Galois Theory and Diophantine geometry ± 12

Minhyong Kim

Heidelberg, February, 2010

Notation and Review

F : Number field.
S : finite set of primes of F.
$R:=\mathcal{O}_{F}[1 / S]$, the ring of S integers in F.
p : odd prime not divisible by primes in S and v a prime of F above p with $F_{v}=\mathbb{Q}_{p}$.
$T:=S \cup\{w \mid p\}$.
$G:=\operatorname{Gal}(\bar{F} / F) . G_{T}:=\operatorname{Gal}\left(F_{T} / T\right)$.
\mathcal{X} : smooth curve over $\operatorname{Spec}(R)$ with good compactification. (Itself might be compact.)
X : generic fiber of \mathcal{X}, assumed to be hyperbolic.
$b \in \mathcal{X}(R)$, possibly tangential.
$U:=\pi_{1}^{e t, \mathbb{Q}_{p}}(\bar{X}, b)$, the \mathbb{Q}_{p}-pro-unipotent étale fundamental group of $\bar{X}=X \otimes \overline{\mathbb{Q}}$.
$U^{i} \subset U$, lower central series, normalized so that $U^{1}=U$.
$U_{i}=U^{i+1} \backslash U$.
$U_{j}^{i}=U^{i+1} \backslash U^{j}$ for $j \leq i$.
$U^{D R}:=\pi_{1}^{D R}\left(X \otimes \mathbb{Q}_{p}, b\right)$, with corresponding notation for the characteristic subquotients.
$P(x):=\pi_{1}^{e t, \mathbb{Q}_{p}}(\bar{X} ; b, x), P_{n}(x)=P(x) \times_{U} U_{n}$.
$P^{D R}(x):=\pi_{1}^{D R}\left(X \otimes \mathbb{Q}_{p} ; b, x\right)$, etc.

Unipotent descent tower:

$H_{f}^{1}(G, U)$: moduli space of U-torsors on $\operatorname{Spec}(R[1 / p])$ that are crystalline at all $w \mid p$.
$H_{f}^{1}\left(G_{v}, U_{n}\right)$: moduli space of crystalline U-torsors on $\operatorname{Spec}\left(F_{v}\right)$.
The subgroup $F^{0} \subset U^{D R}$ is the zeroth level of the Hodge filtration, so that U / F^{0} classifies $U^{D R}$ torsors with compatible action of Frobenius and reduction of structure group to F^{0}.

The map

$$
H_{f}^{1}\left(G_{v}, U_{n}\right) \longrightarrow U_{n}^{D R} / F^{0}
$$

sends a U-torsor $Y=\operatorname{Spec}(A)$ to

$$
D(Y):=\operatorname{Spec}\left(\left[A \otimes B_{c r}\right]^{G_{v}}\right)
$$

and diagram commutes by comparison isomorphism of non-abelian p-adic Hodge theory.

The focus of the study then is the localization map

$$
H_{f}^{1}\left(G, U_{n}\right) \xrightarrow{\operatorname{loc}_{v}} H_{f}^{1}\left(G_{v}, U_{n}\right)
$$

and its image.

Current status:

1. Whenever the image is not Zariski dense, $\mathcal{X}(R)$ is finite.

$$
\mathcal{X}(R)=\mathcal{X}\left(R_{v}\right) \cap \operatorname{loc}_{v}\left(H_{f}^{1}\left(G, U_{n}\right)\right)
$$

Difficult to prove non-denseness in any situation where the corresponding Galois theory is genuinely non-abelian.
2. Suppose $F=\mathbb{Q}$ and

$$
\operatorname{Im}(G) \subset \operatorname{Aut}\left(H_{1}\left(\bar{X}, \mathbb{Q}_{p}\right)\right.
$$

is essentially abelian. Then loc_{v} is not dominant for $n \gg 0$.
Basic application of Euler characteristic formula

$$
\begin{aligned}
& \operatorname{dim} H^{0}\left(G_{T}, U_{n}^{n}\right)-\operatorname{dim} H^{1}\left(G_{T}, U_{n}^{n}\right)+\operatorname{dim} H^{2}\left(G_{T}, U_{n}^{n}\right) \\
& \quad=\sum_{w \mid \infty}\left(H^{0}\left(G_{w}, U_{n}^{n}\right)-\left[F_{w}: \mathbb{R}\right] \operatorname{dim} U_{n}^{n}\right)
\end{aligned}
$$

and control of H^{2}. In non-abelian situations, leads to difficult questions about Galois cohomology.
3. One expects greater precision coming from some version of duality for Galois cohomology.

Example:
E / \mathbb{Q} elliptic curve with

$$
\operatorname{rank} E(\mathbb{Q})=1
$$

integral j-invariant, and

$$
\mid \amalg(E)\left[p^{\infty} \mid<\infty\right.
$$

for a prime p of good reduction.
$X=E \backslash\{0\}$ given as a minimal Weierstrass model:

$$
y^{2}=x^{3}+a x+b
$$

So

$$
X(\mathbb{Z}) \subset E(\mathbb{Z})=E(\mathbb{Q}) .
$$

Let $\alpha=d x / y, \beta=x d x / y$. Get analytic functions on $X\left(\mathbb{Q}_{p}\right)$,

$$
\begin{gathered}
\log _{\alpha}(z)=\int_{b}^{z} \alpha ; \quad \log _{\beta}(z)=\int_{b}^{z} \beta ; \\
\omega(z)=\int_{b}^{z} \alpha \beta .
\end{gathered}
$$

Here, b is a tangential base-point at 0 , and the integral is (iterated) Coleman integration.

Locally, the integrals are just anti-derivatives of the forms, while for the iteration,

$$
d \omega=\left(\int_{b}^{z} \beta\right) \alpha .
$$

Suppose there is a point $y \in X(\mathbb{Z})$ of infinite order in $E(\mathbb{Q})$. Then the subset

$$
X(\mathbb{Z}) \subset X\left(\mathbb{Q}_{p}\right)
$$

lies in the zero set of the analytic function

$$
\begin{gathered}
\psi(z):=\omega(z)-(1 / 2) \log _{\alpha}(z) \log _{\beta}(z) \\
-\frac{\left(\omega(y)-(1 / 2) \log _{\alpha}(y) \log _{\beta}(y)\right)}{\left(\log _{\alpha}(y)\right)^{2}}\left(\log _{\alpha}(z)\right)^{2} .
\end{gathered}
$$

A fragment of non-abelian duality and explicit reciprocity.

Linearization

Study the tangential localization map:

$$
d \operatorname{loc}_{v}(c): T_{c} H_{f}^{1}(G, U) \rightarrow T_{\operatorname{loc}_{v}(c)} H_{f}^{1}\left(G_{v}, U\right)
$$

at a point $c \in H_{f}^{1}(G, U)$.
Formulae:

$$
\begin{gathered}
T_{c} H_{f}^{1}(G, U) \simeq H_{f}^{1}(G, L(c)) ; \\
T_{\mathrm{loc}_{v}(c)} H_{f}^{1}\left(G_{v}, U\right) \simeq H_{f}^{1}\left(G_{v}, L(c)\right) ;
\end{gathered}
$$

where L is the Lie algebra of U with Galois action twisted by the cocycle c.

For non-denseness, suffices to show that $d \operatorname{loc}_{v}(c)$ is not surjective at generic points c.

Can formulate a criterion in terms of the cotangent space:

$$
T_{\operatorname{loc}_{v}(c)}^{*} H_{f}^{1}\left(G_{v}, U\right) \simeq H^{1}\left(G_{v},(L(c))^{*}(1)\right) / H_{f}^{1}\left(G_{v},(L(c))^{*}(1)\right)
$$

coming from local Tate duality.

Theorem 0.1 Assume that for generic c there is a class

$$
z \in H^{1}\left(G_{T},\left(L_{n}(c)\right)^{*}(1)\right)
$$

such that $\operatorname{loc}_{w}(z)=0$ for $w \neq v$ and

$$
l o c_{v}(z) \notin H_{f}^{1}\left(G_{v},\left(L_{n}(c)\right)^{*}(1)\right) .
$$

Then

$$
l o c_{v}: H_{f}^{1}\left(G, U_{n}\right) \rightarrow H_{f}^{1}\left(G_{v}, U_{n}\right)
$$

is not dominant.

Proof.

By Poitou-Tate duality, we know that the images of the localization maps

$$
\operatorname{loc}_{T}: H^{1}\left(G_{T}, L_{n}(c)\right) \rightarrow \oplus_{w \in T} H^{1}\left(G_{w}, L_{n}(c)\right)
$$

and

$$
\operatorname{loc}_{T}: H^{1}\left(G_{T},\left(L_{n}(c)\right)^{*}(1)\right) \rightarrow \oplus_{w \in T} H^{1}\left(G_{w},\left(L_{n}(c)\right)^{*}(1)\right)
$$

are exact annihilators under the natural pairing

$$
<\cdot, \cdot>: \oplus_{w \in T} H^{1}\left(G_{w}, L_{n}(c)\right) \times \oplus_{w \in T} H^{1}\left(G_{w},\left(L_{n}(c)\right)^{*}(1)\right) \rightarrow \mathbb{Q}_{p}
$$

With respect to the pairing $<\cdot, \cdot>_{v}$ at $v, H_{f}^{1}\left(G_{v}, L_{n}(c)\right)$ and $H_{f}^{1}\left(G_{v},\left(L_{n}(c)\right)^{*}(1)\right)$ are mutual annihilators.

Given any element $\left(a_{w}\right) \in \oplus_{w \in T} H^{1}\left(G_{w}, L_{n}(c)\right)$, we have

$$
<\operatorname{loc}_{T}(z),\left(a_{w}\right)>=<\operatorname{loc}_{v}(z), a_{v}>_{v}
$$

Hence, for any $a \in H_{f}^{1}\left(G, L_{n}(c)\right)$, we get

$$
<\operatorname{loc}_{v}(a), \operatorname{loc}_{v}(z)>_{v}=<\operatorname{loc}_{T}(a), \operatorname{loc}_{T}(z)>=0 .
$$

Since $<\cdot, \operatorname{loc}_{v}(z)>$ defines a non-trivial linear functional on $H_{f}^{1}\left(G_{v}, L_{n}(c)\right)$, this implies the desired results.

Duality in families

In the following, Γ is G_{T} or G_{v}.
Given a point c of $H^{1}(\Gamma, U)$ in a \mathbb{Q}_{p}-algebra R, compose it with a section s of the projection

$$
Z^{1}(\Gamma, U) \rightarrow H^{1}(\Gamma, U)
$$

to get an element of $Z^{1}(\Gamma, U)(R)=Z^{1}(\Gamma, U(R))$.
Given representation

$$
\rho: U \rightarrow \operatorname{Aut}(E)
$$

of U, twist it with the cocycle c to get ρ_{c} acting on $E(R)=E \otimes_{\mathbb{Q}_{p}} R$ defined by

$$
\rho_{c}(g) x=A d(c(g)) \rho(g) x .
$$

The cocycles $Z^{i}(\Gamma, E(c)(R))$ and the cohomology $H^{i}(\Gamma, E(c)(R))$, acquire structures of R modules, defining a sheaf $H^{i}(\Gamma, \mathcal{L})$ of modules on $H^{i}(\Gamma, U)$.

Carry this out for the Lie algebra L to get the sheaf $H^{i}(\Gamma, \mathcal{L})$, as well as for the dual $L^{*}(1)$ to get the Tate dual sheaf $H^{i}\left(\Gamma, \mathcal{L}^{*}(1)\right)$.

Similarly, for each term L_{j}^{i} occurring in the descending central series:

$$
H^{i}\left(\Gamma, \mathcal{L}_{j}^{i}\right), \quad H^{i}\left(\Gamma,\left(\mathcal{L}_{j}^{i}\right)^{*}(1)\right) .
$$

We have exact sequences,

$$
\begin{aligned}
0 \rightarrow H^{1}\left(\Gamma, \mathcal{L}_{n}^{n}\right)(R) & \rightarrow H^{1}\left(\Gamma, \mathcal{L}_{n}^{i}\right)(R) \rightarrow H^{1}\left(\Gamma, \mathcal{L}_{n-1}^{i}\right)(R) \\
& \xrightarrow{\delta} H^{2}\left(\Gamma, \mathcal{L}_{n}^{n}\right)(R)
\end{aligned}
$$

and

$$
\begin{gathered}
H^{0}\left(\Gamma,\left(\mathcal{L}_{n}^{n}\right)^{*}(1)\right) \\
\rightarrow H^{1}\left(\Gamma,\left(\mathcal{L}_{n-1}^{i}\right)^{*}(1)\right)(R) \rightarrow H^{1}\left(\Gamma,\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)(R) \rightarrow H^{1}\left(\Gamma,\left(\mathcal{L}_{n}^{n}\right)^{*}(1)\right)(R) \\
\stackrel{\delta}{\rightarrow} H^{2}\left(\Gamma,\left(\mathcal{L}_{n-1}^{i}\right)^{*}(1)\right)(R)
\end{gathered}
$$

Furthermore,

$$
\begin{aligned}
H^{i}\left(\Gamma,\left(\mathcal{L}_{n}^{n}\right)^{*}(1)\right)(R) & \left.\simeq H^{i}\left(\Gamma,\left(L_{n}^{n}\right)^{*}(1)\right)\right) \otimes R \\
H^{i}\left(\Gamma, \mathcal{L}_{n}^{n}\right)(R) & \simeq H^{i}\left(\Gamma, L_{n}^{n}\right) \otimes R
\end{aligned}
$$

By induction on n, we see that both $H^{1}\left(\Gamma, \mathcal{L}_{n}^{i}\right)$ and $H^{1}\left(\Gamma,\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)$ are coherent sheaves.

Now consider the case where $\Gamma=G_{v}$.
The sheaves

$$
H^{1}\left(G_{v},\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)
$$

and

$$
H^{1}\left(G_{v}, \mathcal{L}_{n}^{i}\right)
$$

are locally free for $i \geq 2$, and we have arbitrary base-change

$$
\begin{gathered}
H^{1}\left(G_{v},\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)(R) \otimes A=H^{1}\left(G_{v},\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)(A) \\
H^{1}\left(G_{v}, \mathcal{L}_{n}^{i}\right)(R) \otimes A=H^{1}\left(G_{v}, \mathcal{L}_{n}^{i}\right)(A)
\end{gathered}
$$

Global sheaves are more complicated in general.

The cup product pairings

$$
\begin{aligned}
& H^{2}\left(G_{v}, \mathcal{L}_{n}^{i}\right)(R) \times H^{0}\left(G_{v},\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)(R) \rightarrow H^{2}\left(G_{v}, \mathbb{Q}_{p}(1)\right) \otimes R \simeq R ; \\
& H^{1}\left(G_{v}, \mathcal{L}_{n}^{i}\right)(R) \times H^{1}\left(G_{v},\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)(R) \rightarrow H^{2}\left(G_{v}, \mathbb{Q}_{p}(1)\right) \otimes R \simeq R .
\end{aligned}
$$

define maps

$$
\begin{aligned}
& H^{0}\left(G_{v},\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)(R) \rightarrow H^{2}\left(G_{v}, \mathcal{L}_{n}^{i}\right)(R)^{*} ; \\
& H^{1}\left(G_{v},\left(\mathcal{L}_{n}^{i}\right)^{*}(1)\right)(R) \rightarrow H^{1}\left(G_{v}, \mathcal{L}_{n}^{i}\right)(R)^{*},
\end{aligned}
$$

which are isomorphisms for $i \geq 2$.

Back to $\mathbb{P}^{1} \backslash\{0,1, \infty\}$

$X=\mathbb{P}^{1} \backslash\{0,1, \infty\}$.
U is freely generated by two elements e and f lifting generators of $U_{1}=\mathbb{Q}_{p}(1) \oplus \mathbb{Q}_{p}(1)$.
However, using tangential basepoint, can make f stable under the Galois action:

$$
g f=\chi(g) f .
$$

$I \subset \operatorname{Lie}(U)$: ideal generated by Lie monomials in e and f degree at least two in f.
$N=\operatorname{Lie}(U) / I$ and M corresponding quotient group of U.
$N_{1}=\operatorname{Lie}(U)_{1}=H_{1}\left(\bar{X}, \mathbb{Q}_{p}\right)$.
$N_{k}^{k}=N^{k+1} \backslash N^{k}$ is one-dimensional, generated by $\operatorname{ad}(e)^{k-1}(f)$.
We have a decomposition of Galois representations

$$
N^{2}=\oplus_{i=2}^{\infty} N^{i+1} \backslash N^{i}
$$

with $N^{i+1} \backslash N^{i} \simeq \mathbb{Q}_{p}(i)$.
Structure of $N(c)$ for c non-trivial can be more complicated.

However,

$$
H^{2}\left(\Gamma, N_{n}^{n}\right)=H^{2}\left(\Gamma, \mathbb{Q}_{p}(n)\right)=0
$$

for $n \geq 2$. Furthermore, there exists a $K \geq 2$ such that

$$
H^{2}\left(\Gamma,\left(N_{n}^{n}\right)^{*}(1)\right)=0
$$

for $n \geq K$.
As a consequence, global cohomology variety is smooth, and

$$
\operatorname{dim} H^{2}\left(\Gamma, N_{n}(c)\right), \quad \operatorname{dim} H^{2}\left(\Gamma,\left(N_{n}(c)\right)^{*}(1)\right)
$$

are bounded independently of n and c.

Short exact sequences:

$$
\begin{gathered}
0 \rightarrow H^{1}\left(\Gamma, \mathcal{N}_{n}^{n}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{N}_{n}^{i}\right) \rightarrow H^{1}\left(\Gamma, \mathcal{N}_{n-1}^{i}\right) \rightarrow 0 \\
0 \rightarrow H^{1}\left(\Gamma,\left(\mathcal{N}_{n}^{n}\right)^{*}(1)\right) \rightarrow H^{1}\left(\Gamma,\left(\mathcal{N}_{n}^{i}\right)^{*}(1)\right) \rightarrow H^{1}\left(\Gamma,\left(\mathcal{N}_{n-1}^{i}\right)^{*}(1)\right) \rightarrow 0
\end{gathered}
$$

of locally-free sheaves and arbitrary base-change

$$
\begin{aligned}
& H^{1}\left(\Gamma, \mathcal{N}_{n}^{i}\right)(R) \otimes A \simeq H^{1}\left(\Gamma, \mathcal{N}_{n}^{i}\right)(A) \\
& H^{1}\left(\Gamma,\left(\mathcal{N}_{n}^{i}\right)^{*}(1)\right)(R) \otimes A \simeq H^{1}\left(\Gamma,\left(\mathcal{N}_{n}^{i}\right)^{*}(1)\right)(A)
\end{aligned}
$$

locally and globally, for $i \geq K$.

Some consequences:
-We have an embedding

$$
H^{1}\left(G_{T},\left(\mathcal{N}_{n}^{i}\right)^{*}(1)\right) \hookrightarrow \prod_{w \mid p} \operatorname{loc}_{w}^{*} H^{1}\left(G_{v},\left(\mathcal{N}_{n}^{i}\right)^{*}(1)\right)
$$

as a local direct factor for $i \geq K$.
-After base change to any smooth curve mapping to $H^{1}\left(G_{T}, M_{n}\right)$, the image of the map

$$
H^{1}\left(G_{T},\left(\mathcal{N}_{n}^{i}\right)^{*}(1)\right) \rightarrow \prod_{w \mid p, w \neq v} \operatorname{loc}_{w}^{*} H^{1}\left(G_{v},\left(\mathcal{N}_{n}^{i}\right)^{*}(1)\right)
$$

is a local direct factor for $i \geq K$.
-The kernel $K e r_{n}^{i}$ of the the above map is a local direct factor that commutes with base-change for $i \geq K$.

Now we analyze all these objects at the tangential base-point.

Define

$$
N_{n}^{+}:=\oplus_{K \leq i \leq n, \operatorname{even}} N^{i} / N^{i+1} .
$$

Proposition 0.2 Let F be totally real. There is a subspace $Z_{n}^{K} \subset H^{1}\left(G_{T},\left[N_{n}^{K}\right]^{*}(1)\right)$ such that $\operatorname{loc}_{w}\left(Z_{n}^{K}\right)=0$ for $w \neq v$ and

$$
l o c_{v}: Z_{n} \simeq H^{1}\left(G_{v},\left[N_{n}^{+}\right]^{*}(1)\right)
$$

Key point is that

$$
N_{n}^{K}=\oplus_{i=K}^{n} N_{i}^{i} .
$$

and

$$
H^{1}\left(G_{T}, \mathbb{Q}_{p}(1-i)\right) \simeq \oplus_{w \mid p} H^{1}\left(G_{w}, \mathbb{Q}_{p}(1-i)\right)
$$

for $i \geq K$ even, while

$$
H^{1}\left(G_{T}, \mathbb{Q}_{p}(1-i)\right)=0
$$

for $i \geq K$ odd.

By deforming this subspace to the nearby fibers, we get
Proposition 0.3 Let F be totally real. At a generic point c, there is a subspace $Z_{n}^{K}(c) \subset H^{1}\left(G_{T},\left(N_{n}^{K}(c)\right)^{*}(1)\right)$ of dimension $\geq\lfloor(n-K) / 2\rfloor$ such that

$$
l o c_{w}\left(Z_{n}^{K}(c)\right)=0
$$

for $w \neq v$ and

$$
l o c_{v}: Z_{n}^{K}(c) \hookrightarrow H^{1}\left(G_{v},\left(N_{n}^{K}(c)\right)^{*}(1)\right)
$$

Proposition 0.4 Let F be totally real. Then for n sufficiently large, and generic c there is an element $z \in H^{1}\left(G_{T}, N_{n}^{*}(1)(c)\right)$ such that $\operatorname{loc}_{w}(z)=0$ for $w \neq v$ and

$$
l o c_{v}(z) \notin H_{f}^{1}\left(G_{v}, N_{n}^{*}(1)(c)\right) .
$$

Proof.

Note that $\operatorname{dim} Z_{n}^{K}(c) \geq\lfloor(n-K) / 2\rfloor$. From the exact sequence

$$
0 \rightarrow\left[N_{K-1}(c)\right]^{*}(1) \rightarrow\left[N_{n}(c)\right]^{*}(1) \rightarrow\left[N_{n}^{K}(c)\right]^{*}(1) \rightarrow 0,
$$

we get

$$
\begin{aligned}
0 & \rightarrow H^{1}\left(G_{T},\left[N_{K-1}(c)\right]^{*}(1)\right) \rightarrow H^{1}\left(G_{T},\left[N_{n}(c)\right]^{*}(1)\right) \rightarrow \\
& \rightarrow H^{1}\left(G_{T},\left[N_{n}^{K}(c)\right]^{*}(1)\right) \rightarrow H^{2}\left(G_{T},\left[N_{K-1}(c)\right]^{*}(1)\right),
\end{aligned}
$$

and an exact sequence

$$
0 \rightarrow H^{1}\left(G_{T},\left[N_{K-1}(c)\right]^{*}(1)\right) \rightarrow H^{1}\left(G_{T},\left[N_{n}(c)\right]^{*}(1)\right) \rightarrow I m_{n} \rightarrow 0,
$$

for a subspace

$$
I m_{n} \subset H^{1}\left(G_{T},\left[N_{n}^{K}(c)\right]^{*}(1)\right)
$$

of codimension at most $\operatorname{dim} H^{2}\left(G_{T},\left[N_{K-1}(c)\right]^{*}(1)\right)$.

Now we consider

$$
\begin{array}{cccc}
0 \rightarrow & H^{1}\left(G_{T},\left[N_{K-1}(c)\right]^{*}(1)\right) & \rightarrow & H^{1}\left(G_{T},\left[N_{n}(c)\right]^{*}(1)\right. \\
\downarrow & \downarrow \\
0 \rightarrow \quad \oplus_{w \in T, w \neq v} H^{1}\left(G_{w},\left[N_{K-1}(c)\right]^{*}(1)\right) & \rightarrow & \oplus_{w \mid p, w \neq v} H^{1}\left(G_{w},\left[N_{n}(c)\right]^{*}(1)\right) \\
& \rightarrow & & \rightarrow 0 \\
& I_{n} & & \\
& \rightarrow & \oplus_{w \mid p, w \neq v} H^{1}\left(G_{w},\left[N_{n}^{K}(c)\right]^{*}(1)\right) & \rightarrow 0
\end{array}
$$

Clearly,

$$
\operatorname{dim} Z_{n}^{K}(c) \cap I m_{n} \rightarrow \infty
$$

as $n \rightarrow \infty$. But the cokernel of

$$
H^{1}\left(G_{T},\left[N_{K-1}(c)\right]^{*}(1)\right) \rightarrow \oplus_{w \mid p, w \neq v} H^{1}\left(G_{w},\left[N_{K-1}(c)\right]^{*}(1)\right)
$$

has of course dimension bounded independently of n.

So we see from the snake lemma that there is an element

$$
z \in H^{1}\left(G_{T},\left[N_{n}(c)\right]^{*}(1)\right)
$$

lifting an element of $Z_{n}(c) \cap I m_{n}$, such that

$$
\operatorname{loc}_{w}(z)=0
$$

for $w \in T, w \neq v$ and

$$
\operatorname{loc}_{v}(z) \neq 0 .
$$

In fact, since z is being chosen to map to a non-zero element of $\operatorname{dim} Z_{n}(c) \cap I m_{n}$ and $H_{f}^{1}\left(G_{v},\left[N_{n}^{K}(c)\right]^{*}(1)\right)=0$, we see that

$$
\operatorname{loc}_{v}(z) \notin H_{f}^{1}\left(G_{v},\left[N_{n}(c)\right]^{*}(1)\right) .
$$

Corollary 0.5 For n sufficiently large,

$$
T_{c} H_{f}^{1}\left(G_{T}, M_{n}\right) \rightarrow T_{l o c_{v}(c)} H_{f}^{1}\left(G_{v}, M_{n}\right)
$$

is not surjective.

