n(c))^*(1)).$

Then

$$loc_v: H^1_f(G, U_n) \rightarrow H^1_f(G_v, U_n)$$

is not dominant.

Proof.

By Poitou-Tate duality, we know that the images of the localization maps

$$\operatorname{loc}_T: H^1(G_T, L_n(c)) \to \bigoplus_{w \in T} H^1(G_w, L_n(c))$$

and

$$loc_T : H^1(G_T, (L_n(c))^*(1)) \to \bigoplus_{w \in T} H^1(G_w, (L_n(c))^*(1))$$

are exact annihilators under the natural pairing

 $\langle \cdot, \cdot \rangle : \oplus_{w \in T} H^1(G_w, L_n(c)) \times \oplus_{w \in T} H^1(G_w, (L_n(c))^*(1)) \rightarrow \mathbb{Q}_p.$

With respect to the pairing $\langle \cdot, \cdot \rangle_v$ at $v, H^1_f(G_v, L_n(c))$ and $H^1_f(G_v, (L_n(c))^*(1))$ are mutual annihilators.

Given any element $(a_w) \in \bigoplus_{w \in T} H^1(G_w, L_n(c))$, we have

$$< \log_T(z), (a_w) > = < \log_v(z), a_v >_v .$$

Hence, for any $a \in H^1_f(G, L_n(c))$, we get

$$< \log_v(a), \log_v(z) >_v = < \log_T(a), \log_T(z) > = 0.$$

Since $\langle \cdot, \text{loc}_v(z) \rangle$ defines a non-trivial linear functional on $H^1_f(G_v, L_n(c))$, this implies the desired results. \Box

Duality in families

In the following, Γ is G_T or G_v .

Given a point c of $H^1(\Gamma, U)$ in a \mathbb{Q}_p -algebra R, compose it with a section s of the projection

 $Z^1(\Gamma, U) \rightarrow H^1(\Gamma, U)$

to get an element of $Z^1(\Gamma, U)(R) = Z^1(\Gamma, U(R)).$

Given representation

 $\rho: U \rightarrow \operatorname{Aut}(E)$

of U, twist it with the cocycle c to get ρ_c acting on $E(R) = E \otimes_{\mathbb{Q}_p} R$ defined by

 $\rho_c(g)x = Ad(c(g))\rho(g)x.$

The cocycles $Z^i(\Gamma, E(c)(R))$ and the cohomology $H^i(\Gamma, E(c)(R))$, acquire structures of R modules, defining a sheaf $H^i(\Gamma, \mathcal{L})$ of modules on $H^i(\Gamma, U)$.

Carry this out for the Lie algebra L to get the sheaf $H^i(\Gamma, \mathcal{L})$, as well as for the dual $L^*(1)$ to get the Tate dual sheaf $H^i(\Gamma, \mathcal{L}^*(1))$. Similarly, for each term L^i_j occurring in the descending central series:

 $H^i(\Gamma, \mathcal{L}^i_j), \quad H^i(\Gamma, (\mathcal{L}^i_j)^*(1)).$

We have exact sequences,

$$0 \to H^1(\Gamma, \mathcal{L}_n^n)(R) \to H^1(\Gamma, \mathcal{L}_n^i)(R) \to H^1(\Gamma, \mathcal{L}_{n-1}^i)(R)$$
$$\xrightarrow{\delta} H^2(\Gamma, \mathcal{L}_n^n)(R)$$

and

 $\begin{aligned} & H^0(\Gamma, (\mathcal{L}_n^n)^*(1)) \\ \to & H^1(\Gamma, (\mathcal{L}_{n-1}^i)^*(1))(R) \to H^1(\Gamma, (\mathcal{L}_n^i)^*(1))(R) \to H^1(\Gamma, (\mathcal{L}_n^n)^*(1))(R) \\ & \stackrel{\delta}{\to} H^2(\Gamma, (\mathcal{L}_{n-1}^i)^*(1))(R) \end{aligned}$

Furthermore,

 $H^{i}(\Gamma, (\mathcal{L}_{n}^{n})^{*}(1))(R) \simeq H^{i}(\Gamma, (L_{n}^{n})^{*}(1))) \otimes R;$ $H^{i}(\Gamma, \mathcal{L}_{n}^{n})(R) \simeq H^{i}(\Gamma, L_{n}^{n}) \otimes R.$ By induction on *n*, we see that both $H^{1}(\Gamma, \mathcal{L}_{n}^{i})$ and $H^{1}(\Gamma, (\mathcal{L}_{n}^{i})^{*}(1))$ are coherent sheaves.

Now consider the case where $\Gamma = G_v$.

The sheaves

$$H^1(G_v, (\mathcal{L}_n^i)^*(1))$$

and

$$H^1(G_v, \mathcal{L}_n^i)$$

are locally free for $i \geq 2$, and we have arbitrary base-change

$$H^{1}(G_{v}, (\mathcal{L}_{n}^{i})^{*}(1))(R) \otimes A = H^{1}(G_{v}, (\mathcal{L}_{n}^{i})^{*}(1))(A);$$
$$H^{1}(G_{v}, \mathcal{L}_{n}^{i})(R) \otimes A = H^{1}(G_{v}, \mathcal{L}_{n}^{i})(A);$$

Global sheaves are more complicated in general.

The cup product pairings

 $H^{2}(G_{v}, \mathcal{L}_{n}^{i})(R) \times H^{0}(G_{v}, (\mathcal{L}_{n}^{i})^{*}(1))(R) \rightarrow H^{2}(G_{v}, \mathbb{Q}_{p}(1)) \otimes R \simeq R;$ $H^{1}(G_{v}, \mathcal{L}_{n}^{i})(R) \times H^{1}(G_{v}, (\mathcal{L}_{n}^{i})^{*}(1))(R) \rightarrow H^{2}(G_{v}, \mathbb{Q}_{p}(1)) \otimes R \simeq R.$ define maps

$$H^{0}(G_{v}, (\mathcal{L}_{n}^{i})^{*}(1))(R) \rightarrow H^{2}(G_{v}, \mathcal{L}_{n}^{i})(R)^{*};$$
$$H^{1}(G_{v}, (\mathcal{L}_{n}^{i})^{*}(1))(R) \rightarrow H^{1}(G_{v}, \mathcal{L}_{n}^{i})(R)^{*},$$

which are isomorphisms for $i \geq 2$.

Back to $\mathbb{P}^1 \setminus \{0, 1, \infty\}$

 $X = \mathbb{P}^1 \setminus \{0, 1, \infty\}.$

U is freely generated by two elements e and f lifting generators of $U_1 = \mathbb{Q}_p(1) \oplus \mathbb{Q}_p(1).$

However, using tangential basepoint, can make f stable under the Galois action:

$$gf = \chi(g)f.$$

 $I \subset Lie(U)$: ideal generated by Lie monomials in e and f degree at least two in f.

N = Lie(U)/I and M corresponding quotient group of U.

 $N_1 = Lie(U)_1 = H_1(\bar{X}, \mathbb{Q}_p).$ $N_k^k = N^{k+1} \setminus N^k$ is one-dimensional, generated by $ad(e)^{k-1}(f).$ We have a decomposition of Galois representations

$$N^2 = \bigoplus_{i=2}^{\infty} N^{i+1} \backslash N^i$$

with $N^{i+1} \setminus N^i \simeq \mathbb{Q}_p(i)$.

Structure of N(c) for c non-trivial can be more complicated.

However,

$$H^{2}(\Gamma, N_{n}^{n}) = H^{2}(\Gamma, \mathbb{Q}_{p}(n)) = 0$$

for $n \geq 2$. Furthermore, there exists a $K \geq 2$ such that

$$H^{2}(\Gamma, (N_{n}^{n})^{*}(1)) = 0$$

for $n \geq K$.

As a consequence, global cohomology variety is smooth, and

 $\dim H^2(\Gamma, N_n(c)), \quad \dim H^2(\Gamma, (N_n(c))^*(1))$

are bounded independently of n and c.

Short exact sequences:

 $0 \rightarrow H^{1}(\Gamma, \mathcal{N}_{n}^{n}) \rightarrow H^{1}(\Gamma, \mathcal{N}_{n}^{i}) \rightarrow H^{1}(\Gamma, \mathcal{N}_{n-1}^{i}) \rightarrow 0$ $0 \rightarrow H^{1}(\Gamma, (\mathcal{N}_{n}^{n})^{*}(1)) \rightarrow H^{1}(\Gamma, (\mathcal{N}_{n}^{i})^{*}(1)) \rightarrow H^{1}(\Gamma, (\mathcal{N}_{n-1}^{i})^{*}(1)) \rightarrow 0$ of locally-free sheaves and arbitrary base-change $H^{1}(\Gamma, \mathcal{N}_{n}^{i})(R) \otimes A \simeq H^{1}(\Gamma, \mathcal{N}_{n}^{i})(A),$

 $H^1(\Gamma, (\mathcal{N}_n^i)^*(1))(R) \otimes A \simeq H^1(\Gamma, (\mathcal{N}_n^i)^*(1))(A)$

locally and globally, for $i \ge K$.

Some consequences:

-We have an embedding

$$H^1(G_T, (\mathcal{N}_n^i)^*(1)) \hookrightarrow \prod_{w|p} \operatorname{loc}_w^* H^1(G_v, (\mathcal{N}_n^i)^*(1))$$

as a local direct factor for $i \geq K$.

-After base change to any smooth curve mapping to $H^1(G_T, M_n)$, the image of the map

$$H^1(G_T, (\mathcal{N}_n^i)^*(1)) \to \prod_{w \mid p, w \neq v} \operatorname{loc}_w^* H^1(G_v, (\mathcal{N}_n^i)^*(1))$$

is a local direct factor for $i \geq K$.

-The kernel Ker_n^i of the the above map is a local direct factor that commutes with base-change for $i \geq K$.

Now we analyze all these objects at the tangential base-point.

Define

$$N_n^+ := \bigoplus_{K \le i \le n, \text{even}} N^i / N^{i+1}.$$

Proposition 0.2 Let F be totally real. There is a subspace $Z_n^K \subset H^1(G_T, [N_n^K]^*(1))$ such that $loc_w(Z_n^K) = 0$ for $w \neq v$ and

 $loc_v: Z_n \simeq H^1(G_v, [N_n^+]^*(1)).$

Key point is that

$$N_n^K = \bigoplus_{i=K}^n N_i^i.$$

and

$$H^1(G_T, \mathbb{Q}_p(1-i)) \simeq \bigoplus_{w|p} H^1(G_w, \mathbb{Q}_p(1-i))$$

for $i \geq K$ even, while

$$H^1(G_T, \mathbb{Q}_p(1-i)) = 0$$

for $i \geq K$ odd.

By deforming this subspace to the nearby fibers, we get

Proposition 0.3 Let F be totally real. At a generic point c, there is a subspace $Z_n^K(c) \subset H^1(G_T, (N_n^K(c))^*(1))$ of dimension $\geq \lfloor (n-K)/2 \rfloor$ such that

$$loc_w(Z_n^K(c)) = 0$$

for $w \neq v$ and

 $loc_v: Z_n^K(c) \hookrightarrow H^1(G_v, (N_n^K(c))^*(1)).$

Proposition 0.4 Let F be totally real. Then for n sufficiently large, and generic c there is an element $z \in H^1(G_T, N_n^*(1)(c))$ such that $loc_w(z) = 0$ for $w \neq v$ and

 $loc_v(z) \notin H^1_f(G_v, N^*_n(1)(c)).$

Proof.

Note that $\dim Z_n^K(c) \ge \lfloor (n-K)/2 \rfloor$. From the exact sequence

$$0 \to [N_{K-1}(c)]^*(1) \to [N_n(c)]^*(1) \to [N_n^K(c)]^*(1) \to 0,$$

we get

$$0 \to H^{1}(G_{T}, [N_{K-1}(c)]^{*}(1)) \to H^{1}(G_{T}, [N_{n}(c)]^{*}(1)) \to$$
$$\to H^{1}(G_{T}, [N_{n}^{K}(c)]^{*}(1)) \to H^{2}(G_{T}, [N_{K-1}(c)]^{*}(1)),$$

and an exact sequence

 $0 \to H^1(G_T, [N_{K-1}(c)]^*(1)) \to H^1(G_T, [N_n(c)]^*(1)) \to Im_n \to 0,$

for a subspace

 $Im_n \subset H^1(G_T, [N_n^K(c)]^*(1))$

of codimension at most $\dim H^2(G_T, [N_{K-1}(c)]^*(1))$.

Clearly,

$$\dim Z_n^K(c) \cap Im_n \to \infty$$

as $n \rightarrow \infty$. But the cokernel of

 $H^1(G_T, [N_{K-1}(c)]^*(1)) \to \bigoplus_{w \mid p, w \neq v} H^1(G_w, [N_{K-1}(c)]^*(1))$

has of course dimension bounded independently of n.

So we see from the snake lemma that there is an element

 $z \in H^1(G_T, [N_n(c)]^*(1))$

lifting an element of $Z_n(c) \cap Im_n$, such that

$$\operatorname{loc}_w(z) = 0$$

for $w \in T, w \neq v$ and

$$\operatorname{loc}_{v}(z) \neq 0.$$

In fact, since z is being chosen to map to a non-zero element of $\dim Z_n(c) \cap Im_n$ and $H^1_f(G_v, [N_n^K(c)]^*(1)) = 0$, we see that

 $loc_v(z) \notin H^1_f(G_v, [N_n(c)]^*(1)).$

Corollary 0.5 For n sufficiently large,

$$T_c H^1_f(G_T, M_n) \to T_{loc_v(c)} H^1_f(G_v, M_n)$$

is not surjective.