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Matemáticas por la Universidad de Granada.

V. B.
El director. El doctorando.



iv



AGRADECIMIENTOS - ACKNOWLEDGEMENTS

Muchas personas han contribuı́do, directa o indirectamente, al desarrollo de este
trabajo. Sin perjuicio de todos los que pudieran quedar olvidados (que seguro que
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Gabri, Laiachi, Chen, Vee Moon y Johan), por estar siempre dispuestos a escuchar
desvarı́os y desahogos.

Esta tesis no habrı́a sido lo mismo sin el trabajo que llevé a cabo en la Uni-
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INTRODUCCIÓN

Time was when all the parts of the subject were dissevered,
when algebra, geometry, and arithmetic either lived apart
or kept up cold relations of acquaintance confined to
occasional calls upon one another; but that is now at an
end; they are drawn together and are constantly becoming
more and more intimately related and connected by a
thousand fresh ties, and we may confidently look forward
to a time when they shall form but one body with one soul.

J.J. Sylvester

Desde los orı́genes de la geometrı́a cartesiana en el siglo XVII, pasando por el
enfoque de Bernhard Riemann con su definición de variedad diferencial, y alcan-
zando su punto álgido con el impresionante trabajo llevado a cabo por Alexander
Grothendieck en el campo de la geometrı́a algebraica, la idea de estudiar los ob-
jetos geométricos a través de sus coordenadas ha estado tan profundamente en-
raizada en el corazón mismo de la geometrı́a que, en muchas ocasiones, resulta
difı́cil siquiera imaginar hacer geometrı́a sin emplear coordenadas. Aunque to-
das estas nociones geométricas se basan en principios diferentes, todas comparten
una base común: existe una dualidad entre los objetos geométricos y determinados
conjuntos de funciones, que podemos ver como sus coordenadas. Las diferencias
entre los distintos enfoques de la geometrı́a yacen tan sólo en las condiciones que
imponemos sobre dichas funciones coordenadas.

Posiblemente los ejemplos más relevantes de este tipo de dualidades sean el
“Nullstellensatz” (teorema de los ceros) de David Hilbert, que establece una cor-
respondencia uno a uno entre las variedades algebraicas afines irreducibles y las
álgebras conmutativas afines reducidas sobre un cuerpo algebraicamente cerrado,
ası́ como el Teorema de Gelfand-Naı̆mark, que nos da una equivalencia entre la
categorı́a de espacios topológicos de Hausdorff localmente compactos y la ca-
tegorı́a (opuesta) de las C∗–álgebras abelianas no necesariamente unitarias. La
existencia de estas y otras muchas dualidades similares ha tenido como efecto un
cambio en la noción que tenemos de “espacio”.
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El mismo principio subyace en la interpretación de la geometrı́a como un
lenguaje para describir la realidad fı́sica. Por un lado tenemos la perspectiva
clásica de Isaac Newton, postulando la existencia de un espacio absoluto, en el
que los fenómenos fı́sicos simplemente ocurren: “las posiciones están predeter-
minadas, destinadas a ser habitadas por los accidentes de la materia”. Por otro
lado, teorı́as fı́sicas más recientes propugnan un cambio de paradigma; según el
punto de vista de Mach, “el espacio queda determinado por la materia”, de ma-
nera que el espacio deja de considerarse un mero receptáculo, para pasar a ser
un principio activo en los fenómenos fı́sicos, como ocurre por ejemplo con la
desviación de los rayos de luz que tiene lugar dentro de un campo gravitatorio.
Para Mach y Einstein, “los puntos sólo aparecen entonces como etiquetas que
hacen posible identificar un evento”.

En un hermoso paralelismo, la fı́sica Newtoniana se corresponde con la noción
clásica de espacio geométrico dado por un conjunto predeterminado de puntos,
mientras que las teorı́as de la relatividad de Einstein representan la consideración
del espacio como una consecuencia de la realidad fı́sica, en correspondencia con
el punto de vista algebraico consistente en reemplazar los puntos del espacio por
los valores obtenidos al evaluar en ellos un cierto conjunto de funciones (las coor-
denadas). Una disquisición más elaborada sobre la evolución de los conceptos de
espacio y simetrı́a, tanto desde el punto de vista filosófico como del matemático,
puede encontrarse en la magnı́fica revisión [Car01] escrita por Pierre Cartier.

A un nivel puramente matemático, las dualidades anteriormente mencionadas
se emplean para reemplazar un conjunto de puntos (el espacio geométrico que es-
temos tomando en consideración) por otro cierto conjunto (a menudo algún tipo
de álgebra) de funciones. Si la dualidad es razonablemente buena, las propiedades
geométricas del espacio deberı́an poder traducirse en propiedades algebraicas
análogas expresadas en términos del álgebra de funciones correspondiente. La
interpretación fı́sica de este procedimiento viene a ser el reemplazo de las posi-
ciones absolutas (puntos en el espacio geométrico) por los resultados de deter-
minadas observaciones (valores de funciones definidas en el espacio). Muchas
teorı́as fı́sicas de renombre, tal y como la mecánica Hamiltoniana, se basan com-
pletamente en esta manera de proceder. Sin embargo, las cosas se vuelven más
complicadas cuando intentamos emplear el mismo punto de vista para describir
fenómenos de naturaleza cuántica. Incluso en los casos más sencillos, tal y como
el estudio del movimiento de un único electrón, los observables que se correspon-
den con la posición y el momento de la partı́cula (que serı́an, en el caso clásico,
las funciones coordenadas que generan el espacio de fases) no conmutan entre sı́,
de modo que ¡difı́cilmente podemos interpretarlas como si se tratase de funciones
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definidas sobre algún objeto geométrico! Ya en 1926, Paul Dirac era consciente
de este problema, y propuso describir la fı́sica del espacio de fases en términos del
análogo cuantizado del álgebra de funciones, y considerando también el análogo
cuantizado de los operadores de derivación clásicos.

La geometrı́a no conmutativa, en el sentido en que la describió Alain Connes
en [Con86], toma esta situación como punto de partida, e intenta extender al caso
no conmutativo la correspondencia clásica entre los espacios geométricos y las
álgebras conmutativas. Las principales motivaciones para este enfoque se basan
en los siguientes dos puntos, descritos en [Con94]:

1. La existencia de muchos espacios que se consideran patológicos cuando se
estudian desde el punto de vista de las herramientas clásicas, como sucede
con el espacio de teselaciones de Penrose, el espacio de hojas de una fo-
liación, o el espacio de fase en mecánica cuántica. Cada uno de estos espa-
cios se corresponde de manera natural con un álgebra no conmutativa que
contiene información no trivial acerca del espacio correspondiente.

2. La extensión de herramientas clásicas al caso no conmutativo, casi siempre
involucrando una reformulación algebraica de algún concepto clásico, da
lugar a fenómenos completamente nuevos sin contrapartida clásica, como
por ejemplo la evolución temporal canónica que viene asociada a un espacio
de medida no conmutativo.

Desde sus inicios hace unos 20 años, la geometrı́a no conmutativa se ha desta-
cado como una fructı́fera teorı́a, revelando profundas relaciones con la fı́sica
teórica, tal y como la reformulación del modelo estándar de partı́culas elementales
(desarrollos recientes en este ámbito pueden encontrarse en [Con06] y [CCM07]),
o la teorı́a de números, donde se ha obtenido una reformulación de la Hipótesis de
Riemann en términos de geometrı́a no conmutativa (véase [Con97] para la formu-
lación original de esta equivalencia, [CCM] para una revisión más actualizada).

Conviene señalar que el término “geometrı́a no conmutativa” ha sido em-
pleado para describir varias teorı́as diferentes. Un ejemplo de otra de estas teorı́as,
surgida a partir de problemas similares pero empleando técnicas diferentes, es la
teorı́a de Grupos Cuánticos, introducida originalmente por Vladimir Drinfeld en
su artı́culo [Dri87], y cuya reinterpretación en términos geométricos (no conmu-
tativos) puede encontrarse por ejemplo en [Man88]. Referencias más recientes en
esta materia son [Kas95], [Maj95]. Es reseñable el hecho de que algunos ejemplos
particulares de grupos cuánticos han sido recientemente interpretados dentro del
formalismo de las ternas espectrales (véase por ejemplo [DLS+05]).
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Otros enfoques de la geometrı́a no conmutativa, menos relacionados con el
punto de vista espectral de Connes, incluyen a la denominada nogeometrı́a, al-
gunos de cuyos exponentes son Maxim Kontsevich y Lieven Le Bruyn, y que
se basa en el estudio de álgebras de tipo formalmente regular (también llamadas
álgebras quasi-libres, o qurvas), que son consideradas como máquinas para pro-
ducir un número infinito de variedades ordinarias (conmutativas).

Quizás la diferencia más relevante entre estos dos enfoques yace en el hecho
de que la nogeometrı́a dispone de una noción de “espacio subyacente”, que viene
a ser el espacio de las representaciones de dimensión finita rep A =

⋃
n repn A

asociado a la variedad no conmutativa dada por el álgebra (formalmente regular)
A. En un trabajo reciente, [KS], Kontsevich y Soibelman consideran una inmensa
coálgebra como el objeto natural a asociar al álgebra A con vistas a describir la
topologı́a del espacio subyacente a la variedad no conmutativa. Por otro lado,
la geometrı́a diferencial no conmutativa de Connes se basa en la idea de que el
espacio sólo es relevante hasta el punto en que somos capaces de medirlo, y por
tanto queda relegado al olvido en favor del álgebra no conmutativa (que repre-
senta las funciones o medidas definidas sobre el inexistente espacio no conmuta-
tivo). Si bien esto podrı́a parecer a primera vista sólo un tecnicismo, o incluso
una distinción meramente filosófica, se trata de una diferencia de gran importan-
cia, que da lugar a teorı́as radicalmente distintas, cada una de gran riqueza y valor
intrı́nseco.

En el presente trabajo, nuestra meta es llevar a cabo uno de los pasos en
el programa de traducir construcciones geométricas clásicas al formalismo del
enfoque no conmutativo de Connes. En concreto, nuestro objetivo es dar una
definición apropiada para el representante del producto cartesiano de dos var-
iedades no conmutativas, para lo cual nos apoyaremos en la estructura de fac-
torización de álgebra, introducida de manera independiente, y con objetivos di-
versos, por Daisuke Tambara en [Tam90] y Shahn Majid en [Maj90b]. La idea de
considerar la estructura de factorización de un álgebra como representante de una
variedad producto surge en el trabajo desarrollado en [CSV95] por Andreas Cap,
Herman Schichl y Jiři Vanžura, donde el término “factorización de álgebras” es
rebautizado como producto tensor torcido. En lo que sigue, ambos términos se
considerarán sinónimos y serán utilizados indistintamente. Algunos tipos espe-
ciales de factorizaciones de álgebras, ası́ como de estructuras entrelazadas (es-
trechamente relacionadas con las factorizaciones de álgebras), han sido estudi-
adas por Tomasz Brzeziński y Shahn Majid como análogos no conmutativos de la
noción de fibrado principal. Véase [BM98] y [BM00b] para más detalles.

Conviene hacer algunos comentarios acerca de los métodos y técnicas em-
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pleados en la presente memoria, ya que reflejan la actitud personal del autor hacia
la geometrı́a no conmutativa. En primer lugar, y a pesar de que la mayor parte
de los resultados originales presentados en este trabajo tienen una motivación en
conceptos de geometrı́a diferencial no conmutativa, se ha elegido realizar un a-
cercamiento fundamentalmente algebraico a los problemas estudiados, sin hacer
prácticamente ninguna referencia a los aspectos topológicos de la teorı́a, que en
el trabajo de Connes vienen codificados en la estructura de C∗–álgebra. La razón
(de nuevo, muy personal) para tomar esta decisión es la idea del autor de que,
sea cual sea nuestra noción de espacio no conmutativo, representarlo por un único
objeto algebraico es demasiado restrictivo.

Pensemos por ejemplo en el cı́rculo unidad S1 como variedad. Podemos es-
tudiarlo desde el punto de vista de la geometrı́a algebraica, empleando su anillo
coordenadoO(S1) ∼= C[t, t−1], o bien desde el punto de vista de la geometrı́a dife-
rencial considerando la pre–C∗–álgebra de las funciones diferenciables C∞(S1),
o mediante la C∗–álgebra de funciones continuas C(S1), si lo que nos interesa es
centrarnos en sus aspectos topológicos, o incluso empleando el álgebra de Von
Neumann de las funciones medibles, L∞(S1), si queremos emplear el punto de
vista de la teorı́a de la medida.

Pese a que los cuatro objetos algebraicos mencionados son muy diferentes,
salta a la vista que todos ellos representan un mismo objeto geométrico. De hecho,
tenemos una relación muy especial entre las cuatro álgebras descritas. Con mayor
concreción, tenemos las inclusiones

C[t, t−1] ⊂ C∞(S1) ⊂ C(S1) ⊂ L∞(S1)

donde cada álgebra puede obtenerse a partir de la anterior empleando una com-
pletación adecuada (en la topologı́a de Fréchèt para obtener las funciones deri-
vables, con la topologı́a de la norma para las continuas, o la topologı́a débil de
operadores para obtener las funciones medibles). Parece razonable esperar que en
cualquier generalización no conmutativa de los procedimientos anteriores, cual-
quier construcción de naturaleza puramente geométrica (esto es, que no dependa
de ninguna estructura adicional que pudiéramos tener añadida a nuestro espacio
geométrico) deberı́a tener su análogo a cada uno de estos niveles. Esto es, por
supuesto, lo que ocurre con la construcción del producto cartesiano de variedades,
que en geometrı́a algebraica viene representado por el producto tensor de los ani-
llos coordenados, y en los demás niveles puede obtenerse a partir de este producto
tensor sin más que aplicar las completaciones adecuadas. Aunque no se men-
ciona explı́citamente, existen varios artı́culos en la literatura donde se emplea este
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método (llevar a cabo las construcciones y definiciones a un nivel puramente al-
gebraico, pasando a las completaciones sólo cuando sea necesario). Quizás los
ejemplo más claros sean la generalización de la definición de planos y esferas no
conmutativos a dimensiones superiores llevada a cabo por Alain Connes y Michel
Dubois-Violette en [CDV02], o los trabajos de Edwin Beggs, [Beg], [BB05].

El segundo punto a reseñar es el empleo continuado de interpretaciones de
las construcciones que llevamos a cabo desde el punto de vista de la teorı́a de la
deformación. La motivación para ello viene en esta ocasión del proceso de cuan-
tización del espacio de fases en fı́sica, donde la no conmutatividad aparece como
una consecuencia de aplicar un cambio de escala (acercarnos mucho) a algún sis-
tema fı́sico. En nuestra opinión, siempre que tengamos un álgebra describiendo
un objeto clásico, toda deformación de dicho objeto que se lleve a cabo mediante
algún procedimiento razonable deberı́a ser un representante de algún espacio no
conmutativo relacionado de alguna manera con el objeto de partida. Esta man-
era de pensar es en gran parte origen y motivación de los resultados descritos
en el Capı́tulo 5, donde todas las deformaciones en consideración son ejemplos
de deformaciones internas, donde con este término nos referimos a que determi-
nado objeto subyacente (el espacio vectorial en el caso de álgebras) permanece
invariante durante el proceso de deformación. El contrapunto a las deformaciones
interiores lo pone el concepto de deformaciones formales, descritas por Murray
Gerstenhaber en [Ger64], que requieren un embebimiento del álgebra original en
una mayor.

En el Capı́tulo 1 recordamos algunos resultados conocidos sobre la teorı́a de
estructuras de factorización. Siguiendo la definición dada por Shahn Majid en
[Maj90b], por estructura de factorización entendemos un álgebra C, junto con
dos morfismos de álgebras iA : A → C y iB : B → C tales que la aplicación
lineal asociada

ϕ : A⊗B −→ C

a⊗ b 7−→ iA(a) · iB(b)

es un isomorfismo (de espacios vectoriales). La idea básica que subyace a la cons-
trucción de una estructura de factorización para un álgebra C es la de encontrar
dos subálgebras, A y B, que juntas generen C de forma no redundante. El hecho
de que ϕ sea un isomorfismo tiene una consecuencia inmediata: el álgebra C tiene
que ser isomorfa como espacio vectorial al producto tensor algebraico A⊗B. Por
tanto, desde un punto de vista de teorı́a de la deformación, podemos decir que dar
una estructura de factorización a través de las álgebras A y B es lo mismo que
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encontrar una estructura de álgebra en A ⊗ B que respete las inclusiones de A y
B.

Si A y B son álgebras unitarias, las estructuras de factorización que involu-
cran a A y a B están en correspondencia biunı́voca con las aplicaciones lineales
R : B ⊗ A → A⊗B que verifiquen las siguientes condiciones:

R ◦ (B ⊗ µA) = (µA ⊗B) ◦ (A⊗R) ◦ (R⊗ A)

R ◦ (µB ⊗ A) = (A⊗ µB) ◦ (R⊗B) ◦ (B ⊗R)

R(1⊗ a) = a⊗ 1, R(b⊗ 1) = 1⊗ b ∀ a ∈ A, b ∈ B,

que son equivalentes a requerir que la aplicación µR := (µA⊗µB) ◦ (A⊗R⊗B)
sea un producto asociativo en A ⊗ B. En este, caso, se dice que la aplicación R
es un entrelazamiento (en inglés, twisting map) entre A y B, y a la estructura de
factorización que determina se le denomina el producto tensor torcido de A y B
con respecto al entrelazamiento R. Si A y B no son unitarias, la existencia de un
entrelazamiento (salvo la compatibilidad con las unidades, que ya no tiene sen-
tido) sigue siendo suficiente para obtener una estructura de factorización, aunque
deja de ser una condición necesaria.

A lo largo de la presente tesis, consideraremos únicamente estructuras de fac-
torización que vengan dadas por medio de entrelazamientos (lo cual no es una
gran restricción, ya que la mayorı́a de las álgebras con las que tratamos son uni-
tarias) y consideraremos al entrelazamiento R como nuestro principal objeto de
estudio con vistas a describir las propiedades de las estructuras de factorización.

Históricamente, como punto de partida de las teorı́as de factorización de es-
tructuras algebraicas podrı́a considerarse el trabajo de Jon Beck en [Bec69], donde
se establece la noción de ley distributiva para una pareja de mónadas (admitiendo
una posterior generalización dentro de la teorı́a de operads, como se muestra en
[Str72]). Sin embargo, la definición categórica de estructura de factorización
parece ocultar algunas de sus propiedades que en nuestra opinión son más in-
teresantes; en particular, la reinterpretación geométrica.

En geometrı́a algebraica clásica, el anillo de coordenadas O(M × N), de la
variedad producto M × N , se factoriza como el producto tensor O(M) ⊗ O(N)
de los correspondientes anillos coordenados de las variedades factores. Lo mismo
ocurre, a grandes rasgos, si reemplazamos los anillos coordenados por las álgebras
de funciones (continuas o diferenciables) y el producto tensor algebraico por el
producto tensor topológico, en el caso de una variedad (topológica o diferenciable)
producto. Por tanto, el producto tensor puede considerarse el objeto algebraico
que se corresponde con un producto cartesiano a nivel geométrico. Sin embargo,



8 Introducción

desde una perspectiva no conmutativa, esta construcción tiene un impedimento:
al tomar productos tensores estamos introduciendo cierta conmutatividad “artifi-
cial”. Más concretamente, si consideramos los elementos de A, vistos dentro de
A ⊗ B mediante la inclusión canónica a 7→ a ⊗ 1, conmutan automáticamente
con los elementos de B. Si bien esto tiene perfecto sentido al nivel clásico, no
tenemos ninguna razón para imponer dicha restricción dentro de un marco de no
conmutatividad.

Reemplazando el producto tensor clásico A ⊗ B por un producto tensor tor-
cido A⊗R B, podemos librarnos de esta conmutatividad, y sin embargo mantener
en gran medida un comportamiento análogo al que deberı́a tener un producto
geométrico, en particular preservando la estructura algebraica original de cada
uno de los factores. Este hecho fue, a grandes rasgos, lo que inspiró el desarrollo
de la geometrı́a trenzada por parte de Shahn Majid y otros a principios de los 90,
si bien ellos emplearon categorı́as monoidales trenzadas en vez de productos ten-
sores torcidos. Mediante el reemplazo de los productos tensores por sus análogos
torcidos, conseguimos un nuevo candidato, auténticamente no conmutativo, para
ser la versión algebraica de un producto cartesiano no conmutativo. Por supuesto,
este mayor grado de generalidad no puede obtenerse sin renunciar a algo a cam-
bio. En nuestro caso, la generalidad se obtiene a expensas de la unicidad, ya que
observaremos que para un par de álgebras A y B dadas, por lo general existen
muchos productos tensores torcidos A⊗R B no isomorfos.

Entre los resultados mencionados en el Capı́tulo 1, incluimos algunas con-
sideraciones realizadas por Andreas Cap, Herman Schichl y Jiři Vanžura (cf.
[CSV95]) tratando con el problema de la construcción de módulos sobre el pro-
ducto tensor torcido de dos álgebras, desembocando en la definición de entrelaza-
miento de módulos. También se mencionan algunos resultados concernientes a la
construcción de un cálculo diferencial producto sobre un producto tensor torcido.
De [BM00a], recordamos algunos resultados estructurales obtenidos por Andrzej
Borowiec y Wladyslaw Marcinek, tales como la interpretación del producto tensor
torcido como cierto cociente de un producto libre, y la noción de ideal torcido,
que nos permite factorizar como productos tensores torcidos determinados co-
cientes de un producto tensor torcido. Otros resultados importantes mencionados
en este Capı́tulo son la Propiedad Universal de los productos tensores torcidos
(cf. [CIMZ00]), y la noción de entrelazamiento involutivo, que se usa con vistas
a levantar involuciones desde un par de ∗–álgebras a un producto tensor torcido
de ambas (véase [VDVK94]). Este Capı́tulo concluye con una amplia variedad
de ejemplos de álgebras que surgen en diferentes áreas de las matemáticas y se
pueden describir dentro del marco de las estructuras de factorización.
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En el Capı́tulo 2, comenzamos nuestro estudio en detalle de las estructuras de
factorización, enfrentándonos al problema de iterar la construcción de productos
tensores torcidos de manera consistente. Demostramos que para tres álgebras
dadas, A, B y C, y tres entrelazamientos

R1 : B ⊗ A −→ A⊗B,

R2 : C ⊗B −→ B ⊗ C,

R3 : C ⊗ A −→ A⊗ C,

podemos obtener una condición suficiente para ser capaces de definir entrelaza-
mientos

T1 : C ⊗ (A⊗R1 B) −→ (A⊗R1 B)⊗ C,

T2 : (B ⊗R2 C)⊗ A −→ A⊗ (B ⊗R2 C),

asociados a R1, R2 y R3 y de tal forma que tengamos garantizado que las álgebras
A⊗T2 (B ⊗R2 C) y (A⊗R1 B)⊗T1 C son iguales, sólo en términos de los entre-
lazamientos R1, R2 y R3. Concretamente, los entrelazamientos deben verificar la
siguiente relación de compatibilidad:

(A⊗R2) ◦ (R3 ⊗B) ◦ (C ⊗R1) = (R1 ⊗ C) ◦ (B ⊗R3) ◦ (R2 ⊗ A).

Esta relación puede considerarse como una versión “local” de la condición hexa-
gonal satisfecha por la aplicación de trenzado en una categorı́a monoidal (estricta)
trenzada. También demostramos que siempre que las álgebras y los entrelaza-
mientos considerados son unitarias, la condición de compatibilidad es también
necesaria.

También estudiamos el problema recı́proco. Esto es, consideramos un entre-
lazamiento T : C ⊗ (A ⊗R B) → (A ⊗R B) ⊗ C, y probamos que T puede ser
descompuesto como una composición T = (A ⊗ R2) ◦ (R3 ⊗ B), donde R2 y
R3 son entrelazamientos, si, y sólo si, T verifica las denominadas condiciones de
descomposición (a derecha):

T (C ⊗ (A⊗ 1)) ⊆ (A⊗ 1)⊗ C,

T (C ⊗ (1⊗B)) ⊆ (1⊗B)⊗ C.

Al igual que ocurre para el producto tensor clásico, y para el producto ten-
sor torcido, el producto tensor torcido iterado también satisface una Propiedad
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Universal, que se establece formalmente en el Teorema 2.1.6. El principal resul-
tado estructural concerniente al producto tensor torcido iterado es el Teorema de
Coherencia (Teorema 2.1.8), que establece, en gran similitud con el Teorema de
Coherencia de MacLane para categorı́as monoidales, que dado cualquier número
de álgebras, junto con entrelazamientos entre ellas, siempre que podamos cons-
truir el producto tensor iterado de cualesquiera tres factores podemos también
construir el producto tensor torcido iterado de todas ellas, y que todas las for-
mas en las que podemos hacerlo son esencialmente idénticas. Este resultado nos
permite levantar a productos torcidos iterados arbitrarios cualquier propiedad que
pueda levantarse a productos de tres factores. Como aplicación de los resultados
anteriores, caracterizamos los módulos definidos sobre un producto tensor torcido
iterado, dando además un método (que en esencia involucra una condición de
compatibilidad similar a la obtenida para las álgebras) para construir algunos de
ellos a partir de módulos definidos en los factores. Desde un punto de vista más
geométrico, mostramos cómo construir ciertas álgebras de formas diferenciales
(cálculos diferenciales producto) y cómo levantar las involuciones de ∗–álgebras
a productos tensores torcidos iterados.

Para ilustrar los resultados establecidos en el Capı́tulo 2, tratamos en detalle
cuatro ejemplos fundamentales. Los dos primeros (la construcción de productos
“smash” generalizados y de productos diagonales cruzados generalizados) surgen
dentro del marco de la teorı́a de álgebras de Hopf, sugiriendo el hecho de que
el estudio de las estructuras de factorización pueden utilizarse como herramienta
unificadora para dar algunas bases comunes para el estudio de numerosas cons-
trucciones tanto clásicas como recientes. Los últimos dos ejemplos tienen un
origen más geométrico; la descripción de los planos no conmutativos de Connes
y Dubois-Violette como productos tensores torcidos iterados nos proporciona un
medio más sencillo para introducir el cálculo diferencial producto que la origi-
nalmente propuesta, mientras que el hecho de que el álgebra de observables de
Nill–Szlachányi también se escriba como ejemplo de nuestra construcción nos
da una demostración casi inmediata, que no requiere el cálculo de ninguna rep-
resentación, de que dicho álgebra es una AF-álgebra (esto es, una C∗–álgebra
aproximadamente finito dimensional).

El Capı́tulo 3 trata con el problema más fundamental de la clasificación de
las estructuras de factorización. Dicho problema puede estudiarse desde dos en-
foques diferentes. Por un lado, uno puede fijar un álgebra, e intentar estudiar
de cuántas formas puede descomponerse como producto tensor torcido de dos
subálgebras suyas. Por otro lado, podemos llevar a cabo un estudio más con-
structivista, partiendo de dos álgebras fijas, y abordando el problema de clasificar
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(salvo isomorfismo) todos los productos tensores torcidos que pueden construirse
con los factores dados.

El estudio de primer problema tiene una motivación importante en el marco de
álgebras de Hopf, donde existen numerosos resultados estableciendo un isomor-
fismo entre dos álgebras dadas mediante diversas factorizaciones. Ejemplos de re-
sultados en esta lı́nea son la invarianza del producto smash bajo una deformación
realizada mediante un cociclo, la descripción del doble de Drinfeld de un álgebra
de Hopf quasitriangular como un producto smash ordinario, o los resultados de
Fiore referidos al desentrelazamiento de productos tensores trenzados. Motivados
por las semejanzas existentes entre estos resultados, proporcionamos una cons-
trucción explı́cita de una deformación del producto de un álgebra asociativa (a la
que denominamos el producto Martini) basado en la existencia de cierto sistema
de deformación, y mostramos que un entrelazamiento R : B ⊗ A → A ⊗ B en-
tre dos álgebras puede extenderse, bajo ciertas condiciones, a un entrelazamiento
Rd : B⊗Ad → Ad⊗B que involucra la deformación de A, y demostramos el Teo-
rema de Invarianza (Teorema 3.1.3), estableciendo que ambos productos tensores
torcidos, A⊗R B y Ad ⊗Rd B, son isomorfos.

Este Teorema de Invarianza se generaliza a continuación a una segunda versión
(Teorema 3.1.9) que no asume ninguna descripción concreta de la deformación de
A, y es lo bastante general como para englobar como casos particulares a todos
los ejemplos que motivan dicha Sección. Las versiones a izquierda y a derecha de
los teoremas de invarianza pueden unirse para dar lugar a un Teorema de Invari-
anza Iterado, que se establece formalmente en el Teorema 3.1.13. Como ventaja
añadida, nuestros resultados dan lugar a una descripción explı́cita del isomorfismo
existente (ası́ como de su inverso) entre las estructuras de factorización involu-
cradas.

Para el segundo problema de clasificación (la determinación de todas las posi-
bles estructuras de factorización existentes entre dos álgebras dadas), recordamos
algunos resultados publicados por Andrzej Borowiec y Wladyslaw Marcinek en
[BM00a], dando una descripción de todos los entrelazamientos (homogéneos) ex-
istentes entre dos álgebras libres finitamente generadas. Como ejemplo particular
donde el problema de clasificación puede resolverse de manera completa y satis-
factoria, mencionamos los resultados obtenidos por Claude Cibils concernientes
a la clasificación de los duplicados no conmutativos (que no son sino produc-
tos tensores torcidos del álgebra de funciones definidas sobre un conjunto finito
y el álgebra k2 de las funciones en un espacio de dos puntos) mediante el uso
de técnicas combinatorias (“quivers”, o grafos orientados, coloreados). Un es-
tudio pormenorizado del caso particular de los productos tensores torcidos exis-
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tentes entre dos copias del álgebra k2 pone de manifiesto un pequeño desliz en
la descripción de las clases de isomorfismo dada por Cibils en [Cib06], que sub-
sanamos. Asimismo, la cohomologı́a de Hochschild de las álgebras obtenidas es
calculada, obteniéndose un contraejemplo para un resultado publicado por José
Antonio Guccione y Juan José Guccione en [GG99], que establecı́a una cota (que
demostramos errónea) para la dimensión de Hochschild de un producto tensor
torcido de dos álgebras con respecto a un entrelazamiento inversible.

En el Capı́tulo 4 abordamos el problema más geométrico estudiado en el pre-
sente trabajo: la construcción de un operador de conexión sobre un producto ten-
sor torcido. La noción de conexión, o derivada covariante, tiene un papel funda-
mental en geometrı́a diferencial. Por un lado, se trata de la herramienta básica
que nos permite, a través del concepto de transporte paralelo, definir las derivadas
de orden superior a 1. En particular, es la existencia de una conexión lo que
nos permite hablar de nociones como la de aceleración en una trayectoria (curva)
sobre una variedad. Desde el punto de vista de la fı́sica, las conexiones se em-
plean también para codificar nociones como las teorı́as gravitatorias (que vienen
determinadas mediante conexiones en el fibrado cotangente), o los potenciales
electromagnéticos (cuya existencia es equivalente a la existencia de una conexión
en un fibrado de rango 1 con trivializaciones prefijadas). La definición clásica de
conexión fue reformulada de manera completamente algebraica por Jean Louis
Koskul en [Kos60], y esta definición fue más tarde extendida a un contexto no
conmutativo por Alain Connes en su artı́culo [Con86]. Dada un álgebra A, so-
bre la que consideraremos un cálculo diferencial prefijado ΩA, y un A–módulo (a
derecha) E, una conexión sobre E se define como una aplicación lineal

∇ : E −→ E ⊗A Ω1A

que verifica la regla de Leibniz (por la derecha):

∇(s · a) = (∇s) · a + s⊗ da ∀ s ∈ E, a ∈ A. (0.1)

Supongamos que tenemos dos álgebras A y B, con ΩA y ΩB sus respec-
tivos cálculos diferenciales, E un A–módulo por la derecha, y F un B–módulo
por la derecha, de los que supondremos que representan ciertos fibrados en las
variedades no conmutativas representadas por A y B. Supongamos también que
sobre E y F tenemos definidas conexiones

∇E : E → E ⊗A Ω1A,

∇F : F → F ⊗B Ω1B
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y que tenemos un entrelazamiento R : B ⊗ A → A ⊗ B. Nuestro objetivo es
encontrar un módulo apropiado para representar a un “fibrado producto” de los
fibrados representados por E y F , y dotar a dicho módulo de una conexión que
tenga las propiedades que podrı́amos esperar para una “conexión producto” de∇E

y ∇F . Demostramos, basándonos en comparaciones con el caso clásico en el que
E y F representan a los fibrados tangentes sobre una variedad, que la elección
natural para tal módulo es E ⊗ B ⊕ A⊗ F . Bajo condiciones de compatibilidad
apropiadas, se obtiene que el operador

∇ : E ⊗B ⊕ A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗RB

(
Ω1A⊗B ⊕ A⊗ Ω1B

)

definido mediante

∇(e⊗ b, a⊗ f) := ∇1(e⊗ b) +∇2(a⊗ f)

es una conexión (a derecha) para el módulo E⊗B⊕A⊗F , donde las aplicaciones
∇1 y ∇2 están definidas por

∇1 := (E ⊗ uB ⊗ Ω1A⊗B) ◦ (∇E ⊗B) + (E ⊗ uB ⊗ uA ⊗ Ω1B) ◦ (E ⊗ dB),

∇2 := (A⊗ F ⊗ uB ⊗ Ω1B) ◦ (A⊗∇F ) + (uA ⊗ F ⊗ dA ⊗ uB) ◦ σ.

Las conexiones también pueden emplearse para definir determinadas propie-
dades geométricas. Por ejemplo, la curvatura y la torsión en una variedad diferen-
cial pueden definirse de manera global empleando tan sólo el operador de conexión
(sin necesidad de tener una métrica prefijada). Las versiones no conmutativas de
las conexiones nos permiten trasladar de manera casi literal la construcción de la
curvatura como el operador θ : E → E⊗AΩ2A dado por θ := ∇2, la composición
del operador de conexión (o, con más precisión, de su extensión a E ⊗A ΩA)
consigo mismo. Calculando la curvatura de la conexión producto anteriormente
definida, encontramos el que probablemente se trate del resultado más importante
de la presente tesis; a saber, el Teorema de Rigidez (Teorema 4.3.1), que nos dice
que la curvatura de la conexión producto viene dada por la siguiente fórmula:

θ(e⊗ b, a⊗ f) = iE(θE(e)) · b + a · iF (θF (f)),

lo cual resulta sorprendente, ya que dicha expresión no depende ni del entrelaza-
miento R ni del entrelazamiento de módulos que necesitamos emplear para definir
la conexión producto ∇. Desde el punto de vista de la teorı́a de la deformación,
este resultado se reinterpreta como la invarianza del operador de curvatura bajo el
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efecto de las deformaciones obtenidas mediante la variación del entrelazamiento.
Una consecuencia inmediata del Teorema de Rigidez es que el producto de dos
conexiones planas (esto es, aquellas que tienen curvatura 0) vuelve a ser una
conexión plana, lo cual nos deja vı́a libre para un futuro estudio en este contexto
de la cohomologı́a de de Rham con coeficientes, en el sentido definido por Edwin
Beggs y Tomasz Brzeziński en [BB05].

Algunos de los ejemplos más interesantes de conexiones (por ejemplo, las
conexiones lineales o las conexiones Hermı́ticas) se construyen sobre bimódulos,
y no simplemente sobre módulos a izquierda o a derecha. Michel Dubois-Violette
y Thierry Masson dieron en [DVM96] una noción de compatibilidad de una co-
nexión con la estructura de bimódulo. En el Teorema 4.4.3 establecemos condi-
ciones necesarias y suficientes para que nuestra conexión producto sea una cone-
xión en bimódulos. El Capı́tulo 4 concluye con una descripción explı́cita de todas
las conexiones producto definidas sobre los planos cuánticos kq[x, y].

Para concluir, el Capı́tulo 5 está dedicado, desde una perspectiva más abs-
tracta, a dar una interpretación más profunda de la estructura de producto ten-
sor torcido usando técnicas de teorı́a de deformación. En particular, partiendo
de un álgebra descrita como un producto tensor torcido, consideramos la apli-
cación producto en dicho álgebra como una deformación del producto usual que
vendrı́a dado para un producto tensor clásico. Esto puede hacerse teniendo en
cuenta la relación muA⊗RB = µA⊗B ◦ T , siendo T la aplicación definida por
T := (A⊗ τ ⊗B) ◦ (A⊗R⊗B). Según comprobamos, esta aplicación T que
define dicha deformación verifica propiedades similares, pero no del todo, a las
que describen las R-matrices definidas por Richard Borcherds. La diferencia e-
xistente nos lleva a definir el concepto de twistor para un álgebra D como una
aplicación lineal T : D ⊗D → D ⊗D verificando las siguientes condiciones:

T (1⊗ d) = 1⊗ d, T (d⊗ 1) = d⊗ 1, para todo d ∈ D,

µ23 ◦ T13 ◦ T12 = T ◦ µ23,

µ12 ◦ T13 ◦ T23 = T ◦ µ12,

T12 ◦ T23 = T23 ◦ T12.

Estas condiciones dadas en T son suficientes para garantizar que la aplicación
µ ◦ T : D ⊗D → D es un producto asociativo en D, con la misma unidad 1.

En un contexto todavı́a más general, definimos las nociones de twistor tren-
zado y pseudotwistor para un álgebra A en una categorı́a monoidal (estricta) C,
viniendo la última dada por T : A ⊗ A → A ⊗ A un morfismo en C para el cual
existen otros dos morfismos T̃1, T̃2 : A ⊗ A ⊗ A → A ⊗ A ⊗ A verificando las
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siguientes condiciones:

T ◦ (u⊗ A) = u⊗ A, T ◦ (A⊗ u) = A⊗ u

(A⊗ µ) ◦ T̃1 ◦ (T ⊗ A) = T ◦ (A⊗ µ),

(µ⊗ A) ◦ T̃2 ◦ (A⊗ T ) = T ◦ (µ⊗ A),

T̃1 ◦ (T ⊗ A) ◦ (A⊗ T ) = T̃2 ◦ (A⊗ T ) ◦ (T ⊗ A).

De nuevo, las condiciones presentadas bastan para garantizar que (A, µ ◦ T, u)
vuelve a ser un álgebra en la categorı́a C.

La noción de pseudotwistor da lugar a un esquema de deformación muy gene-
ral que nos incluye no sólo a los productos tensores torcidos, sino también muchas
otras construcciones, tales como las biálgebras torcidas, las álgebras de formas
diferenciales cuando se considera sobre ellas el producto de Fedosov, los grupos
cuánticos trenzados de Durdevich, el cuadrado de un operador lazo, y muchos
otros ejemplos no previamente relacionados que se pueden encontrar en la lit-
eratura. Si bien las ideas desarrolladas en este Capı́tulo son de naturaleza más
categórica que en los anteriores, algunas de las construcciones geométricas que ll-
evamos a cabo anteriormente pueden extenderse al contexto de los pseudotwistors.
Ası́, damos algunos resultados concernientes a la construcción y el comportamiento
de los módulos y las álgebras de formas diferenciales.

Con la finalidad de hacer este trabajo razonablemente autocontenido, algunos
materiales no directamente relacionados con la teorı́a de las estructuras de factori-
zación ha sido incluido con la forma de apéndices. En concreto, en el Apéndice A
recopilamos algunas definiciones y resultados acerca de categorı́as monoidales y
trenzada, en el Apéndice B damos una introducción al cálculo diagramático, una
herramienta muy útil que nos permite efectuar cálculos que involucren productos
tensores de manera muy efectiva, y que se emplea de manera intensa durante toda
esta tesis. En el Apéndice C recordamos la construcción y principales propiedades
del cálculo diferencial universal construido sobre un álgebra no conmutativa, y en
el Apéndice D resumimos la construcción, en términos de generadores y rela-
ciones, de los planos no conmutativos de Connes y Dubois-Violette.
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INTRODUCTION

Einstein was always rather hostile to quantum mechanics.
How can one understand this? I think it was very easy to
understand, because Einstein had been proceeding on
different lines, lines of pure geometry. He had been
developing geometrical theories and had achieved
enormous success. It is only natural that he should think
that further problems of physics should be solved by
further development of geometrical ideas. How, to have
a× b not equal to b× a is something that does not fit very
well with geometrical ideas; hence his hostility to it. . .

P.A.M. Dirac, as cited in “The Mathematical
Intelligencer”

Since the dawn of cartesian geometry in the XVII-th century, followed by Bern-
hard Riemann’s approach to define the notion of differential manifold, and find-
ing its highest peaks with the remarkable groundwork developed by Alexander
Grothendieck in algebraic geometry, the idea of studying geometrical objects by
means of their coordinates has been so deeply linked to the very heart of geom-
etry that it becomes difficult even to imagine doing geometry without using co-
ordinates. Although all these different notions of geometry rely on very different
principles, they all share the same underlying core: there exists a duality between
geometrical objects and certain sets of functions, regarded as their coordinates.
Differences among distinct approaches to geometry yield then in the conditions
that we impose over those coordinate functions.

Possibly the most remarkable examples of this duality are David Hilbert’s
“Nullstellensatz”, establishing a one to one correspondence between (affine, irre-
ducible) algebraic varieties and commutative, reduced affine algebras over an al-
gebraically closed field, and Gelfand–Naı̆mark’s Theorem, which gives an equiva-
lence between the category of locally compact Hausdorff spaces and the (opposite
of the) category of abelian, non necessarily unital, C∗–algebras. The existence
of these and many other dualities is having the effect of changing the notion of
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“space”.
Same principle underlies the understanding of geometry as a language for de-

scribing a physical reality. On the one hand we have Isaac Newton’s perspective,
postulating the existence of an absolute space, in which physical phenomena oc-
cur: “positions are predetermined, destined to be inhabited by the accidents of
matter”. On the other hand, more recent physical theories stand for a paradigm
shift; in Mach’s philosophy, “space is determined by matter”, so that the space is
no longer a mere receptacle, but an actor in physics, as the bending of light rays
in a gravitational field shows. For Mach and Einstein, “a point then only appears
as a label making it possible to identify an event”.

In a beautiful parallelism, Newtonian physics correspond with the classical no-
tion of a geometrical space given by a set of predefined points, whilst Einstein’s
Relativity Theories represent the consideration of a space as a consequence of
physical reality, corresponding with the algebraic point of view of replacing points
by the values of certain sets of functions defined on them. More on the evolution
of the concept of space and symmetry, both from the mathematical and the philo-
sophical point of view, can be found in the wonderful survey [Car01] by Pierre
Cartier.

At a purely mathematical level, the aforementioned dualities are used by re-
placing certain set of points (the geometrical space under consideration) by a set
(usually some kind of algebra) of functions. If the duality is good enough, geo-
metrical properties ought to be translated to their algebraic analogues in terms of
the corresponding algebra. The physical interpretation of this procedure is replac-
ing absolute positions (point in the geometrical space) by the results of certain
observations (values of functions defined in the space). Some well established
theories, like Hamiltonian Mechanics, heavily rely on this method. But things
get trickier when we try to use the same point of view in order to describe quan-
tum effects. Even in the simplest cases, as the study of the movement of a single
electron, the observables corresponding to the particle position and its momentum
(which would, in a classical framework, be the coordinate functions generating the
phase space) do not commute, so hardly can be interpreted as functions over any
geometrical space! Already in 1926, Paul Dirac was aware of this problem, and
proposed describing phase space physics in terms of the quantum analogue of the
algebra of functions, and using the quantum analogue of the classical derivations.

Noncommutative Geometry, in the sense described by Alain Connes in [Con86],
takes this situation as its starting point, and tries to extend the classical correspon-
dences between geometric spaces and commutative algebras to the noncommuta-
tive case. Main motivation for this approach rests on two points (cf. [Con94]):
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1. The existence of many natural spaces which are considered to be ill-behaved
when regarded from the point of view of the classical set-theoretic tools,
such as the space of Penrose tilings, the space of leaves of a foliation, or
the phase space in quantum mechanics. Each of these spaces correspond
in a very natural way to a noncommutative algebra that conceals nontrivial
information about the space.

2. The extension of classical tools to the noncommutative situation, involv-
ing an algebraic reformulation of them (which is often not straightforward).
Sometimes, the noncommutative reformulation of a classical concept yields
completely new phenomena with no classical counterpart, such as the exis-
tence of a canonical time evolution for a noncommutative measure space.

Since its early developments twenty years ago, noncommutative geometry has un-
veiled itself as a fruitful theory, revealing deep relations with theoretical physics,
such as Connes description of the Standard Model in particle physics (cf. [Con06]
and [CCM07] for some state-of-the-art surveys), and number theory, where a re-
formulation of the Riemann Hypothesis in terms of noncommutative geometry
has been done (cf. [Con97] for the original statements, [CCM] for an up to date
revision).

It is worth noting that the term “noncommutative geometry” has been used
to describe a number of different theories. An example of such a theory, arising
from similar problems but using different techniques, is the theory of Quantum
Groups, as introduced by Vladimir Drinfeld in his seminal paper [Dri87], whose
(noncommutative) geometrical interpretation can be found in [Man88]. More re-
cent references on this topic are [Kas95], [Maj95]. Some quantum groups have
been recently included within the formalism of spectral triples (cf. for instance
[DLS+05]).

Other approaches of noncommutative geometry, less related with Connes’
spectral point of view, include the more algebraic nongeometry (which could
also be called “noncommutative algebraic geometry in the large”) advocated by
Maxim Kontsevich and Lieven Le Bruyn, based on the study of formally smooth
algebras (also called quasi-free algebras, or qurves), considering them as ma-
chines for producing an infinite number of ordinary (commutative) manifolds.

Maybe the most relevant differences between these two approaches lie in the
fact that nongeometry has a notion of “underlying space”, which is the space of
(finite dimensional) representations rep A =

⋃
n repn A, for the noncommutative

manifold represented by the noncommutative (formally smooth) algebra A. In
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the recent paper [KS] by Maxim Kontsevich and Yan Soibelman, a huge coalge-
bra is considered as the natural object to represent the topology of the underlying
space of the noncommutative manifold. On the other hand, Connes noncommu-
tative differential geometry is based on the idea that the space is only relevant up
to the point we can measure it, and so is completely forgotten in behalf of the
noncommutative algebra (representing the functions defined over the nonexisting
noncommutative space). Whilst this might at a first sight look just a technicality,
or even just a philosophical distinction, it is indeed a huge one, leading to very
different and (each on its own) rich theories.

In the present work, our aim is to undertake one step in the program of trans-
lating classical geometrical constructions to the formalism of Connes’ noncom-
mutative approach. More precisely, our goal is to give a definition for the rep-
resentative of the cartesian product of two noncommutative manifolds, for which
we shall rely on the structure of algebra factorization independently introduced
by Daisuke Tambara in [Tam90] and Shahn Majid in [Maj90b] with different pur-
poses. The idea of considering an algebra factorization as a product manifold
comes from the work developed in [CSV95] by Andreas Cap, Hermann Schichl
and Jiři Vanžura, where an algebra factorization is rechristened with the name of
twisted tensor product. Both terms will be considered as synonymous, and hence-
forth indistinctly used in the sequel. Some special kinds of algebra factorizations,
as well as the closely related entwining structures, have also been studied by
Tomasz Brzeziński and Shahn Majid as noncommutative replacements for princi-
pal bundles, cf. [BM98] and [BM00b] for details.

A remark should be done about the methods and techniques used in the present
memory, since they reflect the very personal point of view of the author towards
noncommutative geometry. Firstly, although the motivation for most of the origi-
nal results contained here comes from noncommutative differential geometry, the
chosen approach is completely algebraic, and almost no remarks concerning the
topological aspects of the theory (encoded in the C∗–algebra structure used in
Connes’ work) are done. The (again, very personal) reason for doing this is the
author’s belief that, whatever a noncommutative space turns out to be, represent-
ing it by a unique algebraic object is way too restrictive.

If we think for instance in the unit circle S1 as a manifold, it can be studied
from an algebraic geometry point of view by using its coordinate ring O(S1) ∼=
C[t, t−1], or from a differential geometry point of view by considering the pre-C∗-
algebra of smooth functions C∞(S1), or via the C∗-algebra of continuous func-
tions C(S1), provided that we focus on its topological aspects, or even using the
Von Neumann algebra of measurable functions L∞(S1) if we want to deal with
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the measure theoretic aspects of it!
In spite of the fact that the four algebraic objects taken into consideration are

very different, it stands to reason that they all represent the same geometrical
object. Indeed, we have a very special relation among the above four algebras.
More concretely, we have the inclusions

C[t, t−1] ⊂ C∞(S1) ⊂ C(S1) ⊂ L∞(S1)

where each algebra can be obtained from the previous one through a suitable com-
pletion (in Fréchèt’s topology to obtain smooth functions, the norm topology to
obtain continuous functions, or the weak operator topology for the measurable
functions). It seems reasonable that in any noncommutative generalization of the
former approach that any purely geometrical construction (meaning those con-
structions that does not depend on particular additional structures built over the
geometric space) should have a counterpart at each of these levels. For the clas-
sical situation, in most cases, constructions live naturally at the lowest level, and
are lifted to the higher ones again by suitable completions. This is, of course,
what happens with the cartesian product of manifolds, represented in algebraic
geometry by the usual algebraic tensor product, and at all the other levels by its
completions. Even though not explicitly mentioned, there are several places where
this technique (working at the lowest algebraic level, complete when necessary)
is used (cf. for instance the definition of noncommutative planes and spheres of
higher dimensions by Alain Connes and Michel Dubois-Violette in [CDV02], or
the works by Edwin Beggs in [Beg], [BB05]).

The second point to be outlined is the continued use of deformation theoretical
interpretations of the performed constructions. Motivation coming this time from
the quantization of the phase space in physics, where noncommutativity arises as
a consequence of zooming in in certain physical system. The author’s belief is that
whenever we start with an algebra describing a classical object, any deformation
of it which is obtained by a suitable procedure should be a representative of some
noncommutative space somehow related to the original one. This deformation
theoretic way of thinking was pretty much the source of motivation for Chapter 5,
where all deformations considered are inner deformations, meaning that they keep
some underlying object fixed (the vector space in the case of algebras), by con-
trast with formal deformations in the sense introduced by Murray Gerstenhaber in
[Ger64], which requires lifting the original algebra to a bigger one.

In Chapter 1 we recall some known results about the theory of factorization
structures. Following the definition given by Shahn Majid in [Maj90b], by a fac-
torization structure we mean an algebra C together with two algebra morphisms
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iA : A → C and iB : B → C such that the associated map

ϕ : A⊗B −→ C

a⊗ b 7−→ iA(a) · iB(b)

is a linear isomorphism. The basic idea underlying the construction of an algebra
factorization for an algebra C is finding two suitable subalgebras, A and B, that
generate C in a nonredundant way. The fact that the map ϕ is a linear isomorphism
has an immediate consequence: C has to be isomorphic, as a vector space, to
the algebraic tensor product A ⊗ B. Thus, from a deformation theory point of
view, giving a factorization structure through the algebras A and B is nothing but
giving an algebra structure in the vector space A ⊗ B that respects the canonical
inclusions of A and B.

If the algebras A and B are unital, factorization structures involving A and B
are in one to one correspondence with linear maps R : B⊗A → A⊗B satisfying
the following conditions:

R ◦ (B ⊗ µA) = (µA ⊗B) ◦ (A⊗R) ◦ (R⊗ A)

R ◦ (µB ⊗ A) = (A⊗ µB) ◦ (R⊗B) ◦ (B ⊗R)

R(1⊗ a) = a⊗ 1, R(b⊗ 1) = 1⊗ b ∀ a ∈ A, b ∈ B,

which are equivalent to requiring that the map µR := (µA ⊗ µB) ◦ (A ⊗ R ⊗ B)
is an associative product on A ⊗ B. In this case, the map R is called a twisting
map between A and B, and the factorization structure determined by it is called
the twisted tensor product of A and B associated to the twisting map R. If A
and B are not unital algebras, the existence of a twisting map (up to the unital-
ity conditions, that do not make sense anymore) is still sufficient for obtaining a
factorization structure, though it is no longer necessary.

Throughout this Thesis, we shall only consider factorization structures given
by twisting maps (which is no loss, since most of the algebras we work with are
unital) and we shall consider the twisting map R as the main object of study in
order to describe properties of factorization structures.

Historically, the starting point for the factorization of algebraic structures can
be considered the work [Bec69] by Jon Beck, where the notion of a distributive
law for a couple of monads (admitting a further generalization within the theory
of operads, as shown in [Str72]) is given. However, the categorical definition of a
factorization structure seems to hide some of its most (in our opinion) interesting
properties. In particular, the geometrical reinterpretation.
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In classical algebraic geometry, the coordinate ring O(M ×N) of the product
variety M × N turns out to factor as the tensor product O(M) ⊗ O(N) of the
corresponding coordinate rings of the factor varieties. Pretty much the same thing
happens, replacing coordinate rings by function algebras and the tensor product
by the topological tensor product, for the algebras of (smooth/continuous) func-
tions over a product (differential) manifold. Henceforth, the tensor product can be
regarded as the natural algebraic replacement for the cartesian product at the geo-
metrical level. From a noncommutative point of view, however, this construction
has one drawback: by taking an ordinary tensor product A ⊗ B of two (non nec-
essarily commutative) algebras, A and B,we are introducing a sort of “artificial”
commutativity. More concretely: elements belonging to A, when regarded as ele-
ments of A ⊗ B via the canonical inclusion a 7→ a ⊗ 1, automagically commute
with all elements belonging to B. There is no reason for assuming this unnatural
commutation in the noncommutative framework.

By replacing the classical tensor product A ⊗ B by a twisted tensor product
A⊗R B, we can get rid of this commutativity and yet keep much of the taste of a
“product-like” construction, in particular preserving the original algebraic struc-
ture of the factors. This is pretty much the spirit that inspired the development
of the so–called braided geometry by Shahn Majid and others in the early 90s,
though they used braided monoidal categories instead of twisted tensor products.
Through the replacement of tensor products by their twisted versions, we get a
new, truly noncommutative, replacement for an algebraic version of a (noncom-
mutative) cartesian product. Of course, greater generality cannot achieved without
loss. In this case, generality is obtained at the expense of uniqueness, since we
will find that for a given couple of algebras, A and B, there usually exist many
non-isomorphic twisted tensor products A⊗R B.

Among the recalled results of Chapter 1, we include some considerations by
Andreas Cap, Herman Schichl and Jiři Vanžura (cf. [CSV95]) dealing with the
problem of building modules over the twisted tensor products of two algebras, that
leads to the definition of module twisting maps. Also, some results concerning
the construction of a product differential calculus over a twisted tensor product are
mentioned. From [BM00a], we recall some structural results obtained by Andrzej
Borowiec and Wladyslaw Marcinek, such as the interpretation of a twisted tensor
product as certain quotient of a free product, and the notion of twisted ideal, that
allows us to factor as twisted tensor products proper quotients of a twisted ten-
sor product. Other important results recalled here are the Universal Property for
twisted tensor products (cf. [CIMZ00]), and the notion of involutive twisting map
used in order to lift involutions from a couple of ∗–algebras to a twisted tensor
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product of them (cf. [VDVK94]). The Chapter concludes with a wide variety of
examples of algebras arising in different areas of mathematics that fit within the
framework of factorization structures.

In Chapter 2 we start our study of factorization structures dealing with the
problem of iterating the construction of twisted tensor products in a consistent
way. We show that for three given algebras A, B and C, and three twisting maps

R1 : B ⊗ A −→ A⊗B,

R2 : C ⊗B −→ B ⊗ C,

R3 : C ⊗ A −→ A⊗ C,

a sufficient condition for being able to define twisting maps

T1 : C ⊗ (A⊗R1 B) −→ (A⊗R1 B)⊗ C,

T2 : (B ⊗R2 C)⊗ A −→ A⊗ (B ⊗R2 C),

associated to R1, R2 and R3 and ensuring that the algebras A⊗T2 (B ⊗R2 C) and
(A ⊗R1 B) ⊗T1 C are equal, can be given in terms of the twisting maps R1, R2

and R3 only. Namely, they have to satisfy the compatibility condition

(A⊗R2) ◦ (R3 ⊗B) ◦ (C ⊗R1) = (R1 ⊗ C) ◦ (B ⊗R3) ◦ (R2 ⊗ A).

This relation may be regarded as a “local” version of the hexagonal relation sat-
isfied by the braiding of a (strict) braided monoidal category. We also prove that
whenever the algebras and the twisting maps are unital, the compatibility condi-
tion is also necessary.

The converse problem is also studied. More concretely, we consider a twisting
map T : C ⊗ (A ⊗R B) → (A ⊗R B) ⊗ C, and find that it can be split as a
composition T = (A ⊗ R2) ◦ (R3 ⊗ B), being R2 and R3 twisting maps, if, and
only if, T satisfies the so–called (right) splitting conditions:

T (C ⊗ (A⊗ 1)) ⊆ (A⊗ 1)⊗ C,

T (C ⊗ (1⊗B)) ⊆ (1⊗B)⊗ C.

As it happens for the classical tensor product, and for the twisted tensor prod-
uct, the iterated twisted tensor product also satisfies a Universal Property, which
is formally stated in Theorem 2.1.6. Main structural result concerning iterated
twisted tensor products is the Coherence Theorem (Theorem 2.1.8), stating, in big
resemblance with MacLane’s Coherence Theorem for monoidal categories, that
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whenever one can build the iterated twisted product of any three factors, it is pos-
sible to construct the iterated twisted product of any number of factors, and that
all the ways one might do this are essentially the same. This result will allow
us to lift to any iterated product every property that can be lifted to three-factors
iterated products. As applications of the former results we characterize the mod-
ules over an iterated twisted tensor product, also giving a method to build some
of them from modules given over each factor, that essentially implies finding an
analogue of the compatibility condition for modules and module twisting maps.
From a more geometrical point of view, we show how to build certain algebras
of differential forms and how to lift the involutions of ∗–algebras to the iterated
twisted tensor products.

In order to illustrate the results established in Chapter 2, four main examples
are given. First two of them, the construction of generalized smash products and
generalized diagonal crossed products, come from Hopf algebra theory, hinting
the fact that the study of twisted tensor product might be used as a unifying tool
in order to give some common foundations to several classical and recent con-
structions. Last two examples have more geometrical flavour; the description
of Connes and Dubois-Violette noncommutative planes as iterated twisted tensor
products provides us an easier and more natural way of introducing the differen-
tial calculi, whilst the fact that the algebra of observables of Nill–Szlachányi fits
our construction gives us a one line proof, which moreover does not require the
computation of any representations, of the fact that it is an AF–algebra.

Chapter 3 deals with the more fundamental problem of classification of fac-
torization structures. This problem can be studied in a twofold way. On the one
hand, one might consider one fixed algebra, and try to study in how many differ-
ent ways it can be factored as a twisted tensor product of two subalgebras. On the
other hand one can take the down-to-up approach of fixing a pair of algebras and
classifying all the algebras that can be constructed as a twisted tensor product of
the given ones.

The first problem finds a strong motivation in Hopf algebra theories, where
there exist many results stating that two different algebras, all given as some kind
of factorization, are isomorphic. Examples of results of this nature are the invari-
ance of a smash product under the effect of a cocycle twist, the description of the
Drinfeld double of a quasitriangular Hopf algebra as an ordinary smash product,
or Fiore’s results concerning the unbraiding of braided tensor products. Moti-
vated by the similarities among these results, we give an explicit construction of a
deformed product (that we give the name of Martini product) based upon the exis-
tence of certain twisting datum, and show that a twisting map R : B⊗A → A⊗B
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for two algebras may be extended, under certain conditions, to a twisting map
Rd : B⊗Ad → Ad⊗B involving the deformation of A, and prove the Invariance
Theorem (Theorem 3.1.3), stating that both twisted tensor products, A⊗R B and
Ad ⊗Rd B, are isomorphic.

This Invariance Theorem is later on generalized to a second version (Theo-
rem 3.1.9) that does not assume any particular description of the deformation of
the algebra A, and is general enough to contain all the motivating examples as
particular cases. Left and right-sided versions of the Invariance Theorems can be
merged together in an iterated version of the invariance under twisting, which is
established in Theorem 3.1.13. As an added advantage, our results give an explicit
description of the existing isomorphism (and its inverse) between the factorization
structures.

For the second classification problem (the determination of all possible twisted
tensor products of two given algebras), we recall some results published by An-
drzej Borowiec and Wladyslaw Marcinek in [BM00a], giving a description of all
(homogeneous) twisting maps existing between two free, finitely generated alge-
bras. As a particular example where the classification problem can be completely
solved in a successful way, we mention the results obtained by Claude Cibils con-
cerning the classification of noncommutative duplicates, which are twisted tensor
products of a finite set algebra and the two-points algebra k2, by means of com-
binatorial objects (coloured quivers). A careful study of the particular problem of
finding all the twisted tensor products (up to isomorphism) of k2 with itself reveals
a small gap in the description of the isomorphism classes described by Cibils in
[Cib06], which is fixed. Also, the Hochschild cohomology of the obtained al-
gebras is computed, obtaining in particular a counterexample to a result by José
Antonio Guccione and Juan José Guccione (cf. [GG99]) establishing a bound for
the Hochschild dimension of a twisted tensor product of two algebras with respect
to an invertible twisting map.

On Chapter 4 we deal with the most geometrical problem studied in this work:
the construction of connection operators over twisted tensor products. The no-
tion of connection, or covariant derivative, has a fundamental rôle in differential
geometry. On the one hand, it is the basic tool that allows, via the notion of par-
allel transport, to define derivatives of order higher than one. In particular, it is
the existence of a connection what allows us to speak about the acceleration on
a path. From a physical point of view, connections can also be used to encode
notions such as gravity theories (defined through connections over the cotangent
bundle) or electromagnetic potentials (connections over a rank one bundle with
fixed trivialization). The classical definition of connection was given a completely
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algebraic description by Jean Louis Koszul in [Kos60], which was later on gen-
eralized to a noncommutative framework by Alain Connes in his paper [Con86].
Given an algebra A, with fixed differential calculus ΩA, and a (right) A–module
E, a connection over E is a linear map

∇ : E −→ E ⊗A Ω1A

satisfying the (right) Leibniz rule:

∇(s · a) = (∇s) · a + s⊗ da ∀ s ∈ E, a ∈ A. (0.2)

Assume that we have two algebras A and B, with respective differential calculi
ΩA and ΩB, E a (right) A–module, and F a right B-module, that we shall assume
to represent certain bundles over the noncommutative manifolds represented by A
and B. Assume also that E and F are endowed with connections

∇E : E → E ⊗A Ω1A,

∇F : F → F ⊗B Ω1B

and a twisting map R : B ⊗ A → A ⊗ B. Our aim is to find an appropriate
A⊗R B–module that encodes the “product bundle” of (the bundles represented by
) E and F , and endow it with a connection that deserves to be called the product
connection of ∇E and ∇F . We show, by comparing with the classical situation
in which E and F represent the tangent bundles over a manifold, that the natural
choice for such a module is E ⊗ B ⊕ A⊗ F . Under some suitable compatibility
conditions, we show that the operator

∇ : E ⊗B ⊕ A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗RB

(
Ω1A⊗B ⊕ A⊗ Ω1B

)

defined as
∇(e⊗ b, a⊗ f) := ∇1(e⊗ b) +∇2(a⊗ f)

is a (right) connection on the module E ⊗ B ⊕ A ⊗ F , where the mappings ∇1

and ∇2 are defined by

∇1 := (E ⊗ uB ⊗ Ω1A⊗B) ◦ (∇E ⊗B) + (E ⊗ uB ⊗ uA ⊗ Ω1B) ◦ (E ⊗ dB),

∇2 := (A⊗ F ⊗ uB ⊗ Ω1B) ◦ (A⊗∇F ) + (uA ⊗ F ⊗ dA ⊗ uB) ◦ σ.

Connections can also be used in order to define some geometrical proper-
ties. For instance, curvature and torsion on a differential manifold may be defined
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only in terms of the connection operator (without any need of having fixed a met-
ric). Noncommutative versions of connections allow a straightforward definition
of curvature as the operator θ : E → E ⊗A Ω2A given by θ := ∇2, the com-
position of the connection operator with itself. By computing the curvature of
the connection that we found above, we find possibly the most striking result of
the present thesis; namely, the Rigidity Theorem (Theorem 4.3.1), stating that the
curvature of the twisted product connection is given by

θ(e⊗ b, a⊗ f) = iE(θE(e)) · b + a · iF (θF (f)),

which is somehow surprising, since the above formula does not depend neither
on the twisting map R nor on the module twisting map used to define the product
connection ∇. From a deformation theoretic point of view, this can be interpreted
as an invariance of the curvature operator under the deformations obtained by
varying the twisting map. An immediate consequence of the Rigidity Theorem is
that the product of two flat connections (i.e. connections having curvature equal
to 0) is again a flat connection, leaving an open path in order to study de Rham
cohomology with coefficients in the sense given by Edwin Beggs and Tomasz
Brzeziński in [BB05] in this framework.

Some of the most interesting examples of connections (for instance, linear
connections or Hermitian connections) are built over bimodules, rather than over
just one sided modules. A notion of compatibility of a connection with a bimodule
structure was given by Dubois-Violette and Masson in [DVM96]. In Theorem
4.4.3 we establish necessary and sufficient conditions for our product connection
to be a bimodule connection. Chapter 4 concludes with an explicit description of
all product connections over the quantum planes kq[x, y].

Finally, Chapter 5 is devoted, from a more abstract point of view, to give a
deeper interpretation of the structure of twisted tensor products from a deforma-
tion theoretic point of view. In particular, we consider the algebra product defined
on a twisted tensor product as a deformation of the ordinary product structure.
This can be done by taking into account the relation µA⊗RB = µA⊗B ◦ T , being T
the map defined by T := (A⊗ τ ⊗B) ◦ (A⊗R⊗ B). This mapping T defining
such a deformation is checked to satisfy properties similar, but essentially differ-
ent, to the ones defining R-matrices in the sense of Borcherds. This difference
lead us to define the concept of twistor for an algebra D, which is a linear map
T : D ⊗D → D ⊗D satisfying the following conditions:

T (1⊗ d) = 1⊗ d, T (d⊗ 1) = d⊗ 1, for all d ∈ D,

µ23 ◦ T13 ◦ T12 = T ◦ µ23,
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µ12 ◦ T13 ◦ T23 = T ◦ µ12,

T12 ◦ T23 = T23 ◦ T12.

Conditions given on T are sufficient to ensure that the composition µ ◦ T : D ⊗
D → D is another associative product on D, sharing the same unit 1. In an even
more general context, we define the notions of braided twistor and pseudotwistor
for an algebra A in a (strict) monoidal category C, the lattest being a morphism
(in C) T : A⊗ A → A⊗ A a morphism in C such that there exist two morphisms
T̃1, T̃2 : A⊗ A⊗ A → A⊗ A⊗ A satisfying

T ◦ (u⊗ A) = u⊗ A, T ◦ (A⊗ u) = A⊗ u

(A⊗ µ) ◦ T̃1 ◦ (T ⊗ A) = T ◦ (A⊗ µ),

(µ⊗ A) ◦ T̃2 ◦ (A⊗ T ) = T ◦ (µ⊗ A),

T̃1 ◦ (T ⊗ A) ◦ (A⊗ T ) = T̃2 ◦ (A⊗ T ) ◦ (T ⊗ A).

Again, the above conditions are sufficient to ensure that (A, µ ◦ T, u) is also an
algebra in C.

The notion of pseudotwistor produces a very general deformation scheme,
that includes not only twisted tensor products, but also many other constructions,
such as twisted bialgebras, algebras of differential forms endowed with the Fe-
dosov product, Durdevich’s braided quantum groups, squares of ribbon operators,
and many other apparently unrelated examples that can be found in the literature.
Though notions in this Chapter are fundamentally of categorical nature, some
geometrical constructions that we performed in the framework of twisted tensor
products can also be carried out for pseudotwistors. In particular, we give some
results concerning modules and algebras of differential forms.

In order to make this work as self contained as possible, some material not
directly related with the topic of twisted tensor products is collected in the form
of appendices. More concretely, in Appendix A we collect some definitions and
results concerning monoidal and braided categories, in Appendix B we give an
introduction to braiding knotation, a very useful tool for doing computations in-
volving tensor product in a graphical way that is intensively used along all the
work. In Appendix C we recall the construction and main properties of the uni-
versal differential calculus over a noncommutative algebra, and in Appendix D
we summarize the construction by means of generators and relations of Connes’
and Dubois-Violette noncommutative planes.
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1. FOUNDATIONS ON FACTORIZATION STRUCTURES

It might be tempting at first to view mathematics as the
union of separate parts such as Geometry, Algebra,
Analysis, Number theory etc. . . where the first is
dominated by the understanding of the concept of
“space”, the second by the art of manipulating
“symbols”, the next by the access to “infinity” and the
“continuum”, etc. This however does not do justice to one
of the most essential features of the mathematical world,
namely that it is virtually impossible to isolate any of the
above parts from the others without depriving them from
their essence. In that way the corpus of mathematics does
resemble a biological entity which can only survive as a
whole and would perish if separated into disjoint pieces.

Alain Connes “Advice to the beginner”

In this chapter we recall some known results upon which much of our theory will
rely. For the proofs of these results, we refer the reader to the original sources.
A survey of many of these results, including detailed proofs, can also be found in
[LP06].

Historically, the starting point for the factorization of algebraic structures can
be considered [Bec69], where Jon Beck gave the notion of a distributive law for a
couple of monads, admitting a further generalization within the theory of operads
(see also [Str72]).

There are a number of specializations of this theory for particular cases. Ex-
amples of studies of factorization structures (also called matched pairs in this con-
text) for discrete groups, Lie groups, and Lie algebras can be found at [Tak81],
[Mic90], [Maj90a]. Possibly the most successful development along this lines,
both because of the obtained results and their physical applications, is the one of
braided geometry in Quantum Group theory, as described in [Maj90b], heavily
based on the study of certain factorization structures of algebras and Hopf alge-
bras over monoidal categories. Throughout all the present work, we shall focus in
the study of factorization structures for algebras over a (strict) monoidal category,
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that most of the time we can safely assume to be the one of vector spaces over a
field k.

In this framework, the characterization and main properties for an algebra fac-
torization were independently discovered in the early 90s by Shahn Majid (cf.
[Maj90b]) and Daisuke Tambara (cf. [Tam90]), and some years later rediscovered
(and given the different name of twisted tensor product) by Andreas Cap, Herman
Schichl and Jiri Vanžura in [CSV95] and by Alfons Van Daele and S. Van Keer in
[VDVK94].

The basic underlying idea is to consider any mathematical object (in our case,
an algebra), and try to rewrite it as a product of two sub-objects with minimal
intersection. From the purely algebraic point of view, the interest on this con-
struction is twofold. On the one hand, knowing such a decomposition of a given
algebra allows us to study its properties in terms of the two smaller (and hopefully
simpler) subalgebras. On the other hand, it gives us a tool for building complicated
objects starting from easier ones, which can help us to explicitly build examples
of algebras satisfying previously fixed properties.

Our particular interest in this structure comes from a geometrical motivation.
When we consider the coordinate ring O(M × N), of a product variety, it turns
out to factor as the tensor productO(M)⊗O(N) of the corresponding coordinate
rings. Pretty much the same thing happens, replacing coordinate rings by function
algebras and the tensor product by the topological tensor product, for the algebras
of (smooth/continuous) functions over a product (differential) manifold. Hence-
forth, the tensor product can be regarded as the natural algebraic replacement for
the cartesian product at the geometrical level. When taking the passage to non-
commutative geometry, however, limiting ourselves to taking tensor products does
not look like the right thing to do, since in an ordinary tensor product elements
belonging to the first factor commute with elements belonging to the second one.
We can get rid of this commutativity and yet keep much of the taste of a “product-
like” construction just replacing tensor products by some suitable deformations:
the aforementioned twisted tensor products. This is pretty much the spirit that
inspired the development of the so–called braided geometry by Shahn Majid and
others in the early 90s. In this chapter we shall recall the definition of factorization
structures (or twisted tensor products) as well as some useful characterizations of
them, and state most of the basic properties that we will need afterwards.
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1.1 The basics (main definitions)

Let C be an algebra over k. A factorization structure on C (or an algebra factor-
ization of C) consists on A, B, subalgebras of C, such that the associated linear
map

(iA, iB) : A⊗B −→ C

a⊗ b 7−→ iA(a)iB(b)

is a linear isomorphism, where iA : A → C, iB : B → C stand for the canonical
inclusions of A and B into C. In this case, we shall also say that C is a twisted
tensor product of A and B. An isomorphism of twisted tensor products is an
isomorphism of algebras which respects the inclusions of A and B.

So, having a factorization structure of C means that we can find two suitable
subobjects (the subalgebras A and B) such that they generate the whole algebra
C in a non-redundant way. The fact that the map (iA, iB) is a linear isomorphism
has an immediate consequence: the algebra C has to be isomorphic, as a vector
space, to the algebraic tensor product A⊗B.

A natural question arises: given A and B two k–algebras, is there any way to
describe all the factorization structures on the vector space A⊗B? A first answer
to this question, whenever A and B are unital algebras, is given by the following
result:

Theorem 1.1.1 ([Tam90], [Maj95], [CSV95]). Twisted tensor products between
A and B are in one-to-one correspondence with linear maps R : B⊗A → A⊗B
satisfying the following conditions:

R ◦ (B ⊗ µA) = (µA ⊗B) ◦ (A⊗R) ◦ (R⊗ A) (1.1)
R ◦ (µB ⊗ A) = (A⊗ µB) ◦ (R⊗B) ◦ (B ⊗R) (1.2)

R(1⊗ a) = a⊗ 1, R(b⊗ 1) = 1⊗ b ∀ a ∈ A, b ∈ B. (1.3)

It is straightforward checking that conditions given in the former theorem are
equivalent to the fact that the map µR := (µA⊗µB)◦(A⊗R⊗B) is an associative
product in A⊗B having 1⊗1 as a unit. Whenever R satisfies the above conditions,
we say that R is a (unitary) twisting map, and we shall denote by A ⊗R B :=
(A ⊗ B, µR) the factorization structure associated to it, that throughout will be
called the twisted tensor product of A and B associated to the twisting map R.
Essentially, if we put the classical flip τ(b ⊗ a) := a ⊗ b in the place of R, we
recover the well known algebra structure of the tensor product A⊗B. Henceforth,
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we might look at the building of a twisted tensor product as the replacement of
this map τ by a suitable map that is good enough to give us an algebra structure.

If, using a Sweedler-type notation, we denote by R(b⊗a) = aR⊗bR = ar⊗br,
for a ∈ A, b ∈ B, then (1.1) and (1.2) may be rewritten as:

(aa′)R ⊗ bR = aRa′r ⊗ (bR)r, (1.4)
aR ⊗ (bb′)R = (aR)r ⊗ brb

′
R. (1.5)

In braiding notation, we will represent a twisting map R : B ⊗ A → A ⊗ B

by a crossing
B A

R

A B

, where we will omit the label R whenever there is no risk of

confusion, and equations (1.1) and (1.2) are represented respectively by

B A A

A B

≡

B A A

A B

and

B B A

A B

≡

B B A

A B

whilst unitality conditions (1.3) read

A

BÃ'!&"%#$

A B

≡

A

BÃ'!&"%#$

A B

and

B

AÃ'!&"%#$

A B

≡

B

AÃ'!&"%#$

A B

It is worth noticing that multiplications in A⊗B defined by twisting maps are
exactly those associative multiplications, having 1⊗ 1 as a unit, which are left A–
module homomorphisms and right B–module homomorphisms for the canonical
corresponding actions.

Many interesting examples of twisting maps arise when we consider R is a
bijective map. Concerning this situation, we can state the next result:

Proposition 1.1.2 ([CMZ02]). Let A⊗R B be a twisted tensor product of algebras
such that the map R is bijective, and denote by V : A ⊗ B → B ⊗ A its inverse.
Then V is also a twisting map and R is an algebra isomorphism between B ⊗V A
and A⊗R B.
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Twisting maps may be characterized in an alternative way that turns out to be
very useful when dealing with differential forms, as well as when dealing with
some classification problems.

Let A, B be unital algebras, and consider the space L(A,A⊗B) of linear maps
defined in A with values in A⊗B. On this space we can define a multiplication ∗
by

ϕ ∗ ψ := (A⊗ µB) ◦ (φ⊗B) ◦ ψ, (1.6)

where µB denotes the multiplication on B.

Proposition 1.1.3 ([CSV95]). (L(A,A ⊗ B), ∗) is an associative unital algebra
with unit given by the map a 7→ a⊗ 1.

In a similar way, we can define a multiplication ∗ on L(B,A⊗B) by

ϕ ∗ ψ := (µA ⊗B) ◦ (A⊗ ψ) ◦ ϕ,

for which L(B,A⊗B) is an associative algebra with unit b 7→ 1⊗ b.

Proposition 1.1.4 ([CSV95]). A linear map R : B ⊗ A → A ⊗ B is a twisting
map if, and only if, the two associated maps

B −→ L(A,A⊗B)
b 7−→ Rb

A −→ L(B,A⊗B)
a 7−→ Ra

defined by Rb(a) := R(b⊗ a) =: Ra(b), are unital algebra morphisms.

1.2 Algebraic properties. Trying to use classical tools

Given a construction, the twisted tensor product, that arises in a purely algebraic
framework, the factorization problem, and that is achieved by means of an ap-
parently small fiddling with the definition of the product structure in the tensor
product, it is natural to wonder whether all the classical constructions that we
can perform over a tensor product can be directly translated to a twisted tensor
product. In this section we summarize some results concerning this issue.

1.2.1 Modules over twisted tensor products

When trying to describe an algebra, modules stand out as one of the most basic
aspects to be taken into account, being the core of such as broad topic as Repre-
sentation Theory is. Thus, the first question to address is the following: given A
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and B algebras, if we know some information about their modules, what can we
say about modules over a twisted tensor product A⊗R B?

In particular, assume that we have M , N left modules over A and B respec-
tively, and R : B ⊗ A → A ⊗ B a twisting map, can we define in M ⊗ N a left
module structure over A ⊗R B is such a way that it is compatible with the inclu-
sion of A, that is, such that (a ⊗ 1) · (m ⊗ n) = am ⊗ n for all a ∈ A, m ∈ M ,
and n ∈ N?

There is a natural approach to this question, consisting on looking for an ex-
change map τM : B ⊗M → M ⊗B, and then define the action

λτM
:= (λA ⊗ λB) ◦ (A⊗ τM ⊗N).

As it happened with the twisting maps for algebras, we will need some extra
conditions in τM if we want λτM

to be a module action.
A linear mapping τM : B ⊗M → M ⊗ B is called a (left) module twisting

map if it satisfies the following conditions

τM(1⊗m) = m⊗ 1 for all m ∈ M, (1.7)
τM ◦ (µB ⊗M) = (M ⊗ µB) ◦ (τM ⊗B) ◦ (B ⊗ τM) (1.8)
τM ◦ (B ⊗ λA) = (λA ⊗B) ◦ (A⊗ τM) ◦ (R⊗M), (1.9)

If we denote by
B M

M B

the module twisting map, the module twisting conditions

look the same as the twisting conditions for algebra twisting maps (replacing A
by M ). Whenever we have τM : B ⊗M → M ⊗ B a module twisting map, the
mapping λτM

= (λA⊗λB)◦ (A⊗τM ⊗N) defines a left module action in M⊗N
over A ⊗R B which is compatible with the inclusion of A for any B–module
N . However, unlike it happens for twisting maps and factorization structures,
we do not have in general a one-to-one correspondence between module twisting
maps and module structures over the twisted tensor product, being the existence
of a module twisting map just a sufficient condition to ensure the existence of an
(A⊗R B)–module structure on M ⊗N .

Under certain further assumptions a sort of converse can be obtained. Recall
that a B–module N is said to be faithful (called effective in [CSV95]) if the
algebra morphism B → L(N,N) = Endk(N) is injective, or, equivalently, if
bN = 0 implies b = 0.

Theorem 1.2.1 ([CSV95]). If M is k–projective and for one faithful B–module
N the map λτM

defines a left action which is compatible with the inclusion of A,
then τM is a module twisting map.
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Module twisting maps admit a similar characterization to the one given before
for twisting maps. First, consider the space L(N,M ⊗ B). As before, this space
is a unital associative algebra with multiplication defined by

ϕ ∗ ψ := (M ⊗ µB) ◦ (ϕ⊗B) ◦ ψ,

and unit m 7→ m ⊗ 1. On the other hand, consider the space L(B, M ⊗ B). On
this space, we can define a left A–action by

a · ϕ := (λA ⊗B) ◦ (A⊗ ϕ) ◦Ra,

where Ra : B → A ⊗ B is given by Ra(b) := R(b ⊗ a). This action makes
L(B,M ⊗B) into a left A–module, allowing us to obtain the following result:

Proposition 1.2.2 ([CSV95]). A linear map τM : B ⊗M → M ⊗ B is a module
twisting map if, and only if, the associated map B → L(M,M ⊗ B) is a homo-
morphism of unital algebras and the associated map M → L(B,M ⊗ B) is a
homomorphism of left A–modules.

What we have done above for left modules can be developed in a completely
analogous way for right modules. As a matter of fact, starting with a twisting
map R : B⊗A → A⊗B, a right A–module M and a right B–module N , we are
looking for a right A⊗RB–module structure on M⊗N such that (m⊗n)·(1⊗b) =
m ⊗ nb, thus we need an exchange map τN : N ⊗ A → A ⊗ N , and define the
action ρτN

:= (ρA⊗ ρB) ◦ (M ⊗ τN ⊗B), where the ρ’s denote the corresponding
right actions. We will call τN a right module twisting map if it satisfies

τN(n⊗ 1) = 1⊗ n for all n ∈ N, (1.10)
τN ◦ (N ⊗ µA) = (µA ⊗N) ◦ (A⊗ τN) ◦ (τN ⊗ A) (1.11)
τN ◦ (ρB ⊗ A) = (A⊗ ρB) ◦ (τN ⊗B) ◦ (N ⊗R), (1.12)

and the obvious theorem relating right module actions on M ⊗N with right mod-
ule twisting maps holds. Also, we can give an associative unital algebra structure
on L(N, A⊗N) via

ϕ ∗ ψ := (µA ⊗N) ◦ (A⊗ ψ) ◦ ϕ,

and a right B–module structure on L(A,A⊗N) via

ϕ · b := (A⊗ ρB) ◦ (ϕ⊗B) ◦Rb,
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being Rb(a) := R(b ⊗ a), and the obvious analogous to the left twisting module
maps characterization holds.

It is worth noticing that, though the following procedure gives us a way to
construct modules over a twisted tensor product, in general it is not true that all
modules over the twisted tensor product can be constructed in this way! More
concretely, given X a left A⊗R B–module, we should not expect that there exist
a left A–module M and a left B–module N , plus a module twisting map, such
that X ∼= M ⊗τM

N . For this far more general situation, most we can say is the
following result, which is well known but not easy to find in the literature (the,
almost trivial, proof can be found for instance in [JMLPPVO]):

Proposition 1.2.3. Let A⊗R B a twisted tensor product associated to the twisting
map R, and let X be a k–vector space. The following are equivalent:

1. X has a structure of (left) A⊗R B–module.

2. X has a structure of (left) A–module, a structure of (left) B–module, and
both structures are compatible, meaning that

λB ◦ (B ⊗ λA) = λA ◦ (A⊗ λB) ◦ (R⊗X), (1.13)

where λA, λB stand for the actions of A and B over X .

Remark. The compatibility condition required in the former proposition is written
down in Sweedler-type notation as follows:

b · (a ·m) = aR · (bR ·m), for all a ∈ A, b ∈ B, m ∈ M. (1.14)

From a categorical point of view, the category of (right or left) modules over
twisted tensor products can be defined as the category of modules over a certain
monoid. More concretely, if we are seeing the twisted tensor product algebra
A ⊗R B as a monoid (or algebra) in an appropriate monoidal category, then the
(right or left) modules over this monoid can be defined in a canonical way (see
[ML98]). In this way, twisting maps lead to a special kind of (right or left) module
over a twisted tensor product algebra. Some might find that this different point of
view provides a simpler way of looking at Proposition 1.2.3.

A study of certain module categories over structures closely related with twisted
tensor products (such as the so-called entwining structures) may be performed us-
ing techniques coming from Yeter-Drinfeld modules, and Doi-Koppinen modules.
This approach is far away from our main interests, so we just suggest any reader
interested in these topics to resort to [CMZ02] and references therein.
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1.2.2 Twisted tensor products as quotients of free products

In classical Ring Theory, it is common to present algebras in terms of generators
and relations, which means starting from a free algebra giving the generators, and
then to quotient out by the required relations. A generalization of the structure of
free algebra is given by the free product of two algebras. In this Section we briefly
recall the construction of this product and show how a twisted tensor product can
also be described as a quotient of a free product.

Given two (unital, associative) algebras A and B, the (algebraic) free product
of A and B, denoted by A∗B, is defined to be the algebra consisting in all formal
finite sums of monomials of the form a1 ∗ b1 ∗ a2 ∗ · · · and b1 ∗ a1 ∗ b2 ∗ · · · ,
being ai ∈ A, bi ∈ B non-scalar elements. In other words, A ∗ B is the algebra
generated by all the elements of A and B, with no further relation amongst them
than the identification of the unit elements 1A ≡ 1B (and henceforth of all the
scalars λ ∈ k). It is straightforward to check that the free product of algebras is
commutative and associative, that is, for any algebras A, B and C we have that

A ∗B ∼= B ∗ A, and (A ∗B) ∗ C ∼= A ∗ (B ∗ C).

Moreover, if A1 is a subalgebra of A and B1 is a subalgebra of B, then A1 ∗B1 is
a subalgebra of A ∗B. In particular, both A and B are subalgebras of A ∗B.

The free product of algebras is often defined through the following universal
property:

Theorem 1.2.4. Let A, B, C algebras, and assume that we have algebra mor-
phisms u : A → C and v : B → C, then there exist a unique algebra morphism
w : A ∗B → C such that

u = w ◦ jA, and v = w ◦ jB,

that is, the following diagram is commutative:

A

jA

²²

u

##FFFFFFFFF

A ∗B
w // C

B

jB

OO

v

;;xxxxxxxxx

where jA and jB stand for the canonical inclusions of A and B into A ∗B.
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Under the conditions of the previous result, it is worth noticing that the map
w is surjective (and so C is a quotient of A ∗B) if, and only if, C is generated by
the images of A and B.

A simple, but very useful, example of algebraic free products is given by tensor
algebras. If U and V are two vector spaces, the free product of the tensor algebras
TU and TV is precisely

TU ∗ TV ∼= T (U ⊕ V ),

the tensor algebra over the direct sum U ⊕ V .
We may also construct the free product of algebra maps. If f : A → C and

g : B → D are algebra morphisms, the map f ∗ g : A ∗B → C ∗D given by

f ∗ g(· · · ∗ b ∗ a ∗ · · · ) := · · · ∗ g(b) ∗ f(a) ∗ · · ·

is also an algebra morphism, which is called the free product of f and g. It is
a well known fact that the map f ∗ g is injective (respectively, surjective) if, and
only if, the maps f and g are injective (resp. surjective).

Consider now, for A and B algebras, ideals IA E A, IB E B, and let

J(IA, IB) := IA ∗B + A ∗ IB;

then, if we consider the canonical projections πA : A → A/IA and πB : B →
B/IB, by the above discussion the free product map

πA ∗ πB : A ∗B → (A/IA) ∗ (B/IB)

is surjective, and thus we have that

(A/IA) ∗ (B/IB) ∼= (A ∗B)/ Ker(πA ∗ πB).

It is easy to verify that Ker(πA ∗ πB) = IA ∗B + A ∗ IB = J(IA, IB), and so we
get

(A ∗B)/ J(IA, IB) ∼= (A/IA) ∗ (B/IB).

The ideal J(IA, IB) is called the free ideal generated by IA and IB.
If we have a twisting map R : B⊗A → A⊗B, then the twisted tensor product

A ⊗R B is generated by the canonical images of A and B; henceforth, A ⊗R B
may be realized as a quotient of the free product algebra A ∗ B. More precisely,
we have the following result:
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Lemma 1.2.5 ([BM00a]). Let A, B algebras, R : B ⊗ A → A ⊗ B a twisting
map, then we have

A⊗R B ∼= (A ∗B)/ IR,

where IR is the ideal of A ∗B given by

IR := 〈{b ∗ a− aR ∗ bR : a ∈ A, b ∈ B}〉 .

1.2.3 Ideals on twisted tensor products

Another classical tool in Ring Theory is the study of ideals. Albeit when dealing
with noncommutative algebras the prime and maximal spectra are not as useful
tools as in the commutative case, a good knowledge of the two-sided ideals of an
algebra may yield useful information about its structural properties. For instance,
Noether and Artin properties are characterized by means of ideals. Also, ideals are
needed in order to build quotient structures. In this Section, we shall state some
properties of ideals in twisted tensor products, and show some conditions under
which a quotient of a twisted tensor product is again a twisted tensor product.

Assume that A⊗R B and A′⊗R′ B
′ are twisted tensor products of the algebras

A,B and A′, B′ respectively. An algebra morphism h : A ⊗R B → A′ ⊗R′

B′ is said to be a twisted tensor product algebra morphism if there exist two
algebra morphisms, f : A → A′ and g : B → B′, such that h = f ⊗ g. Note
that, in general, the tensor product of two algebra morphisms does not have to
be an algebra morphism for the twisted tensor products. However, we have the
following result:

Lemma 1.2.6 ([BM00a]). Let f : A → A′, g : B → B′ algebra morphisms; then
h := f ⊗ g is a twisted tensor product algebra morphism if, and only if, we have

(f ⊗ g) ◦R = R′ ◦ (g ⊗ f), (1.15)

that is, if, and only if, the following diagram commutes:

B ⊗ A
R //

g⊗f
²²

A⊗B

f⊗g
²²

B′ ⊗ A′ R′ // A′ ⊗B′

Let A and B be algebras, R : B ⊗ A → A ⊗ B a twisting map for A and B,
and J E A⊗R B a two–sided ideal in A⊗R B. The ideal J is said to be a twisted
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ideal (also called a crossed ideal in [BM00a]) if the quotient map π : A⊗R B →
(A ⊗R B)/J is a twisted tensor product algebra morphism, that is, if there exist
certain algebras, A′ and B′, and a twisting map R′ : B′⊗A′ → A′⊗B′ such that

(A⊗R B) /J ∼= A′ ⊗R′ B
′.

Assume that JEA⊗RB is a twisted ideal as above. By the definition of twisted
tensor product morphism, there must exist two algebra morphisms πA : A → A′,
πB : B → B′ such that π = πA ⊗ πB. Since π is a surjective map, both πA

and πB must be surjective, and henceforth there must exist two two-sided ideals
IA E A and IB E B such that A′ ∼= A/IA and B′ ∼= B/IB. Then, we may assume
the twisting map R′ to be defined in B/IB ⊗ A/IA, and the following diagram
commutes:

B ⊗ A
R //

πB⊗πA

²²

A⊗B

πA⊗πB

²²
(B/IB)⊗ (A/IA) R′ // (A/IA)⊗ (B/IB) .

(1.16)

This proves the following result:

Lemma 1.2.7 ([BM00a]). Let A, B be algebras, R : B ⊗ A → A⊗ B a twisting
map, and J E A⊗R B a twisted ideal, then there exist ideals IA E A, IB E B and
a twisting map R′ : (B/IB)⊗ (A/IA) → (A/IA)⊗ (B/IB), such that

(A⊗R B) /J ∼= (A/IA)⊗R′ (B/IB) .

We are also interested in the converse statement. Namely, for given ideals
IA E A and IB E B, we would like to find a twisted ideal J E A⊗R B such that
(A⊗R B)/J ∼= (A/IA)⊗R′ (B/IB).

In the first place, let us consider the particular case in which one of the ideals
is trivial. We say that an ideal IA E A is a left R–ideal in A ⊗R B if IA ⊗ B is
a twisted ideal in A ⊗R B. Left R–ideals may be characterized by the following
criterion:

Lemma 1.2.8 ([BM00a]). An ideal IA EA is a left R–ideal in A⊗R B if, and only
if

R(B ⊗ IA) ⊆ IA ⊗B. (1.17)

As an immediate consequence of the proof of the former result, we obtain
that given IA E A a left R–ideal in A ⊗R B, there exists a twisting map R′ :
B ⊗ A/IA → A/IA ⊗B such that

(A⊗R B)/(IA ⊗B) ∼= (A/IA)⊗R′ B.
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In this situation of the last result, we say that the algebra (A/IA) ⊗R′ B is a
left factor of the twisted tensor product A⊗R B.

We might define the notion of a right R–idealIBEB in a completely analogous
way, recovering a result similar to the one for left R–ideals, and obtaining a right
factor of A⊗R B as the quotient

(A⊗R B)/(A⊗ IB) ∼= A⊗R′ (B/IB).

If we have IAEA a left R–ideal, and IB EB a right R–ideal, we define the twisted
ideal generated by IA and IB as

JIA,IB
:= IA ⊗B + A⊗ IB.

We can summarize all the above discussion in the following result:

Theorem 1.2.9 ([BM00a]). If JIA,IB
is the twisted ideal generated by the left R–

ideal IA E A and the right R–ideal IB E B, then there exists a twisting map
R′ : (B/IB)⊗ (A/IA) → (A/IA)⊗ (B/IB) such that

(A⊗R B)/JIA,IB
∼= (A/IA)⊗R′ (B/IB).

In the situation of the Theorem, we will say that (A/IA)⊗R′ (B/IB) is a factor
of the twisted tensor product A⊗R B.

So far we have dealt with the problem of finding factors of a twisted tensor
product, relating them to twisted ideals. A sort of converse problem may be stated.
Namely, given a twisted tensor product algebra A⊗RB, we might wonder whether
there exist algebras Ã and B̃, together with a twisting map R̃ : B̃ ⊗ Ã → Ã⊗ B̃
such that A ⊗R B is the image of Ã ⊗ eR B̃ under some surjective twisted tensor
product algebra morphism, that is, such that there exists a couple of (surjective)
maps hB : B̃ → B and hA : Ã → A making the following diagram commutative:

B̃ ⊗ Ã
eR //

hB⊗hA

²²

Ã⊗ B̃

hA⊗hB

²²
B ⊗ A

R // A⊗B

If this is the case, we will say that Ã ⊗ eR B̃ is a twisted tensor product cover
for A ⊗R B. We will come back to this problem, and state some necessary and
sufficient conditions for the existence of twisted tensor products covers (under
some extra conditions) in Section 3.2.
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1.2.4 Universal property of twisted tensor products

In classical Homological Algebra, the usual tensor product is commonly intro-
duced by means of its universal property, where the commutation between el-
ements belonging to the first factor and elements belonging to the second one
is implicitly required. In this property, we have to consider the canonical al-
gebra monomorphisms iA : A ↪→ A ⊗ B and iB : B ↪→ A ⊗ B given by
iA(a) := a ⊗ 1 and iB(b) := 1 ⊗ b, respectively. Because of the twisting map
conditions, these maps are still algebra morphisms when we consider a twisted
tensor product A⊗R B instead of A⊗B. Moreover, twisted tensor products may
be characterized as algebra structures, defined on A⊗B, such that the above maps
are algebra inclusions and satisfying a⊗ b = iA(a)iB(b) for all a ∈ A, b ∈ B. As
a consequence, with a slight modification, that essentially involves replacing the
usual flip by the twisting map, one may also state a universal property for twisted
tensor products, as shown in [CIMZ00]:

Theorem 1.2.10 ([CIMZ00]). Let A, B be two algebras, and R : B⊗A → A⊗B
a unital twisting map. Given an algebra X , and algebra morphisms u : A → X ,
v : B → X such that

µX ◦ (v ⊗ u) = µX ◦ (u⊗ v) ◦R, (1.18)

then we can find a unique algebra map ϕ : A⊗R B → X such that

ϕ ◦ iA = u, (1.19)
ϕ ◦ iB = v. (1.20)

1.3 Geometrical aspects

Beyond just limiting ourselves to deal with algebraic properties of factorization
structures coming from its similarity with the tensor product, we might as well
consider the interpretation of a classical tensor product as the representative of
(the coordinate ring of) a product manifold, and see whether (algebraic counter-
parts of) geometrical objects constructed upon the tensor product admit a nice
generalization to factorization structures. This is roughly the idea that brought
people working in Noncommutative Geometry to the realm of factorization struc-
tures.
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1.3.1 Differential forms over twisted tensor products

There is no way of talking about Differential Geometry without mentioning tan-
gent spaces. The existence of a tangent bundle is what makes the difference be-
tween a topological and a differential manifold. Also in the algebraic case, tangent
spaces are defined, and used as a tool to give the appropriate notion of singularity
in algebraic varieties. Even more useful than the notion of a tangent space is its
dual notion, namely, the space of differential 1-forms. Differential forms give us
pretty much the same information as vector fields do, with the added advantage
of being easily extended to higher orders, giving rise to the so-called exterior al-
gebra over a manifold. Amongst other things, the exterior algebra turns out to
be a differential graded algebra, with an associated cohomology theory which is
nothing less than the infamous de Rham cohomology (well known for its close re-
lation with Integration Theory). The exterior algebra admits a nice generalization
to the noncommutative framework, where it is replaced by a differential calculus,
which is a differential graded algebra usually obtained as a quotient of the uni-
versal one. A brief introduction to differential calculi and their properties can be
found in Appendix C. In this Section, we want to show how we can explicitly con-
struct a differential calculus over a factorization structure, provided that we know
suitable differential calculi over the factors. Differential calculi over factorization
structures can also be studied (in the braided case) from the point of view of their
relation with bundles. Further details on this approach can be found in [Maj99].

Let A be a unital algebra and let B be a unital differential graded algebra with
differential dB; consider the algebra L(A,A⊗B) of linear maps, with multiplica-
tion ∗ given as in (1.6):

ϕ ∗ ψ := (A⊗ µB) ◦ (ϕ⊗B) ◦ ψ.

Obviously, this is a graded algebra with respect to the grading inherited from the
grading of B. Now, a differential in this algebra is defined by

dϕ := (A⊗ dB) ◦ ϕ.

A straightforward computation shows that (L(A, A⊗B), d) is a differential graded
algebra (cf. [CSV95] for details). Using this fact, together with the universal prop-
erty of universal differential forms (see Appendix C), we may obtain the following
result:

Theorem 1.3.1 ([CSV95]). Let A, B be two algebras. Then any twisting map
R : B ⊗ A → A ⊗ B extends to a unique twisting map R̃ : ΩB ⊗ ΩA →
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ΩA⊗ΩB between the corresponding universal differential calculi, which satisfies
the conditions

R̃ ◦ (dB ⊗ ΩA) = (εA ⊗ dB) ◦ R̃, (1.21)

R̃ ◦ (ΩB ⊗ dA) = (dA ⊗ εB) ◦ R̃, (1.22)

where dA and dB denote the differentials on ΩA and ΩB, and εA, εB stand for
the gradings on ΩA and ΩB, respectively. Moreover, ΩA⊗ eR ΩB is a differential
graded algebra with differential d(ϕ⊗ ω) := dAϕ⊗ ω + (−1)|ϕ|ϕ⊗ dBω.

Conditions (1.21) and (1.22) can be translated, in braiding notation, to the
equalities

ΩB ΩA

dB

eR

ΩA ΩB

≡

ΩB ΩA

eR

εA dB

ΩA ΩB

and

ΩB ΩA

dA

eR

ΩA ΩB

≡

ΩB ΩA

eR

dA εB

ΩA ΩB

respectively. We shall use extensively this way of describing the compatibility
between the twisting map and the differentials later on.

Let us now return to the case of general differential forms. Assume that we
have A and B differential graded algebras such that A0 = A and B0 = B, and a
twisting map R : B ⊗ A → A ⊗ B. Considering that A and B are algebras of
differential forms, it is a reasonable assumption that they are quotients of ΩA and
ΩB respectively. Algebraically, this just means that they are generated, as differ-
ential algebras, by their 0–th degree components. Assuming this, there is an easy
procedure to check whether R induces a twisting map (that, if it were the case,
would be clearly uniquely determined by the compatibility with the differentials)
on these algebras of differential forms. First, consider the map B → L(A,A⊗B)
associated to R. In the proof of Theorem 1.3.1 is shown that this map induces a
morphism of differential graded algebras ΩB → L(A,A ⊗ B), so we just have
to check whether this morphism factors through B. If this is the case, it is easy
to show that then it corresponds, as in the case of universal differential forms,
to a twisting map: following again the same procedure as in the proof of 1.3.1,
we consider the map A → L0(B,A ⊗ B), which induces a morphism of graded
differential algebras ΩA → L0(B, ΩA ⊗ B), and again we have to check if this
morphism factors to A. If this is the case, as in the former theorem we can prove
that it corresponds to a twisting map R̃ : B⊗A → A⊗B.
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1.3.2 Twisted tensor products of ∗–algebras

In Connes’ approach to Noncommutative Geometry, algebras with involutions
play a central rôle. Either in their most topological version (C∗–algebras) or just
as their algebraic approximation (pre–C∗–algebras), the involution is always at
hand and has to be taken into account. So, there is little hope that we can effec-
tively develop an interpretation of factorization structures from the noncommu-
tative geometry point of view unless we are able to control how twisting maps
behave under the effect of involutions. There are two main problems in this area.
Firstly, at the algebraic level, we would like to be able to build an involution in
a twisted tensor product whenever we have involutions in the factors (provided
that we have some nice conditions on the twisting map, of course). The second
one deals with the topological aspect of C∗–algebras; it is a well known fact that
the algebraic tensor product of two C∗–algebras is not, in general, another C∗–
algebra, the problem not coming from the involution, but from completeness. In
general (unless the algebras involved are nuclear) the way of taking a C∗ com-
pletion of an algebraic tensor product is not unique, so we have to distinguish
among a family of different completions. Henceforth, in order to fully cover the
C∗–algebra case, we should be able to deal with all these different completions.
However, the techniques needed to deal with this problem are so varied (starting
with the papers on topological tensor products by Grothendieck, see [Gro53] and
references therein) that we have no choice but leaving them for future works.

Throughout this Section, algebras will be assumed to be defined over the field
C of complex numbers.

Some generalities

If we have A and B two (unital) ∗–algebras, and some twisting map R : B⊗A →
A ⊗ B, any nice way of extending the involutions from A and B to the twisted
tensor product A⊗R B should satisfy

(a⊗ b)∗ = ((a⊗ 1) ·R (1⊗ b))∗ = (1⊗ b)∗ ·R (a⊗ 1)∗. (1.23)

Moreover, we would like the algebra morphisms iA and iB to be also ∗–algebra
morphisms, henceforth having (a ⊗ 1)∗ = a∗ ⊗ 1 and (1 ⊗ b)∗ = 1 ⊗ b∗. Under
these premises, the logical definition of the involution is

(a⊗ b)∗ := R(b∗ ⊗ a∗), (1.24)

that is, if the involutions in A and B are denoted jA and jB respectively, the
involution map would be defined as R ◦ (jB ⊗ jA) ◦ τ . Obviously, if we want this
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map to be an involution, we need its square to be the identity map on A⊗R B. All
this can be formalized in the following result:

Theorem 1.3.2 ([VDVK94]). If A and B are ∗–algebras with involutions jA and
jB, and R : B ⊗ A → A⊗B is a twisting map such that

(R ◦ (jB ⊗ jA) ◦ τ) ◦ (R ◦ (jB ⊗ jA) ◦ τ) = A⊗B, (1.25)

then A⊗R B is a ∗–algebra with involution R ◦ (jB⊗ jA)◦ τ , where τ : A⊗B →
B ⊗ A denotes the usual flip. Moreover, if R is unital, then iA and iB become
∗–morphisms.

Whenever R satisfies the former compatibility condition with respect to the
involutions, we shall call it an involutive twisting map. The involutive condition
is written down in braiding notation in the following way:

A B

τ

jB jA

R

τ

jB jA

R

A B

≡

A B

A B

Twisted enveloping and representations

Sometimes we deal with C–algebras that are not ∗–algebras, and we would like to
describe all the possible ∗–algebra extensions of them. In order to deal with this
problem, we introduce the notion of conjugated algebras and twisted enveloping
algebras. Given associative algebras (over the complex numbers) A and B, we say
that B is a conjugated algebra of A if there exists an antilinear anti–isomorphism
∗ : A → B such that:

(ab)∗ = b∗a∗, (αa)∗ = αa∗. (1.26)

If A and B are conjugated, we denote the inverse anti–isomorphism B → A with
the same symbol ∗, so that (a∗)∗ = a. For a given algebra A, we denote its con-
jugated algebra by A∗ (realize that it follows immediately from the definition that
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the conjugated algebra always exists). As a vector space A∗ is always isomorphic
to the complex conjugate space A, and as an algebra it is isomorphic to Aop.

If we consider a twisted tensor product WR(A) := A⊗RA∗ between an algebra
and its conjugate, we might try to define the natural ∗–operation imposing the
relation

(a⊗ b∗)∗ := b⊗ a∗,

for all a, b ∈ A. Then the following holds:

Lemma 1.3.3 ([BM00a]). The algebra WR(A) is a ∗–algebra if, and only if

(R(b∗ ⊗ a))∗ = R(a∗ ⊗ b) (1.27)

Remark. Compare this statement with equation (1.25).
Any twisting map R : A∗ ⊗ A → A ⊗ A∗ satisfying the relation (1.27) is

called a ∗–twisting map. If R is a ∗–twisting map, the twisted tensor product
algebra WR(A) := A∗ ⊗R A is called the twisted enveloping algebra of A with
respect to R.
Remark. Note that the classical flip τ trivially satisfies condition (1.27), and so the
notion of twisted enveloping algebra generalizes the classical notion of enveloping
algebra.

Let us now consider the twisted enveloping algebra WR(A), where A = TE is
a free algebra, and E is a (non necessarily finite–dimensional) complex separable
Hilbert space with orthonormal basis {xi}i∈I , and R is an arbitrary ∗–twisting
map. In this situation, we may identify the conjugated algebra A∗ with the tensor
algebra TE∗, being E∗ the complex conjugated space of E. We have a pairing
(·|·) : E ⊗ E∗ → C associated to the scalar product, given by

gE(x∗i ⊗ xj) ≡ (
x∗i|xj

)
:=

〈
xi|xj

〉
= δij. (1.28)

Consider now R̂ : E∗ ⊗ E → E ⊗ E∗ a linear Hermitian operator with matrix
elements

R̂(x∗i ⊗ xj) :=
∑

R̂ij
klx

k ⊗ x∗l, (1.29)

and let us take the so–called Hermitian Wick algebra defined as

E(R̂) := T (E ⊕ E∗)/I eR, (1.30)

where the ideal I eR is given by

I eR :=
〈
x∗i ⊗ xj −

∑
R̂ij

klx
k ⊗ x∗l − (

x∗i|xj
)〉

.
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Theorem 1.3.4 (Jørgensen, Schmitt and Werner, [JSW95]).
The Hermitian Wick algebra W (R̂) is isomorphic to the twisted enveloping al-
gebra W eR(TE) of the free algebra TE with respect to the (nonhomogeneous)
twisting map R̃ generated by R̂ + gE .

Consider now an algebra A presented as A ∼= TE/IA. For the conjugated
algebra A∗, we may choose the presentation A∗ ∼= TE∗/I∗A. Observe that, if IA is
a left R–ideal, since R : TE∗ ⊗ TE → TE ⊗ TE∗ is a ∗–twisting map, then I∗A
is a right R–ideal. Hence, there exists a twisting map R′ : A∗⊗A → A⊗A∗, and
we may build the twisted enveloping algebra WR′(A) = A⊗R′ A

∗.

Theorem 1.3.5 ([BM00a]). Let H be a vector space, L(H) the algebra of linear
operators acting on H ,and let A, B be arbitrary algebras and R : B⊗A → A⊗B
a twisting map. Assume that we are given πA and πB representations of A and B
on L(H), and that for all a ∈ A, b ∈ B we have

πB(b)πA(a) = πA(aR)πB(bR), (1.31)

that is, we have the identity

µL(H) ◦ (πB ⊗ πA) = µL(H) ◦ (πA ⊗ πB) ◦R, (1.32)

then there is a unique representation π of A ⊗R B in L(H) such that π|A = πA

and π|B = πB.

A representation defined as above is called a twisted product of the represen-
tations πA and πB. It is easy to see that the converse of this theorem also holds.
Namely, if we have a representation π of A⊗R B in L(H), then there exist repre-
sentations πA and πB of A and B such that π is equal to the twisted product of πA

and πB.
Let us study the particular case of representations of twisted enveloping al-

gebras. Given a representation π : A → L(H) of a complex algebra A in a
Hilbert space H , one can define the conjugate representation π† : A∗ → L(H)
by π†(a∗) := (π(a))†, where † stands for the standard Hermitian adjoint in L(H).
We have proved the following result:

Theorem 1.3.6 ([BM00a]). Let W := A ⊗R A∗ be a twisted enveloping algebra
of A, if π : A → L(H) is a representation of A in a Hilbert space H , such that

π(b)†π(a) = π(aR)π(bR)†, (1.33)

then there is a unique Hermitian representation πW : W → L(H) such that
(πW )|A = π.
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Twisted tensor products of C∗–algebras

When trying to extend the theory of twisted tensor products to the framework
of C∗–algebras, we face the problem of non–uniqueness of the tensor product.
Though this difficulty can be avoided restricting ourselves to study only nuclear
algebras, it might be interesting to set up topological constraints in order to deal
with different topological tensor products of C∗–algebras (for instance, defining
the notion of spatial and maximal twisted tensor products). Here, we will only
deal with the algebraic tensor product, assuming that we are given a C∗–norm in
the target algebra.

Given A,B,C three C∗–algebras, and C∗–algebra morphisms jA : A → C
and jB : B → C, consider the linear map

j : A⊗B −→ C

a⊗ b 7−→ jA(a)jB(b)

We will say that (C, jA, jB) is a C∗–twisted tensor product of A and B if the
following conditions are satisfied:

(1) j(A⊗B) is a dense subset of C.

(2) The map j is injective.

Realize that, unlike for the case of general algebras, we do not require the map j
to be surjective, but only to have dense image. We would like to stress again that
this definition strongly depends on the choice of the tensor product norm. Also,
it is worth noticing that this definition of C∗–twisted tensor product generalizes
the definition of C∗–tensor product, being a twisted tensor product (C, jA, jB)
an ordinary C∗–tensor product if, and only if, jA(a)jB(b) = jB(b)jA(a) for all
a ∈ A, b ∈ B.

If we have (C, jA, jB) and (C ′, j′A, j′B) two twisted tensor products of A and
B, we say that they are equivalent if there exists a C∗–algebra isomorphism ϕ :
C → C ′ such that j′A = ϕ ◦ jA and j′B = ϕ ◦ jB.

Given (C, jA, jB) a C∗–twisted tensor product of two C∗–algebras A and B,
any C∗–algebra morphism ϕ : C → D is uniquely determined by the projections
ϕ ◦ jA and ϕ ◦ jB. More concretely, we have

ϕ(j(
∑

(ai ⊗ bi))) =
∑

(ϕ ◦ jA)(ai) · (ϕ ◦ jB)(bi).

More details on the development of this viewpoint can be found in [Wor96].
To go any further in this direction, we would need to use some techniques coming
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from different areas of mathematics (namely from Functional Analysis and Oper-
ator Algebra Theory, cf. [Gro53]), and thus we will leave this approach for future
works.

1.4 Examples

In this section, we will show different examples that illustrate the theory of fac-
torization structures. These structures pop up in a number of different areas of
mathematics. Beyond some examples arising in classical Ring Theory, they come
up naturally as part of Hopf algebra factorizations (cf. [Maj90b], [Maj95]). An-
other well known example is the braided tensor product A⊗B of two algebras,
as described in [Maj90b]. More examples can be found in Number Theory, like
for instance the description of the quaternions as a twisted tensor product over the
reals of two copies of the field of complex numbers (cf. [BM00b], [CIMZ00]).
Last, but not least, there are some examples of physical interest, like some al-
gebras obtained by quantization of phase spaces, that can be described as fac-
torization structures in a natural way, the simplest example being the Heisenberg
algebra, that can be seen as a twisted tensor product of the algebras generated by
the momentum and position operators (cf. [CSV95]).

1.4.1 Examples coming from classical theory

Example 1.4.1 (The classical tensor product). For any two given algebras A and
B, the classical flip

τ : B ⊗ A −→ A⊗B

b⊗ a 7−→ a⊗ b

trivially satisfies all the needed conditions for being a twisting map. The twisted
tensor product induced by this twisting map is the classical tensor product of
algebras A⊗B.

Example 1.4.2 (Graded tensor product). Let A =
⊕

n≥0 An and B =
⊕

n≥0 Bn

two separated (i.e., A0 = B0 = k), positively graded algebras, and consider the
mapping defined for all a ∈ Am, b ∈ Bn homogeneous elements by

τgr(b⊗ a) := (−1)mna⊗ b.

The linear extension of τgr is a twisting map, and the twisted tensor product
that it induces is precisely the graded tensor product A⊗gr B.
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Example 1.4.3 (Skew group algebra). If G is a discrete group acting on the left by
automorphisms over an algebra A, there is a natural twisting map R : kG⊗ A →
A ⊗ kG given by R(g ⊗ a) := (g · a) ⊗ g. The twisted tensor product A ⊗R kG
is nothing but the classical skew group algebra A ∗ G. Furthermore, if A is a ∗–
algebra, and we consider the involution in kG given by g 7→ g−1, the skew group
algebra A⊗R kG has a ∗–algebra structure.
Example 1.4.4 (Group algebras of products of matched pairs of groups). Let K be
a group factoring as K = GH for G, H subgroups of K such that H∩G = {1K}.
It is a well known result that in this situation the couple (G,H) is a matched pair
of groups, and that K ∼= H ./ G, being ./ the product associated to this pair (see
[Tak81]). Consider

G×H −→ H

(g, h) 7−→ g · h,

G×H −→ G

(g, h) 7−→ gh,

the respective group actions, and define

R : kG⊗ kH −→ kH ⊗ kG

g ⊗ h 7−→ g · h⊗ gh

for all g ∈ G and h ∈ H . This map R is a twisting map, and we have that
kH ⊗R kG ∼= k[H ./ G].
Example 1.4.5 (Ore extensions). Let A be any k–algebra, and B = k[t] the
polynomial ring in one variable. Consider two k–linear maps σ : A → A and
δ : A → A, and consider the mapping

R : k[t]⊗ A −→ A⊗ k[t]

t⊗ a 7−→ σ(a)⊗ t + δ(a)⊗ 1,

for all a ∈ A. Whenever σ(1A) = 1A, δ(1A) = 0, σ is an algebra map, and δ is
a σ–derivation, this mapping extends to a unique twisting map R. If this is the
case, then the twisted tensor product A⊗R k[t] is obviously isomorphic to the Ore
extension A[t; σ, δ] associated to σ and δ. In other words, the map R is a twisting
map if, and only if, the maps σ and δ define an Ore extension of A.

In this example, the twisting map R is invertible if, and only if, σ is an algebra
automorphism, and thus all Ore extensions not given by automorphisms give us
examples of twisted tensor products given by noninvertible twisting maps.
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Example 1.4.6 (Generalized Quaternion algebra). Take a, b ∈ k elements of the
base field, and let A := k[x]/(x2 − a), B := k[y]/(y2 − b). Identifying x and y
with their images in A, B, respectively. Define the map R : B ⊗ A → A⊗B by

R(y ⊗ x) := −x⊗ y.

There is a unique twisting map R that extends the above definition. Moreover,
we have that the twisted tensor product A ⊗R B is isomorphic to the generalized
quaternion algebra akb.

As a particular case of this example, if we take k = R, a = b = −1, we obtain
that the algebras A and B are both isomorphic to the field of complex numbers C,
and for the twisted product A⊗R B, we get that

H = C⊗R C,

that is, the quaternion algebra can be recovered as a twisted tensor product over
the real numbers of two copies of the field of complex numbers!

Example 1.4.7 (Matrix rings, cf. [BM00b]). Assume that our field k contains q
a primitive n–th root of unity. Then the full matrix ring Mn(k) factorizes as a
twisted tensor product Mn(k) = kZn ⊗R kZn, where we can consider the two
copies of kZn as generated by

g :=




1 0 · · · 0
0 q · · · 0
...

... . . . ...
0 0 · · · qn−1


 , and h :=




0 1 0 · · · 0
0 0 1 · · · 0
...

...
... . . . ...

0 0 0 · · · 1
1 0 0 · · · 0




, respectively.

These elements satisfy hg = qgh, thus we can define the twisting map R as the
unique extension of the mapping defined in generators by

R(1⊗ 1) := 1⊗ 1, R(1⊗ g) := g⊗ 1, R(h⊗ 1) := 1⊗h, R(h⊗ g) := q · g⊗h

to kZn ⊗ kZn.

1.4.2 Examples arising from Hopf algebra theory

Example 1.4.8 (The smash product). Let B be a bialgebra with comultiplication
∆ and counit ε, satisfying the usual coassociativity and counital relations:

(B ⊗∆) ◦∆ = (∆⊗B) ◦∆,



1.4. Examples 55

(ε⊗B) ◦∆ = 1⊗B,

(B ⊗ ε) ◦∆ = B ⊗ 1.

Let also A be a B–module algebra, that is, A is an algebra endowed with a
module action B : B ⊗ A → A such that

b B (aa′) = (b1 B a)(b2 B a′),

1 B a = a,

for all elements a, a′ ∈ A, b ∈ B. We have the following result:

Lemma 1.4.9. Given B bialgebra, and A a B–module algebra as above, the map-
ping defined by

R : B ⊗ A −→ A⊗B

b⊗ a 7−→ (b1 B a)⊗ b2

is a twisting map.

PROOF We will show that the twisting conditions (1.1) and (1.2) are satisfied. For
(1.1) we have, on the one hand,

R(B ⊗ µA)(b⊗ a⊗ a′) = R(b⊗ aa′) =

= b1 B (aa′)⊗ b2
[1]
=

[1]
= ((b1)1 B a)((b1)2 B a′)⊗ b2

[2]
=

[2]
= (b1 B a)(b2 B a)⊗ b3,

where in [1] we are using the properties of the action B, and in [2] the coassocia-
tivity condition. On the other hand, we have

(µA ⊗B)(A⊗R)(R⊗ A)(b⊗ a⊗ a′) =

= (µA ⊗B)(A⊗R)((b1 B a)⊗ b2 ⊗ a′) =

= (µA ⊗B)((b1 B a)⊗ ((b2)2 B a′)⊗ (b2)2)
[1]
=

[1]
= (b1 B a)(b2 B a′)⊗ b3,

where in [1] we use again the coassociativity. This proves the first twisting condi-
tion, whilst the second one may be checked in a similar way, concluding that R is
a twisting map.
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¤

For the twisted tensor product algebra A⊗R B given by this twisting map, the
product can be explicitly described as

(a⊗ b)(a′ ⊗ b′) = a(b1 B a′)⊗ b2b
′,

hence we see that the algebra A⊗R B is precisely the well known smash product
of a bialgebra and a module algebra. When both A and B are endowed with
a Hopf algebra structure, this twisted tensor product also coincide with the so–
called semi–simple product of Hopf algebras.

Example 1.4.10 (Crossed product). Let A, B a dual pair of Hopf algebras, that
is, assume that A and B are Hopf algebras endowed with a pairing

〈·, ·〉 : B ⊗ A −→ k

such that

〈∆(b), a⊗ a′〉 = 〈b, aa′〉 , (1.34)
〈bb′, a〉 = 〈b⊗ b′, ∆(a)〉 , (1.35)

where we are considering the obvious extension of 〈·, ·〉 to B ⊗B ⊗A⊗A given
by

〈b⊗ b′, a⊗ a′〉 := 〈b, a〉 〈b′, a′〉 .
Then we may define a left action of the algebra B on A by the expression

b B a := 〈b, a2〉 a1. (1.36)

It is easily shown that A has a structure of left B–module algebra under this action,
and that the mapping R : B ⊗ A → A⊗B defined by

R(b⊗ a) := (b1 B a)⊗ b2 = 〈b1, a2〉 a1 ⊗ b2, (1.37)

is a twisting map. The corresponding twisted tensor product A⊗R B (also called
the crossed product of A and B) has been used as a description of noncommuta-
tive differential operators on A.

Example 1.4.11 (Quasitriangular bialgebras). Let us recall the definition of quasi-
triangular Hopf algebras (see [Mon93] or [CMZ02] for a more complete revision).
A quasitriangular bialgebra (or Hopf algebra) is a pair (H, x), where H is a bial-
gebra (resp. a Hopf algebra) and x = x1 ⊗ x2 ∈ H ⊗H such that:
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(QT1) ∆(x1)⊗ x2 = x13x23,

(QT2) ε(x1)x2 = 1,

(QT3) x1 ⊗∆(x2) = x13x12,

(QT4) x1ε(x2) = 1,

(QT5) ∆cop(h)x = x∆(h) for all h ∈ H ,

where x12, x13 and x23 are the elements of H ⊗H ⊗H given by

x12 := x1 ⊗ x2 ⊗ 1, x13 = x1 ⊗ 1⊗ x2, x23 = 1⊗ x1 ⊗ x2.

Remark. If (H, x) is a quasitriangular Hopf algebra, then the element x is au-
tomatically invertible, and we have x−1 = S(x1) ⊗ x2. A quasitriangular Hopf
algebra is said to be triangular if we have x−1 = τ(x) = x2 ⊗ x1.

Assume then that we have a bialgebra H together with an element x ∈ H⊗H
such that the properties (QT1)–(QT4) are satisfied, and let A, B be left H–module
algebras; then, the map defined by

R = Rx : B ⊗ A −→ A⊗B

b⊗ a 7−→ Rx(b⊗ a) := x2 · a⊗ x1 · b
is a twisting map.

Example 1.4.12 (The Drinfeld double). Let H be a finite–dimensional Hopf al-
gebra, with antipode S, denote by H∗ the dual Hopf algebra, with antipode S∗,
let S and S∗ the composition inverses of S, S∗ respectively, and consider the left
coadjoint action of H on H∗ given by

h B f = h1 ⇀ f ↼ Sh2 = 〈h1, f3〉
〈
Sh2, f1

〉
f2, (1.38)

and the right coadjoint action of H on H∗ given by

f C h = Sh1 ⇀ f ↼ h2 =
〈
Sh1, f3

〉 〈h2, f1〉 f2. (1.39)

When H is finite–dimensional, these actions make the co–opposite Hopf alge-
bra H∗cop into a left H–module algebra, and H into a right H∗cop–module alge-
bra. The Drinfeld double (or quantum double) of H is the Hopf algebra having
H∗cop ⊗H as underlying vector space, algebra structure given by

(f ⊗ h)(f ′ ⊗ h′) := f(h1 B f ′2)⊗ (h2 C f ′1)h
′, (1.40)
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the natural tensor product coalgebra structure, and antipode given by

S(f ⊗ h) := (Sh2 ⇀ Sf1)⊗ (f2 ⇀ Sh1). (1.41)

If we define the linear map

R : H ⊗H∗cop −→ H∗cop ⊗H

h⊗ f 7−→ (h1 B f2)⊗ (h2 C f1)

we can check that R is a twisting map, and the algebra structure induced by R
in H∗cop ⊗ H coincides with the algebra structure of D(H). In other words, as
an algebra, the Drinfeld double can be described as the twisted tensor product
H∗cop ⊗R H .

1.4.3 Geometrical examples

Example 1.4.13 (Quantum tori). Consider the algebra A := C[z, z−1] of complex
Laurent polynomials in one variable (or the algebra of regular functions on the unit
circle) and let q be a complex number of modulus 1. Then define R : A ⊗ A →
A⊗ A by R(zk ⊗ zl) := qklzl ⊗ zk. A simple computation shows that R defines
a twisting map. In fact, this example is just a special instance of Example 1.4.3,
since we can identify A with the group ring of Z.

Note that we can complete the algebra A to the algebra of Schwartz sequences
(i.e. sequences which decay faster than any polynomial) and the above twisting
map is still well defined and it is continuous for the natural Fréchèt topology.

Example 1.4.14 (Quantum plane). Let A = k[x], B = k[y] polynomial rings in
one variable, and fix q ∈ k \ {0} a nonzero scalar. The map

R : k[y]⊗ k[x] −→ k[x]⊗ k[y]

yj ⊗ xi 7−→ qijxi ⊗ yj

is a twisting map, being the twisted tensor product k[x]⊗R k[y] isomorphic to the
classical quantum plane kq[x, y]. A similar discussion applies to Connes noncom-
mutative 4–plane Calg(R4

q) (which is a twisted tensor product of two commutative
∗–algebras, cf. [CDV02], [JMLPPVO]) and to the Weyl algebra A1, also known
as the Heisenberg plane. Note that both the quantum plane and the Heisenberg al-
gebra descriptions as twisted tensor products are also covered by their realizations
as Ore extensions.



2. ITERATION OF FACTORIZATION STRUCTURES

We come now to the question: what is a priori certain or
necessary, respectively in geometry (doctrine of space) or
its foundations? Formerly we thought everything;
nowadays we think nothing. Already the distance-concept
is logically arbitrary; there need be no things that
correspond to it, even approximately.

Albert Einstein, “Space-Time”. Encyclopædia Britannica,
14th ed.

2.1 Generalities

In this Section, our aim is to study the construction of iterated twisted tensor
products. If we think about twisted tensor products as natural noncommutative
analogues for the usual cartesian product of spaces, it is natural to require that the
product of three or more spaces still respects every single factor.

Morally, the construction of a twisting map boils down to giving a rule for ex-
changing factors between the algebras involved in the product. A natural way for
doing this would be to perform a series of two factors twists, that should be related
to the already given notion of twisting map, and to apply algebra multiplication in
each factor afterwards.

Suppose that A, B and C are algebras, let

R1 : B ⊗ A −→ A⊗B,

R2 : C ⊗B −→ B ⊗ C,

R3 : C ⊗ A −→ A⊗ C

be (unital) twisting maps, and consider the application

T1 : C ⊗ (A⊗R1 B) −→ (A⊗R1 B)⊗ C
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given by T1 := (A⊗R2) ◦ (R3 ⊗B). We can also build the map

T2 : (B ⊗R2 C)⊗ A −→ A⊗ (B ⊗R2 C)

given by T2 = (R1 ⊗ C) ◦ (B ⊗ R3). It is a natural question to ask if these
maps are twisting maps. In general, this is not the case, as we will show in
(Counter)example 2.1.2. In the following Theorem, we state necessary and suffi-
cient conditions for this to happen.

Theorem 2.1.1. With the above notation, the following conditions are equivalent:

1. T1 is a twisting map.

2. T2 is a twisting map.

3. The maps R1, R2 and R3 satisfy the following compatibility condition (called
the hexagon equation):

(A⊗R2)◦ (R3⊗B)◦ (C⊗R1) = (R1⊗C)◦ (B⊗R3)◦ (R2⊗A), (2.1)

that is, the following diagram is commutative.

C ⊗ A⊗B
R3⊗B // A⊗ C ⊗B

A⊗R2

((QQQQQQQQQQQQ

C ⊗B ⊗ A

C⊗R1

66mmmmmmmmmmmm

R2⊗A ((QQQQQQQQQQQQ A⊗B ⊗ C

B ⊗ C ⊗ A
B⊗R3 // B ⊗ A⊗ C

R1⊗C
66mmmmmmmmmmmm

Moreover, if all the three conditions are satisfied, then the algebras A⊗T2 (B⊗R2

C) and (A ⊗R1 B) ⊗T1 C are equal. In this case, we will denote this algebra by
A⊗R1 B ⊗R2 C.

PROOF We prove only the equivalence between (1) and (3), being the equivalence
between (2) and (3) completely analogous.
3⇒1 Suppose that the hexagon equation is satisfied. In order to prove that T1

is a twisting map, we have to check the conditions (1.1) and (1.2) for T1, namely,
we have to check the relations

T1 ◦ (C ⊗ µR1) = (µR1 ⊗ C) ◦ (A⊗B ⊗ T1) ◦ (T1 ⊗ A⊗B), (2.2)
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T1 ◦ (µC ⊗ A⊗B) = (A⊗B ⊗ µC) ◦ (T1 ⊗ C) ◦ (C ⊗ T1). (2.3)

To prove this we use braiding notation. Taking into account that the hexagon
equation is written as:

C B A

R2

R3

R1

A B C

≡

C B A

R1

R3

R2

A B C

the proof of condition (2.2) is given by:

C A B A B

A B C

[1]≡

C A B A B

A B C

[2]≡

C A B A B

A B C

[3]≡

C A B A B

A B C

where in [1] we use the twisting condition for R3, in [2] we use the twisting condi-
tion for R2, and in [3] we use the hexagon equation. On the other hand, condition
(2.3) is proved as follows:

C C A B

A B C

[1]≡

C C A B

A B C

[2]≡

C C A B

A B C

where now [1] is due to the twisting conditions for R3, and [2] to twisting condi-
tions for R2. This proves that T1 satisfies the pentagonal equations. Furthermore,
if R2 and R3 are unital, then we have

T1(c⊗ 1⊗ 1) = (A⊗R2)(R3 ⊗B)(c⊗ 1⊗ 1) = (A⊗R2)(1⊗ c⊗ 1) =

= 1⊗ 1⊗ c,

T1(1⊗ a⊗ b) = (A⊗R2)(R3 ⊗B)(1⊗ a⊗ b) = (A⊗R2)(a⊗ 1⊗ b) =
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= a⊗ b⊗ 1,

so T1 is also a unital twisting map.

1⇒3 Now we assume (2.2) and (2.3). It is enough to apply (2.2) to an element
of the form c⊗1⊗b⊗a⊗1 in order to recover the hexagon equation for a generic
element c⊗ b⊗ a of the tensor product C ⊗B ⊗ A.

To finish the proof, assume that the three equivalent conditions are satisfied.
To see that the algebras A ⊗T2 (B ⊗R2 C) and (A ⊗R1 B) ⊗T1 C are equal, it is
enough to expand the expressions of the products

µT2 = (µA ⊗ µR2) ◦ (A⊗ T2 ⊗B ⊗ C),

µT1 = (µR1 ⊗ µC) ◦ (A⊗B ⊗ T1 ⊗ C),

and realize that they are exactly the same application, for which we only have to
observe that

(A⊗B ⊗R2) ◦ (R1 ⊗ C ⊗B) = R1 ⊗R2 = (R1 ⊗B ⊗ C) ◦ (B ⊗ A⊗R2).

¤

When three twisting maps satisfy the hypotheses of Theorem 2.1.1, we will
say either that they are compatible twisting maps, or that the twisting maps satisfy
the hexagon (or braid) equation.

Remark. If the twisting maps Ri are not unital, the hexagon equation is still suf-
ficient for getting associative products associated to T1 and T2, but in general we
need unitality to recover the compatibility condition from the associativity of the
iterated products.

One could wonder whether the braid relation is automatically satisfied for any
three unital twisting maps. This is not the case, as the following example shows:

Example 2.1.2. Take H a noncocommutative (finite dimensional) bialgebra, A =
B = H∗, C = H . Consider the left regular action of H on H∗ given by

(h ⇀ p)(h′) := p(h′h);

with this action, H∗ becomes a left H–module algebra, so we can define the twist-
ing map induced by the action as:

σ : H ⊗H∗ −→ H∗ ⊗H
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h⊗ p 7−→ (h1 ⇀ p)⊗ h2.

If we consider now the twisting maps R1 : B ⊗ A −→ A ⊗ B, R2 : C ⊗ B −→
B ⊗ C, R3 : C ⊗ A −→ A⊗ C, defined as R1 := τ , R2 = R3 := σ, being τ the
usual flip, then the braid relation among R1, R2 and R3 boils down to the equality

(h1 ⇀ q)⊗ (h2 ⇀ p)⊗ h3 = (h2 ⇀ q)⊗ (h1 ⇀ p)⊗ h3,

for all h ∈ H , p, q ∈ H∗, but this relation is false, as we chose H to be nonco-
commutative.

Remark. The multiplication in the algebra A ⊗R1 B ⊗R2 C can be given, using
the Sweedler-type notation recalled before, by the formula:

(a⊗ b⊗ c)(a′ ⊗ b′ ⊗ c′) = a(a′R3
)R1 ⊗ bR1b

′
R2
⊗ (cR3)R2c

′. (2.4)

The next natural question that arises is whether whenever we have a twisting
map T : C ⊗ (A ⊗R B) → (A ⊗R B) ⊗ C, it splits as a composition of two
suitable twisting maps. Once again, this is not possible in general, as will be
shown in (counter)example 2.1.4. The following result establishes necessary and
sufficient conditions for the splitting of a twisting map:

Theorem 2.1.3 (Right splitting). Let A, B, C be algebras, R1 : B ⊗ A → A⊗B
and T : C ⊗ (A⊗R1 B) → (A⊗R1 B)⊗ C unital twisting maps. The following
are equivalent:

1. There exist R2 : C ⊗B → B⊗C and R3 : C ⊗A → A⊗C twisting maps
such that T = (A⊗R2) ◦ (R3 ⊗B).

2. The map T satisfies the (right) splitting conditions:

T (C ⊗ (A⊗ 1)) ⊆ (A⊗ 1)⊗ C, (2.5)
T (C ⊗ (1⊗B)) ⊆ (1⊗B)⊗ C. (2.6)

Remark. The second condition in the Theorem shows a close relation with the
definition of T–ideals; except for the fact that neither A⊗ 1 nor 1⊗ B are ideals
of A ⊗R B, but only sub-objects (subvector spaces). We might have defined a
notion of T–stable sub-object when we defined the notion of R–ideal, but such a
concept is not needed in the forthcoming, and henceforth will not be used.
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PROOF

1⇒2 It is trivial.
2⇒1 Because of the conditions imposed to T , the map R2 : C ⊗B → B⊗C

given as the only k–linear map such that (uA⊗R2) = T ◦(C⊗τ)◦(C⊗B⊗uA) is
well defined. From the fact that T is a twisting map it is immediately deduced that
also R2 is a twisting map. Analogously, we can define R3 : C⊗A → A⊗C as the
only k–linear map such that uB⊗R3 = (τ⊗C)◦T ◦(C⊗(A⊗uB)), which is also
a well defined twisting map. We only have to check that T = (A⊗R2)◦(R3⊗B).
Using braiding notation we have

C A B

A B C

≡

C A B

BÃ'!&"%#$ AÃ'!&"%#$

A B C

[1]≡

C A B

BÃ'!&"%#$ AÃ'!&"%#$

A B C

[2]≡

C A B

AÃ'!&"%#$

BÃ'!&"%#$

A B C

[3]≡

[3]≡

C A B

BÃ'!&"%#$ AÃ'!&"%#$

A B C

≡

C A B

AÃ'!&"%#$ BÃ'!&"%#$

A B C

≡

C A B

A B C

as we wanted to show, and where in [1] we are using that T is a twisting map, and
in [2] and [3] the definitions of R3 and R2 respectively.

¤

Again, we can ask ourselves whether the condition we required for the twisting
map T to split might be trivial. The following example shows a situation in which
an iterated twisted tensor product cannot be split:

Example 2.1.4. We give an example of twisting maps R : B ⊗ A → A ⊗ B and
T : C⊗ (A⊗R B) → (A⊗R B)⊗C for which it is not true that T (c⊗ (a⊗ 1)) ∈
(A⊗ 1)⊗ C for all a ∈ A, c ∈ C.
Let H be a finite dimensional Hopf algebra with antipode S. Recall (cf. Example
1.4.12) that the Drinfeld double D(H) is a Hopf algebra having H∗cop ⊗ H as
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coalgebra structure and multiplication

(p⊗ h)(p′ ⊗ h′) = p(h1 ⇀ p′ ↼ S−1(h3))⊗ h2h
′,

for all p, p′ ∈ H∗ and h, h′ ∈ H , where ⇀ and ↼ are the left and right regular
actions of H on H∗ given by

(h ⇀ p)(h′) := p(h′h), and
(p ↼ h)(h′) := p(hh′),

respectively. The Heisenberg double H(H) is the smash product H#H∗, where
H∗ acts on H via the left regular action p ⇀ h = p(h2)h1. Recall from [Lu94]
that H(H) becomes a left D(H)-module algebra, with action

(p⊗ h) ⇀ (h′ ⊗ q) = p2(h
′
2)q2(h)(h′1 ⊗ p3q1S

∗−1(p1)),

for all p, q ∈ H∗ and h, h′ ∈ H , which is just the left regular action of D(H) on
H(H) identified as vector space with D(H)∗.
Now, we take A = H , B = H∗, C = D(H), R : H∗ ⊗ H → H ⊗ H∗,
R(p⊗ h) = p1 ⇀ h⊗ p2 (hence H ⊗R H∗ = H#H∗ = H(H)) and

T : D(H)⊗H(H) → H(H)⊗D(H),

T ((p⊗ h)⊗ (h′ ⊗ q)) = (p⊗ h)1 ⇀ (h′ ⊗ q)⊗ (p⊗ h)2

(hence H(H) ⊗T D(H) = H(H)#D(H), so T is a twisting map). Now we can
see that

T ((p⊗ h)⊗ (h′ ⊗ 1)) = p3(h
′
2)(h

′
1 ⊗ p4S

∗−1(p2))⊗ (p1 ⊗ h),

which in general does not belong to (H ⊗ 1)⊗D(H).

Of course, there exists an analogous left splitting theorem, that we state for
completeness, and whose proof is analogous to the former one.

Theorem 2.1.5 (Left splitting). Let A, B, C be algebras, R2 : C ⊗ B → B ⊗ C
and T : (B ⊗R2 C) ⊗ A → A ⊗ (B ⊗R2 C) twisting maps. The following are
equivalent:

1. There exist R1 : B⊗A → A⊗B and R3 : C ⊗A → A⊗C twisting maps
such that T = (R1 ⊗ C) ◦ (B ⊗R3).
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2. The map T satisfies the (left) splitting conditions:

T ((1⊗ C)⊗ A) ⊆ A⊗ (1⊗ C), (2.7)
T ((B ⊗ 1)⊗ A) ⊆ A⊗ (B ⊗ 1). (2.8)

The universal property (Theorem 1.2.10) formerly stated can be easily ex-
tended to the iterated setting, as we show in the following result:

Theorem 2.1.6. Let (A,B, C, R1, R2, R3) be as in Theorem 2.1.1. Assume that
we have an -algebra X and algebra morphisms u : A → X , v : B → X , w : C →
X , such that

µX ◦ (w⊗ v⊗ u) = µX ◦ (u⊗ v⊗w) ◦ (A⊗R2) ◦ (R3⊗B) ◦ (C ⊗R1). (2.9)

Then there exists a unique algebra map ϕ : A ⊗R1 B ⊗R2 C → X such that
ϕ ◦ iA = u, ϕ ◦ iB = v, ϕ ◦ iC = w.

PROOF Assume that we have a map ϕ satisfying the conditions in the theorem,
then we may write

ϕ(a⊗ b⊗ c) = ϕ((a⊗ 1⊗ 1)(1⊗ b⊗ 1)(1⊗ 1⊗ c)) =

= ϕ(a⊗ 1⊗ 1)ϕ(1⊗ b⊗ 1)ϕ(1⊗ 1⊗ c)) =

= ϕ(iA(a))ϕ(iB(b))ϕ(iC(c)) =

= u(a)v(b)w(c),

and so ϕ is uniquely defined.
For the existence, define ϕ(a⊗ b⊗ c) := u(a)v(b)w(c), and let us check that

this map is indeed an algebra morphism. Using formula (2.4), we have

ϕ((a⊗ b⊗ c)(a′ ⊗ b′ ⊗ c′)) = ϕ(a(a′R3
)R1 ⊗ bR1b

′
R2
⊗ (cR3)R2c

′) =

= u(a)u((a′R3
)R1)v(bR1)v(b′R2

)w((cR3)R2)w(c′).

On the other hand, we have

ϕ(a⊗ b⊗ c)ϕ(a′ ⊗ b′ ⊗ c′) = u(a)v(b)w(c)u(a′)v(b′)w(c′) =

= u(a)v(b)u(a′R3
)w(cR3)v(b′)w(c′) =

= u(a)u((a′R3
)R1)v(bR1)v(b′R2

)w((cR3)R2)w(c′),

and thus we conclude that ϕ is an algebra morphism. The fact that ϕ satisfies the
required relations with u, v and w is immediately deduced from its definition.
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¤

To reach completely the aim of defining an analogue for the product of spaces,
one should be able to construct a product of any number of factors. In order to
construct the three–factors product, we had to add one extra condition, namely
the hexagon equation, to the conditions that were imposed for building the two–
factors product (the twisting map conditions). Fortunately, in order to build a gen-
eral n–factors twisted product of algebras one needs no more conditions besides
the ones we have already met. Morally, this just means than having pentagonal
(twisting) and hexagonal (braiding) conditions, we can build any product without
worrying about where to put the parentheses. The way to prove this is using in-
duction. As our induction hypothesis, we assume that whenever we have n − 1
algebras B1, . . . , Bn−1, with a twisting map Sij : Bj ⊗ Bi → Bi ⊗ Bj for every
i < j, and such that for any i < j < k the maps Sij , Sjk and Sik are compatible,
then we can build the iterated product B1⊗S12B2⊗S23 · · ·⊗Sn−1 nBn without worry-
ing about parentheses. Let then A1, . . . , An be algebras, Rij : Aj⊗Ai → Ai⊗Aj

twisting maps for every i < j, such that for any i < j < k the maps Rij , Rjk and
Rik are compatible. Define now for every i < n− 1 the map

T i
n−1,n : (An−1 ⊗Rn−1 n An)⊗ Ai → Ai ⊗ (An−1 ⊗Rn−1 n An)

by T i
n−1,n := (Ri n−1 ⊗ An) ◦ (An−1 ⊗ Ri n), which are twisting maps for every

i, as we can directly apply Theorem 2.1.1 to the maps Ri n−1, Ri n and Rn−1 n.
Furthermore, we have the following result:

Lemma 2.1.7. In the above situation, for every i < j < n − 1, the maps Rij ,
T i

n−1,n and T j
n−1,n are compatible.

PROOF Using braiding notation the proof can be written as:

An−1 An Aj Ai

Ai Aj An−1 An

≡

An−1 An Aj Ai

Ai Aj An−1 An

[1]≡

An−1 An Aj Ai

Ai Aj An−1 An

[2]≡

An−1 An Aj Ai

Ai Aj An−1 An

≡
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≡

An−1 An Aj Ai

Ai Aj An−1 An

where in [1] we use the compatibility condition for Rij , Ri n−1 and Rj n−1, and in
[2] we use the compatibility condition for Rij , Rin and Rjn. ¤

So we can apply the induction hypothesis to the n− 1 algebras A1, . . . , An−2,
and (An−1 ⊗Rn−1 n An), and we obtain that we can build the twisted product of
these n−1 factors without worrying about parentheses, so we can build the algebra

A1 ⊗R12 · · · ⊗ An−2 ⊗T n−2
n−1,n

(An−1 ⊗Rn−1 n An).

Simply observing that

An−2 ⊗T n−2
n−1,n

(An−1 ⊗Rn−1 n An) = (An−2 ⊗Rn−2 n−1 An−1)⊗T n
n−2 n−1

An,

we see that we could have grouped together any two consecutive factors. Summa-
rizing, we have sketched the proof of the following theorem (which we will not
write formally to avoid the cumbersome notation it would involve):

Theorem 2.1.8 (Coherence Theorem). Let A1, . . . , An be algebras, Rij : Aj ⊗
Ai → Ai ⊗Aj (unital) twisting maps for every i < j, such that for any i < j < k
the maps Rij , Rjk and Rik are compatible. Then the maps

T i
j−1,j : (Aj−1 ⊗Rj−1 j

Aj)⊗ Ai → Ai ⊗ (Aj−1 ⊗Rj−1 j
Aj)

defined for every i < j − 1 by T i
j−1,j := (Ri j−1 ⊗ Aj) ◦ (Aj−1 ⊗ Ri j), and the

maps
T i

j−1,j : Ai ⊗ (Aj−1 ⊗Rj−1 j
Aj) → (Aj−1 ⊗Rj−1 j

Aj)⊗ Ai

defined for every i > j by T i
j−1,j := (Aj−1 ⊗ Rj i) ◦ (Rj−1 i ⊗ Aj), are twisting

maps with the property that for every i, k /∈ {j − 1, j} the maps Rik, T i
n−1,n and

T k
n−1,n are compatible. Moreover, for any i the (inductively defined) algebras

A1⊗R12 · · ·⊗Ri−3 i−2
Ai−2⊗T i−2

i−1,i
(Ai−1⊗Ri−1 i

Ai)⊗T i+1
i−1,i

Ai+1⊗Ri+1 i+2
· · ·⊗Rn−1 nAn

are all equal.
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Remark. This result may be regarded as a local version of MacLane’s Coherence
Theorem (cf. Appendix A), just the same way as twisting maps may be regarded
as a local version of a braiding in a monoidal category. Somehow, one might
reread these results as a sort of no–go theorem: though we did not required our
construction to live in a braided monoidal category, we re forced to land into
something that looks very similar.

As a consequence of this theorem, any property that can be lifted to iterated
twisted tensor products of three factors can be lifted to products of any number of
factors. One of the most interesting consequences of the Coherence Theorem, or
more accurately, of the former lemma, is that we can state a universal property,
analogous to Theorems 1.2.10 and 2.1.6. In order to state the result it is convenient
to introduce some notation. Let us first define the maps

T1 : An ⊗ · · · ⊗ A1 −→ A1 ⊗ An ⊗ · · · ⊗ A2,

T1 := (R1 n ⊗ IdAn−1⊗···⊗A2) ◦ · · · ◦ (IdAn⊗···⊗A3 ⊗R12),

T2 : A1 ⊗ An ⊗ · · · ⊗ A2 −→ A1 ⊗ A2 ⊗ An ⊗ · · · ⊗ A3,

T2 := (A1 ⊗R2 n ⊗ IdAn−1⊗···⊗A3) ◦ · · · ◦ (IdA1⊗An⊗···⊗A4 ⊗R23),

...
Tn−1 : A1 ⊗ · · · ⊗ An−2 ⊗ An ⊗ An−1 −→ A1 ⊗ · · · ⊗ An−2 ⊗ An−1 ⊗ An,

Tn−1 := A1 ⊗ · · · ⊗ An−2 ⊗Rn−1 n,

and now define the map

S : An ⊗ An−1 ⊗ · · · ⊗ A1 −→ A1 ⊗ A2 ⊗ · · · ⊗ An,

S := Tn−1 ◦ · · · ◦ T2 ◦ T1.

With this notation, we can state the Universal Property for iterated twisted tensor
products as follows:

Theorem 2.1.9 (Universal Property). Let A1, . . . , An be algebras, Rij : Aj⊗Ai →
Ai ⊗ Aj (unital) twisting maps for every i < j, such that for any i < j < k
the maps Rij , Rjk and Rik are compatible. Suppose that we have an algebra X
together with n algebra morphisms ui : Ai → X such that

µX ◦ (un ⊗ · · · ⊗ u1) = µX ◦ (u1 ⊗ · · · ⊗ un) ◦ S. (2.10)

Then there exists a unique algebra morphism

ϕ : A1 ⊗R12 A2 ⊗R23 · · · ⊗Rn−1 n An −→ X
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such that
ϕ ◦ iAj

= uj, for all j = 1, . . . , n.

PROOF Following the same procedure as in the proof of Theorem 2.1.6, it is easy
to see that any map ϕ verifying the conditions of the theorem must satisfy

ϕ(a1 ⊗ · · · ⊗ an) = u1(a1) · · · · · un(an),

and hence it must be unique. Whence it suffices to define ϕ as above. The check-
ing of the multiplicative property is also similar to the one done in the proof of
Theorem 2.1.6, and thus is left to the reader.

¤

2.2 Modules on iterated twisted tensor products

A further step in the study of the iterated twisted tensor products is the lifting
of module structures on the factors. Again, if we have M a left A–module, N
a left B–module, and P a left C–module, the natural way in order to define a
left (A ⊗R1 B ⊗R2 C)–module structure on M ⊗ N ⊗ P is looking for module
twisting maps τM,C : C ⊗ M → M ⊗ C, τM,B : B ⊗ M → M ⊗ B and
τN,C : C ⊗N → N ⊗ C, and defining

λM⊗N⊗P := (λM⊗λN⊗λP )◦ (A⊗τM,B⊗τN,C⊗P )◦ (A⊗B⊗τM,C⊗N⊗P ).

However, as it happened with the iterated product of algebras, in order to have a
left module action it is not enough that τM,C , τN,C and τM,B are module twisting
maps. Realize that, using the A ⊗R1 B–module structure induced on M ⊗ N by
τM,B, we can also write the above action as

λM⊗N⊗P = (λM⊗N ⊗ λP ) ◦ (A⊗B ⊗M ⊗ τN,C ⊗ P ) ◦
◦(A⊗B ⊗ τM,C ⊗N ⊗ P ) =

= (λM⊗N ⊗ λP ) ◦ (A⊗B ⊗ σC ⊗ P ),

where σC : C ⊗ (M ⊗ N) → (M ⊗ N) ⊗ C is defined by σC := (M ⊗ τN,C) ◦
(τM,C ⊗N), so proving that the three module twisting maps induce a left module
structure on M⊗N⊗P is equivalent to prove that the map σC is a module twisting
map, thus giving a left (A⊗R1 B)⊗T1 C–module structure on (M ⊗N)⊗P . We
give sufficient conditions for this to happen in the following result.
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Theorem 2.2.1. With the above notation, suppose that the module twisting maps
τM,C , τM,B and the twisting map R2 satisfy the compatibility relation (also called
the module hexagon condition)

(M⊗R2)◦(τM,C⊗B)◦(C⊗τM,B) = (τM,B⊗C)◦(B⊗τM,C)◦(R2⊗M), (2.11)

that is, the following diagram

C ⊗M ⊗B
τM,C⊗B

// M ⊗ C ⊗B
M⊗R2

((QQQQQQQQQQQQQ

C ⊗B ⊗M

C⊗τM,B

66mmmmmmmmmmmmm

R2⊗M ((QQQQQQQQQQQQQ M ⊗B ⊗ C

B ⊗ C ⊗M
B⊗τM,C// B ⊗M ⊗ C

τM,B⊗C
66mmmmmmmmmmmmm

is commutative; then:

1. The map σC : C⊗ (M⊗N) → (M⊗N)⊗C given by σC := (M⊗τN,C)◦
(τM,C ⊗N) is a module twisting map.

2. The map σB⊗C : (B⊗C)⊗M → M⊗(B⊗C) given by σB⊗C := (τM,B⊗
C) ◦ (B⊗ τM,C) is a module twisting map (giving a left A⊗T2 (B⊗R2 C)–
module structure on M ⊗ (N ⊗ P )).

Moreover, the module structures induced on M ⊗ N ⊗ P by σC and σB⊗C are
equal.

PROOF

1 We have to check that σC satisfies the conditions (1.8) and (1.9). For the first
one, we have that

C C M N

M N C

≡

C C M N

M N C

[1]≡

C C M N

M N C

[2]≡

C C M N

M N C

≡

C C M N

M N C
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where in [1] we are using the first module twisting condition for τM,C , and in [2]
the first module twisting condition for τN,C . For the second one, we have

C A B M N

M N C

≡

C A B M N

M N C

[1]≡

C A B M N

M N C

[2]≡

C A B M N

M N C

[3]≡

[3]≡

C A B M N

M N C

≡

C A B M N

M N C

where in [1] and [2] we use again the module twisting conditions and in [3] the
module hexagon condition.

The proof of (2) is very similar and left to the reader.
¤

Remark. Note that in this case we cannot prove the module hexagon condition
from the twisting conditions on the maps. The situation is similar to what happens
for the case of the existence of module twisting maps. It is reasonable to think
that some sufficient conditions on the modules and the algebras can be given in
order to recover the converse. For instance, if the modules are free, the situation
is analogous to the iterated twisting construction for algebras, and the converse
result can easily be stated.

The general description of modules over a twisted tensor product can be ex-
tended to the iterated framework, generalizing thus the description of modules
over a two-sided smash product from [Pan02].

Proposition 2.2.2. Assume that the hypotheses of Theorem 2.1.1 are satisfied,
such that all algebras and twisting maps are unital. If M is a vector space, then
M is a left A ⊗R1 B ⊗R2 C-module if, and only if, it is a left A-module, a left
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B-module, a left C-module, with actions λA, λB and λC , respectively, and such
that any two of these actions are compatible in the sense of Proposition 1.2.3, i.e.
satisfying the compatibility conditions

λB ◦ (B ⊗ λA) = λA ◦ (A⊗ λB) ◦ (R1 ⊗ A), (2.12)
λC ◦ (C ⊗ λB) = λB ◦ (B ⊗ λC) ◦ (R2 ⊗B), (2.13)
λC ◦ (C ⊗ λA) = λA ◦ (A⊗ λC) ◦ (R3 ⊗ A), (2.14)

(2.15)

Remark. According to Proposition 1.2.3, the required conditions tell that M is a
left module over A⊗R1 B, B⊗R2 C and A⊗R3 C). If, using Sweedler’s notation,
all actions are denoted by ·, the above compatibility conditions become

b · (a ·m) = aR1 · (bR1 ·m), (2.16)
c · (b ·m) = bR2 · (cR2 ·m), (2.17)
c · (a ·m) = aR3 · (cR3 ·m), (2.18)

for all a ∈ A, b ∈ B, c ∈ C, m ∈ M .
PROOF We only prove that M becomes a left A⊗R1 B⊗R2 C-module with action
(a⊗ b⊗ c) ·m = a · (b · (c ·m)). We compute (using formula (2.4)):

((a⊗ b⊗ c)(a′ ⊗ b′ ⊗ c′)) ·m = a(a′R3
)R1 · (bR1b

′
R2
· ((cR3)R2c

′ ·m))
(2.17)
=

(2.17)
= a(a′R3

)R1 · (bR1 · (cR3 · (b′ · (c′ ·m))))
(2.16)
=

(2.16)
= a · (b · (a′R3

· (cR3 · (b′ · (c′ ·m)))))
(2.18)
=

(2.18)
= a · (b · (c · (a′ · (b′ · (c′ ·m))))) =

= (a⊗ b⊗ c) · ((a′ ⊗ b′ ⊗ c′) ·m),

finishing the proof.
¤

Our next result arises as a generalization of the fact from [HN99], [BPVO06]
that a two-sided smash product over a Hopf algebra is isomorphic to a diagonal
crossed product.

Proposition 2.2.3. Let (A,B, C, R1, R2, R3) be as in Theorem 2.1.1, and assume
that R2 is bijective with inverse V : B ⊗ C → C ⊗B. Then (A,C,B, R3, V, R1)
satisfy also the hypotheses of Theorem 2.1.1, and the map A⊗R2 : A⊗R3 C ⊗V

B → A⊗R1 B ⊗R2 C is an algebra isomorphism.
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PROOF By Proposition 1.1.2, V is a twisting map, and it is obvious that the
hexagon condition for (R3, V, R1) is equivalent to the one for (R1, R2, R3). Ob-
viously A ⊗ R2 is bijective, we only have to prove that it is an algebra map.
This can be done either by direct computation or, more conceptually, as follows.
Denote T2 = (R1 ⊗ C) ◦ (B ⊗ R3) and T̃2 = (R3 ⊗ B) ◦ (C ⊗ R1), hence
A ⊗R3 C ⊗V B = A ⊗eT2

(C ⊗V B) and A ⊗R1 B ⊗R2 C = A ⊗T2 (B ⊗R2 C).
By Proposition 1.1.2 we know that R2 : C ⊗V B → B ⊗R2 C is an algebra map,
and we obviously have (A ⊗ R2) ◦ T̃2 = T2 ◦ (R2 ⊗ A), because this is just the
hexagon condition. Now it follows from Lemma 1.2.6 that A ⊗ R2 is an algebra
map.

¤

2.3 Differential forms over iterated twisted tensor products

As our main motivations aimed at applications of our construction to the field of
noncommutative geometry, we are especially interested in finding processes that
allow us to lift constructions associated to geometrical invariants of the algebras to
their (iterated) twisted tensor products. Among these geometrical invariants, the
first one to be taken into account is of course the algebra of differential forms. For
the case of the twisted product of two algebras, a twisted product of the algebras
of universal differential forms is build in a unique way, as it is shown in Theorem
1.3.1; there, the construction of these extended twisting maps is deduced from the
universal property of the first order universal differential calculus. This extension
is compatible with our extra condition for constructing iterated products, as we
show in the following result:

Theorem 2.3.1. Let A, B, C be algebras, and let R1 : B ⊗ A −→ A ⊗ B,
R2 : C ⊗ B −→ B ⊗ C, R3 : C ⊗ A −→ A ⊗ C be twisting maps satisfying
the hexagon equation, then the extended twisting maps R̃1, R̃2 and R̃3 also satisfy
the hexagon equation. Moreover, ΩA ⊗ eR1

ΩB ⊗ eR2
ΩC is a differential graded

algebra, with differential

d = dA ⊗ ΩB ⊗ ΩC + εA ⊗ dB ⊗ ΩC + εA ⊗ εB ⊗ dC .

PROOF For proving that the extended twisting maps satisfy the hexagon equation,
we use a standard technique when dealing with algebras of differential forms.



2.3. Differential forms over iterated twisted tensor products 75

Firstly, observe that when restricted to the zero degree part of the algebras of
differential forms, the extended twisting maps coincide with the original ones, and
hence they trivially satisfy the hexagon equation.

Now, suppose that we have elements ω ∈ ΩA, η ∈ ΩB, θ ∈ ΩC such that
the hexagon equation is satisfied when evaluated on ω ⊗ η ⊗ θ, and let us show
that then the hexagon equation is also satisfied when evaluated in dAω ⊗ η ⊗ θ,
ω⊗ dBη⊗ θ and ω⊗ η⊗ dCθ, that is, we will show that the hexagon condition is
stable under application of any of the differentials dA, dB and dC .

Let us start proving that the condition holds for ω ⊗ η ⊗ dCθ. Using again
braiding notation, we have

ΩC ΩB ΩA

dC

ΩA ΩB ΩC

[1]≡

ΩC ΩB ΩA

εB dC

ΩA ΩB ΩC

[2]≡

ΩC ΩB ΩA

εB

εA dC

ΩA ΩB ΩC

[3]≡

ΩC ΩB ΩA

dC

εA εB

ΩA ΩB ΩC

[4]≡

ΩC ΩB ΩA

εA εB dC

ΩA ΩB ΩC

[5]≡

[5]≡

ΩC ΩB ΩA

dC

εA

ΩA ΩB ΩC

[6]≡

ΩC ΩB ΩA

dC

ΩA ΩB ΩC

where in [1], [2], [5] and [6] we are using the property (1.21) for dC with respect to
R2 and R3 respectively, in [3] the (obvious) fact that the gradings commute with
the extended twisting maps (since they are homogeneous), and in [4] we are using
the hexagon equation for ω⊗ η⊗ θ. The corresponding proofs for ω⊗ dη⊗ θ and
dω ⊗ η ⊗ θ are almost identical. Summarizing, the hexagon condition is stable
under differentials in ΩA, ΩB and ΩC.

Finally, suppose that we have elements ω ∈ ΩA, η ∈ ΩB, θ1, θ2 ∈ ΩC such
that the hexagon equation is satisfied when evaluated on ω⊗η⊗θ1 and ω2⊗η⊗θ2,
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and let us show that in this case the hexagon condition also holds on ω⊗η⊗ θ1θ2:

ΩC ΩC ΩB ΩA

ΩA ΩB ΩC

[1]≡

ΩC ΩC ΩB ΩA

ΩA ΩB ΩC

[2]≡

ΩC ΩC ΩB ΩA

ΩA ΩB ΩC

[3]≡

ΩC ΩC ΩB ΩA

ΩA ΩB ΩC

[4]≡

ΩC ΩC ΩB ΩA

ΩA ΩB ΩC

[5]≡

[5]≡

ΩC ΩC ΩB ΩA

ΩA ΩB ΩC

[6]≡

ΩC ΩC ΩB ΩA

ΩA ΩB ΩC

where in [1], [2], [5] and [6] we use the pentagon equations (1.2) for the twisting
maps R̃2 and R̃3, and in [3] and [4] we use the hexagon condition for ω ⊗ η ⊗ θ1

and ω⊗ η⊗ θ2 respectively. In a completely analogous way we can prove that the
hexagon condition holds for ω ⊗ η1η2 ⊗ θ and ω1ω2 ⊗ η ⊗ θ, that is: the hexagon
condition remains stable under products in ΩA, ΩB and ΩC.

Now, taking into account that ΩA, ΩB and ΩC are generated, as differential
graded algebras, by the elements of degree 0, we may conclude that the hexagon
condition holds completely.

In order to prove that ΩA⊗ eR1
ΩB ⊗ eR2

ΩC is a differential graded algebra, it
is enough to observe that

ΩA⊗ eR1
ΩB ⊗ eR2

ΩC = (ΩA⊗ eR1
ΩB)⊗eT2

ΩC,

the last being (because of Theorem 1.3.1) a differential graded algebra with dif-
ferential

d = dA⊗R1
B ⊗ ΩC + εA⊗R1

B ⊗ dC ,
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and taking into account that

dA⊗R1
B = dA ⊗ ΩB + εA ⊗ dB,

εA⊗R1
B = εA ⊗ εB,

we obtain

d = dA ⊗ ΩB ⊗ ΩC + εA ⊗ dB ⊗ ΩC + εA ⊗ εB ⊗ dC ,

as we wanted to show.
¤

2.4 Iterated twisted tensor products of ∗–algebras

As most of our motivation comes from some algebras used in Connes’ theory, in
order to deal properly with ∗–algebras we would like to find a suitable extension of
condition (1.25) to our framework. As the definition of the involution in a twisted
tensor product also involves the usual flip τ , before extending the conditions to an
iterated product, we need a technical (and easy to prove) result:

Lemma 2.4.1. Let A, B, C be algebras, and let R : B⊗A → A⊗B be a twisting
map. Consider also the usual flips

τBC : B ⊗ C −→ C ⊗B, and
τAC : A⊗ C −→ C ⊗ A,

then the maps τAC , R and τBC satisfy the hexagon condition (in B ⊗ A⊗ C).

PROOF Just write down both sides of the equation and realize they are equal.
¤

Remark. In general, we can say that any twisting map is compatible with a pair
of usual flips, regardless the ordering of the factors. As the inverse of a usual flip
is also a usual flip, we may also use this result when one of the flips is inverted.
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Similarly to what happened with differential forms, in order to be able to ex-
tend the involutions to the iterated product, it is enough that condition (1.25) is
satisfied for every pair of algebras. More concretely, we have the following result:

Theorem 2.4.2. Let A, B, C be ∗–algebras with involutions jA, jB and jC respec-
tively, and let

R1 : B ⊗ A −→ A⊗B,

R2 : C ⊗B −→ B ⊗ C, and
R3 : C ⊗ A −→ A⊗ C

be compatible involutive twisting maps, that is, we require them to satisfy the
following compatibility conditions:

(R1 ◦ (jB ⊗ jA) ◦ τAB) ◦ (R1 ◦ (jB ⊗ jA) ◦ τAB) = A⊗B, (2.19)
(R2 ◦ (jC ⊗ jB) ◦ τBC) ◦ (R2 ◦ (jC ⊗ jB) ◦ τBC) = B ⊗ C, (2.20)
(R3 ◦ (jC ⊗ jA) ◦ τAC) ◦ (R3 ◦ (jC ⊗ jA) ◦ τAC) = A⊗ C. (2.21)

Then A⊗R1 B ⊗R2 C is a ∗–algebra with involution given by

j = (R1⊗C)◦(B⊗R3)◦(R2⊗A)◦(jC⊗jB⊗jA)◦(C⊗τAB)◦(τAC⊗B)◦(A⊗τBC),

where

τAB : A⊗B −→ B ⊗ A,

τBC : B ⊗ C −→ C ⊗B, and
τAC : A⊗ C −→ C ⊗ A

denote the usual flips.

PROOF Consider j defined as above, and let us check that it is an involution, i. e.,
that j2 = A ⊗ B ⊗ C. Firstly, observe that, if we denote by τ all the usual flips



2.4. Iterated twisted tensor products of ∗–algebras 79

and by τ̄ their inverses, we have that
A B C

τ

τ

τ

jC jB jA

R2

R3

R1

τ

τ

τ

jC jB jA

R2

R3

R1

A B C

[1]≡

A B C

τ

τ

τ

jC jB jA

R2

R3

R1

τ

τ

τ

jC jB jA

R1

R3

R2

A B C

[2]≡

A B C

τ

τ

τ

jC jB jA

R2

R3

R1

τ

jB jA

R1

τ

τ

jC

R3

R2

A B C

[3]≡

A B C

τ

τ

τ

jC jB jA

R2

R3

τ̄

jA jB

τ

jB jA

R1

τ

jB jA

R1

τ

τ

jC

R3

R2

A B C

[4]≡

A B C

τ

τ

τ

jC jB jA

R2

R3

τ̄

jA jB

τ

τ

jC

R3

R2

A B C

[5]≡

A B C

τ

τ

τ

jC jB jA

R2

R3

jB jA

τ

τ

τ̄

jC

R3

R2

A B C

where in [1] we use the hexagon conditions for the flips (which is obvious) and the
hexagon conditions for R1, R2, R3, in [2] we use the fact that the involutions jA
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and jB commute with the flips, and the hexagon condition for R1 and two flips (as
stated in the former lemma). Equivalence [3] is due to the fact that both the square
of the involutions, and the composition of a flip with its inverse are the identity.
In [4] we apply (2.19), and in [5] we use again that the involutions commute with
the flips, plus the hexagon condition for τ−1

AB and two usual flips. To conclude the
proof, observe that

A B C

τ

τ

τ

jC jB jA

R2

R3

jB jA

τ

τ

τ̄

jC

R3

R2

A B C

[6]≡

A B C

τ

τ

τ

jC jB jA

R2

R3

jB

τ

jC jA

R3

τ̄

τ

R2

A B C

[7]≡

A B C

τ

τ

τ

jC jB jA

R2

jB
τ̄

jA jC

τ

jC jA

R3

τ

jC jA

R3

τ̄

τ

R2

A B C

[8]≡

A B C

τ

τ

τ

jC jB jA

R2

jB
τ̄

jA jC

τ̄

τ

R2

A B C

[9]≡

A B C

τ

jC jB

jA
R3

jA
τ

jC jB

R3

A B C

[10]≡

A B C

A B C

where in [6] we apply (twice) the commutation of jC with the flips, plus the
hexagon for R3 and two flips (again because of the former lemma). Equality



2.5. Examples of iterated twisted tensor products 81

[7] holds again because we are just adding a term (two squared involutions, a flip,
and its inverse) that equals the identity, while [8] holds by applying (2.20). [9] is
due to the fact that in the last diagram the element of A is not modified at all, since
all the crossings are usual flips, and we get [10] using (2.20) and the fact that jA is
an involution.

¤

2.5 Examples of iterated twisted tensor products

2.5.1 Generalized smash products

We begin by recalling the construction of the so-called generalized smash prod-
ucts. Let H be a bialgebra. For a right H-comodule algebra (A, ρ) we denote
ρ(a) = a<0> ⊗ a<1>, for any a ∈ A. Similarly, for a left H-comodule algebra
(B, λ), if b ∈ B then we denote λ(b) = b[−1] ⊗ b[0].

Let A be a left H-module algebra and B a left H-comodule algebra. Denote
by AI<B the k-vector space A⊗B with newly defined multiplication

(aI<b)(a′I<b′) = a(b[−1] · a′)I<b[0]b
′, (2.22)

for all a, a′ ∈ A and b, b′ ∈ B. Then AI<B is an associative algebra with unit
1AI<1B. If we take B = H then AI<H is just the ordinary smash product
A#H , whose multiplication is

(a#h)(a′#h′) = a(h1 · a′)#h2h
′.

The algebra AI<B is called the (left) generalized smash product of A and B.
Similarly, if B is a right H-module algebra and A is a right H-comodule algebra,
then we denote by A >J B the k-vector space A ⊗ B with the newly defined
multiplication

(a >J b)(a′ >J b′) = aa′<0> >J (b · a′<1>)b′, (2.23)

for all a, a′ ∈ A and b, b′ ∈ B. Then A >J B is an associative algebra with unit
1A >J 1B, called also the (right) generalized smash product of A and B.

We recall some facts from [BPVO06]. Let H be a bialgebra, A a left H-
module algebra, B a right H-module algebra and A an H-bicomodule algebra.
Then AI<A becomes a right H-comodule algebra with structure

AI<A → (AI<A)⊗H, aI<u 7→ (aI<u<0>)⊗ u<1>,
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and A >J B becomes a left H-comodule algebra with structure

A >J B → H ⊗ (A >J B), u >J b 7→ u[−1] ⊗ (u[0] >J b).

Moreover, we have:

Proposition 2.5.1. ([BPVO06]) (AI<A) >J B ≡ AI<(A >J B) as algebras.
If A = H , this algebra is denoted by A#H#B and is called a two-sided smash
product.

This result is a particular case of Theorem 2.1.1. Indeed, define the maps

R1 : A⊗ A → A⊗A, R1(u⊗ a) = u[−1] · a⊗ u[0],

R2 : B ⊗A → A⊗B, R2(b⊗ u) = u<0> ⊗ b · u<1>,

R3 : B ⊗ A → A⊗B, R3(b⊗ a) = a⊗ b,

which obviously are twisting maps because A⊗R1 A = AI<A and A⊗R2 B =
A >J B are associative algebras. Moreover, if we define the maps

T1 : B ⊗ (A⊗A) → (A⊗A)⊗B, T1 := (A⊗R2) ◦ (R3 ⊗A),

T2 : (A⊗B)⊗ A → A⊗ (A⊗B), T2 := (R1 ⊗B) ◦ (A⊗R3),

then one can see that

(AI<A)⊗T1 B = (AI<A) >J B, A⊗T2 (A >J B) = AI<(A >J B).

2.5.2 Generalized diagonal crossed products

We recall the construction of the so-called generalized diagonal crossed product,
cf. [BPVO06], [HN99]. Let H be a Hopf algebra with bijective antipode S, A
an H-bimodule algebra and A an H-bicomodule algebra. Then the generalized
diagonal crossed product A ./ A is the following associative algebra structure on
A⊗A:

(ϕ ./ u)(ϕ′ ./ u′) = ϕ(u{−1} · ϕ′ · S−1(u{1})) ./ u{0}u
′, (2.24)

for all ϕ, ϕ′ ∈ A and u, u′ ∈ A, where

u{−1} ⊗ u{0} ⊗ u{1} := u<0>[−1]
⊗ u<0>[0]

⊗ u<1> = u[−1] ⊗ u[0]<0> ⊗ u[0]<1> .
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We recall some facts from [PVO]. Let H be a Hopf algebra with bijective
antipode S, A an H-bimodule algebra and A an H-bicomodule algebra. Let also
A be an algebra in the Yetter-Drinfeld category H

HYD, that is, A is a left H-module
algebra, a left H-comodule algebra (with left H-comodule structure denoted by
a 7→ a(−1)⊗a(0) ∈ H⊗A) and the Yetter-Drinfeld compatibility condition holds:

h1a(−1) ⊗ h2 · a(0) = (h1 · a)(−1)h2 ⊗ (h1 · a)(0), ∀h ∈ H, a ∈ A. (2.25)

Consider first the generalized smash productAI<A, as associative algebra. From
condition (2.25), it follows thatAI<A becomes an H-bimodule algebra, with H-
actions

h · (ϕI<a) = h1 · ϕI<h2 · a,

(ϕI<a) · h = ϕ · hI<a,

for all h ∈ H , ϕ ∈ A and a ∈ A, hence we may consider the algebra (AI<A) ./
A.
Then, consider the generalized smash product AI<A, as associative algebra. Us-
ing the condition (2.25), one can see that AI<A becomes an H-bicomodule al-
gebra, with H-coactions

ρ : AI<A → (AI<A)⊗H, ρ(aI<u) = (aI<u<0>)⊗ u<1>,

λ : AI<A → H ⊗ (AI<A), λ(aI<u) = a(−1)u[−1] ⊗ (a(0)I<u[0]),

for all a ∈ A and u ∈ A, hence we may consider the algebra A ./ (AI<A).
A similar computation to the one in the proof of Proposition 3.4 in [PVO]

shows:

Proposition 2.5.2. We have an algebra isomorphism (AI<A) ./ A ≡ A ./
(AI<A), given by the trivial identification.

This result is also a particular case of Theorem 2.1.1. Indeed, define the maps:

R1 : A⊗A → A⊗ A, R1(a⊗ ϕ) = a(−1) · ϕ⊗ a(0),

R2 : A⊗ A → A⊗A, R2(u⊗ a) = u[−1] · a⊗ u[0],

R3 : A⊗A → A⊗A, R3(u⊗ ϕ) = u{−1} · ϕ · S−1(u{1})⊗ u{0},

which are all twisting maps because A⊗R1 A = AI<A, A⊗R2 A = AI<A and
A⊗R3 A = A ./ A are associative algebras. Now, if we define the maps

T1 : A⊗ (A⊗ A) → (A⊗ A)⊗A, T1 := (A⊗R2) ◦ (R3 ⊗ A),
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T2 : (A⊗A)⊗A → A⊗ (A⊗A), T2 := (R1 ⊗A) ◦ (A⊗R3),

then one can check that we have

(AI<A)⊗T1 A = (AI<A) ./ A, A⊗T2 (AI<A) = A ./ (AI<A),

hence indeed we recover Proposition 2.5.2.

2.5.3 The noncommutative 2n–planes

The noncommutative plane associated to an antisymmetric matrix, θ = (θµν) ∈
Mn(R), is the associative algebra Calg(R2n

θ ) generated by 2n elements {zµ, z̄µ}
(for µ = 1, . . . , n) with relations

zµzν = λµνzνzµ

z̄µz̄ν = λµν z̄ν z̄µ

z̄µzν = λνµzν z̄µ



 ∀µ, ν = 1, . . . , n, being λµν := eiθµν ,

and endowed with the ∗–operation induced by (zµ)∗ := z̄µ (cf. [CDV02] and
Appendix D).

Observe that as θ is antisymmetric, we have that zµz̄µ = z̄µzµ, so for every
µ = 1, . . . , n the algebra Aµ generated by the elements zµ and z̄µ is commutative,
so Aµ

∼= C[zµ, z̄µ]. We have then n commutative algebras (indeed, n copies of
the polynomial algebra in two variables) contained in the noncommutative plane.
Consider, for µ < ν, the mappings defined on generators by

Rµν : C[zν , z̄ν ]⊗ C[zµ, z̄µ] −→ C[zµ, z̄µ]⊗ C[zν , z̄ν ],

zν ⊗ zµ 7−→ λνµzµ ⊗ zν ,

z̄ν ⊗ z̄µ 7−→ λνµz̄µ ⊗ z̄ν ,

z̄ν ⊗ zµ 7−→ λµνzµ ⊗ z̄ν ,

zν ⊗ z̄µ 7−→ λνµz̄µ ⊗ zν .

Obviously these formulae extend in a unique way to (unital) twisting maps Rµν .
Condition (1.25) is trivially satisfied, so every possible twisted tensor product
is still a ∗–algebra. As on the algebra generators our twisting map is just the
usual flip multiplied by a constant, the hexagon condition is also satisfied in a
straightforward way. The iterated twisted tensor product

C[z1, z̄1]⊗R12 C[z2, z̄2]⊗R23 · · · ⊗Rn−1 n C[zn, z̄n]
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is isomorphic to the noncommutative 2n–plane Calg(R2n
θ ). Furthermore, for every

µ = 1, . . . , n, let Ωµ := Ωalg(R2) be the differential graded algebra of algebraic
differential forms build over the algebra C[zµ, z̄µ], and observe that for µ < ν the
map Rµν : Ων ⊗ Ωµ −→ Ωµ ⊗ Ων defined on generators by

zν ⊗ zµ 7−→ λνµzµ ⊗ zν , z̄ν ⊗ z̄µ 7−→ λνµz̄µ ⊗ z̄ν ,
z̄ν ⊗ zµ 7−→ λµνzµ ⊗ z̄ν , zν ⊗ z̄µ 7−→ λνµz̄µ ⊗ zν ,

dzν ⊗ dzµ 7−→ −λνµdzµ ⊗ dzν , dz̄ν ⊗ dz̄µ 7−→ −λνµdz̄µ ⊗ dz̄ν ,
dz̄ν ⊗ dzµ 7−→ −λµνdzµ ⊗ dz̄ν , dzν ⊗ dz̄µ 7−→ −λνµdz̄µ ⊗ dzν ,
zν ⊗ dzµ 7−→ λνµdzµ ⊗ zν , z̄ν ⊗ dz̄µ 7−→ λνµdz̄µ ⊗ z̄ν ,
z̄ν ⊗ dzµ 7−→ λµνdzµ ⊗ z̄ν , zν ⊗ dz̄µ 7−→ λµνdz̄µ ⊗ zν ,

extends in a unique way to a twisting map defined on Ων ⊗Ωµ. This twisting map
satisfies conditions (1.21) and (1.22), hence, by the uniqueness of the twisting
map extension to the algebras of differential forms given by Theorem 1.3.1, the
maps Rµν coincide with the maps R̃µν obtained in the theorem. So, by applying
Theorem 2.3.1 it follows that they are compatible twisting maps. It is then easy to
check that the iterated twisted tensor product Ω1⊗R12

· · ·⊗Rn−1 n
Ωn is isomorphic,

as a graded (involutive) differential algebra, to the algebra Ωalg(R2n
θ ) of algebraic

differential forms on the noncommutative 2n–plane.

2.5.4 The Observable Algebra of Nill–Szlachányi

In [NS97], Nill and Szlachányi construct, given a finite dimensional C∗–Hopf al-
gebra H and its dual Ĥ , the algebra of observables, denoted by A, by means
of the smash products defined by the natural actions existing between H and Ĥ .
Their interest in studying such an algebra arises as it turns out to be the observable
algebra of a generalized quantum spin chain with H–order and Ĥ–disorder sym-
metries, and they also observe that when H = CG is a group algebra this algebra
A becomes an ordinary G–spin model. We do not need here the physical inter-
pretation of this algebra, our aim is to show that the construction of the algebra A
carried out in [NS97] fits inside our framework of iterated twisted tensor products.

We start by fixing H a finite dimensional C∗–Hopf algebra, that is, a C∗–
algebra endowed with a comultiplication ∆ : H → H ⊗H , a counit ε : H → C
and an antipode S : H → H satisfying the usual compatibility relations required
for defining Hopf algebras, and with the extra assumptions that ∆ and ε are ∗–
algebra morphisms, and such that S(S(x)∗)∗ = x for all x ∈ H (see [Kas95, Sec-
tion IV.8] for details). If H is a ∗–Hopf algebra, it follows that S−1 = S̄ = ∗◦S◦∗
is the antipode of the opposite Hopf algebra Hop (see [Swe69] for details). The
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dual Hopf algebra of a ∗–Hopf algebra is also a ∗–Hopf algebra, with involution
given by ϕ∗ := S(ϕ∗), where ϕ 7→ ϕ∗ is the antilinear involutive algebra auto-
morphism given by ϕ∗(x) := ϕ(x∗). We have canonical pairings between H and
Ĥ given by

〈, 〉 : H ⊗ Ĥ → C, a⊗ ϕ 7→ 〈a, ϕ〉 := ϕ(a),

〈, 〉 : Ĥ ⊗H → C, ϕ⊗ a 7→ 〈ϕ, a〉 := ϕ(a),

that give a structure of dual pairing of Hopf algebras between H and Ĥ . Associ-
ated to this pairing we have the natural actions

B: H ⊗ Ĥ → Ĥ, a⊗ ϕ 7→ ϕ1 〈a, ϕ2〉 ,
C: Ĥ ⊗H → Ĥ, ϕ⊗ a 7→ 〈ϕ1, a〉ϕ2.

Now, for every i ∈ Z, let us take Ai := Ĥ if i is odd and Ai := H if i is even,
and define the maps:

R2k 2k+1 : A2k+1 ⊗ A2k −→ A2k ⊗ A2k+1,

ϕ⊗ a 7−→ (ϕ1 B a)⊗ ϕ2 = a1 〈a2, ϕ1〉 ⊗ ϕ2,

R2k−1 2k : A2k ⊗ A2k−1 −→ A2k−1 ⊗ A2k,

a⊗ ϕ 7−→ (a1 B ϕ)⊗ a2 = ϕ1 〈ϕ2, a1〉 ⊗ a2,

Rij : Aj ⊗ Ai −→ Ai ⊗ Aj,

a⊗ b 7−→ b⊗ a, whenever j − i > 2.

As all the maps Rij are either usual flips or the maps induced by a module algebra
action, it is clear that all of them are twisting maps. Furthermore, it is easy to
check that they satisfy condition (1.25), so they define an involution on every
twisted tensor product. Let us now check that these maps are compatible. More
precisely, let i < j < k, and consider the three maps Rij , Rjk, and Rik, and let
us check that they satisfy the hexagon equation. We have to distinguish among
several cases:

• If both |j − i| , |k − j| ≥ 2, all three maps are just usual flips, and thus the
hexagon condition is trivially satisfied.

• If |j − i| = 1, |k − j| ≥ 2, then we have that both Rik and Rjk are usual
flips, and so the compatibility of Rij with them follows from Lemma 2.4.1.
The same thing happens if |k − j| = 1, |j − i| ≥ 2.
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• If j = i + 1, k = i + 2, then only the map Ri i+2 is a flip. Then we face two
possible situations.

If i = 2n− 1 is odd, then, describing explicitly the maps, we have that

R2n−1 2n(a⊗ ϕ) = 〈ϕ2, a1〉ϕ1 ⊗ a2,

R2n 2n+1(ϕ⊗ b) = 〈b2, ϕ1〉 b1 ⊗ ϕ2.

Hence, applying the left-hand side of the hexagon equation to a generator
a⊗ ϕ⊗ b of A2n+1 ⊗ A2n ⊗ A2n−1 = H ⊗ Ĥ ⊗H , we have

(A2n−1 ⊗R2n 2n−1)(τ ⊗ A2n)(A2n−1 ⊗R2n−1 2n)(a⊗ b⊗ c) =

= (A2n−1 ⊗R2n 2n−1)(τ ⊗ A2n)(〈b2, ϕ1〉 a⊗ b1 ⊗ ϕ2) =

= (A2n−1 ⊗R2n 2n−1)(〈b2, ϕ1〉 a⊗ ϕ2 ⊗ b1) =

= 〈b2, ϕ1〉 〈ϕ3, a1〉 b1 ⊗ ϕ2 ⊗ a2.

On the other hand, for the right hand side we get

(R2n−1 2n ⊗ A2n+1)(A2n ⊗ τ)(R2n 2n+1 ⊗ A2n−1)(a⊗ ϕ⊗ b) =

= (R2n−1 2n ⊗ A2n+1)(A2n ⊗ τ)(〈ϕ2, a1〉ϕ1 ⊗ a1 ⊗ b) =

= (R2n−1 2n ⊗ A2n+1)(〈ϕ2, a1〉ϕ1 ⊗ b⊗ a1) =

= 〈b2, ϕ1〉 〈ϕ3, a1〉 b1 ⊗ ϕ2 ⊗ a2,

where for both expressions we are using the coassociativity of Ĥ . This
proves the hexagon condition for i odd. For i even, the proof is very similar.

Now, once proved that any three twisting maps chosen from the above ones are
compatible, we can apply the Coherence Theorem and build any iterated twisted
tensor product of these algebras. In particular, for any n ≤ m ∈ Z we may define
the algebras

An,m := An ⊗Rn n+1 An+1 ⊗ · · · ⊗Rm−1 m Am.

It is easy to see that if n′ ≤ n and m ≤ m′, then An,m ⊆ An′,m′ and hence the
inclusions give us a direct system of algebras {An,m}n,m∈Z, being its direct limit
lim−→An,m precisely the observable algebra A defined in [NS97]. Furthermore, as
the action that defines the twisting map is a ∗–Hopf algebra action, we have an
involution defined on any of these products.

Moreover, whenever n and m have the same parity, the algebras An,m are
not only finite dimensional ∗–algebras, but C∗–algebras. This can be proven by
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providing faithful ∗–representations of An,m on finite dimensional Hilbert spaces
Hn,m, defined by Hn,m := Hn ⊗Hn+2 ⊗ · · · ⊗ Hm, where each Hk is a copy of
the Hilbert space H, which is defined as L2(Ĥ, h) if n is even and as L2(H, ω) if
n is odd, and by h, ω we denote the normalized Haar measures in Ĥ and H , re-
spectively. Explicit details on how these representations are built can be found in
[NS97, Proposition 2.1]. The fact that all the involved algebras are finite dimen-
sional implies that the C∗-norms built through these representations are indeed
the only existing ones. Thus, as the algebra A is defined as a direct limit of finite
dimensional C∗–algebras, it follows that it is an AF–algebra.



3. THE CLASSIFICATION PROBLEM

The description of right lines and circles, upon which
geometry is founded, belongs to mechanics. Geometry
does not teach us to draw these lines, but requires them to
be drawn.

Isaac Newton, Principia Mathematica

Whilst there certainly exists a strong motivation in different areas of algebra for
studying the structure of twisted tensor products, there is one basic problem con-
cerning them which turns out to be of much more fundamental nature. Namely,
the classification of all different twisted tensor products that we can obtain start-
ing from two given algebras, say A and B. If we are dealing with unital algebras,
since we have n equivalence between the existence of a twisted tensor product
structure and the existence of a twisting map, the problem may be simplified into
fixing a pair of vector spaces, A and B, and finding out linear maps between B⊗A
and A⊗B satisfying certain properties. In some particular situations, for instance
when both A and B are finite dimensional, the twisting conditions may be easily
rewritten in terms of the matrix elements of the linear map (once we have fixed
some bases in the vector spaces), thus obtaining some polynomial equations that
the components of a matrix must satisfy in order to be the representation of a
twisting map in the given bases. As a consequence, we may look at the set of
twisting maps between A and B as an affine subvariety of Mm×n(k), where m is
the dimension of A and n is the dimension of B. The classification of the twist-
ing maps is therefore equivalent to the description of this algebraic variety. Some
steps in this direction have been given by Claude Cibils in [Cib06].

The second obvious problem we face when trying to classify the twisted tensor
products between two algebras is the fact that different twisting maps may give
rise to isomorphic algebra structures. In geometrical terms, this problem boils
down to study certain quotient space of the aforementioned variety of twisting
maps. Unfortunately, so far no groundwork that can simplify the isomorphism
problem is known, and we are bond to deal with each case separately.
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In this Chapter we shall deal with some aspects of this classification problem.
Namely, in the first Section, mostly based upon [JMLPPVO], we shall establish
some theoretical results, known as the “Invariance under twisting” theorems, that
give us some conditions under which we can assure that two different twisted
tensor products give rise to isomorphic algebra structures. This result (that un-
der some suitable assumptions can be iterated) generalizes some independent and
previously unrelated results coming from Hopf algebra theory.

In Section 2 we shall recall some results by Andrzej Borowiec and Wladyslaw
Marcinek (cf. [BM00a]) that give an easy description of all homogeneous twisting
maps between two finitely generated free algebras, as well as some applications
of these results to the construction of twisted tensor product covers.

Finally, in the third Section we shall give an explicit description (based upon
our work in [LPN06]) of all the factorization structures existing between the al-
gebra k2 and itself and compute its Hochschild cohomology, filling a gap left in
the classification made by Cibils in [Cib06], and finding a counterexample to a re-
sult given by J.A. Guccione and J.J. Guccione in [GG99], concerning Hochschild
homology of twisted tensor products.

3.1 Invariance under twisting

3.1.1 The motivation

In this section, we will recall four apparently unrelated results appeared in the
literature, and find some common points among them that will lead us to the state-
ment of our invariance theorems.

The Drinfeld twist

Let H be a bialgebra and F ∈ H ⊗ H a 2-cocycle, that is, F is an invertible
element of H ⊗H that satisfies

(ε⊗ id)(F ) = (id⊗ ε)(F ) = 1,

(1⊗ F )(id⊗∆)(F ) = (F ⊗ 1)(∆⊗ id)(F ).

We write F = F 1⊗F 2 and F−1 = G1⊗G2. We denote by HF the Drinfeld twist
of H , which is a bialgebra having the same algebra structure as H and comultipli-
cation given by ∆F (h) = F∆(h)F−1, for all h ∈ H .
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If A is a left H-module algebra (with H-action denoted by h⊗ a 7→ h · a), the
invariance under twisting of the smash product A#H (see [Maj97], [BPVO00])
is the following:

Define a new multiplication on A, by a∗a′ = (G1 ·a)(G2 ·a′), for all a, a′ ∈ A,
and denote by AF−1 the new structure; then AF−1 is a left HF -module algebra
(with the same action as for A) and there exists an algebra isomorphism

AF−1#HF ' A#H, a#h 7→ G1 · a#G2h. (3.1)

Drinfeld double

Let H be a finite dimensional Hopf algebra with antipode S. As before, we work
with the realization of the Drinfeld double on H∗cop ⊗H . A well-known theorem
of Majid (see [Maj91b]) asserts that if (H, r) is quasitriangular then the Drinfeld
double of H is isomorphic to an ordinary smash product. More explicitly, for the
realization of D(H) we work with, the isomorphism is given as follows.

First, we have a left H-module algebra structure on H∗, denoted by H∗, given
by (we denote r = r1 ⊗ r2):

h · ϕ = h1 ⇀ ϕ ↼ S−1(h2),

ϕ ∗ ϕ′ = (ϕ ↼ S−1(r1))(r2
1 ⇀ ϕ′ ↼ S−1(r2

2)),

for all h ∈ H and ϕ, ϕ′ ∈ H∗, and then we have an algebra isomorphism

H∗#H ' D(H), ϕ#h 7→ ϕ ↼ S−1(r1)⊗ r2h. (3.2)

Fiore’s smash product

Recall the following result of G. Fiore from [Fio02], in a slightly modified (but
equivalent) form. Let H be a Hopf algebra with antipode S and A a left H-
module algebra. Assume that there exists an algebra map ϕ : A#H → A such
that ϕ(a#1) = a for all a ∈ A. Define the map

θ : H → A⊗H, θ(h) = ϕ(1#S(h1))⊗ h2.

Then θ is an algebra map from H to A#H and the smash product A#H is iso-
morphic to the ordinary tensor product A⊗H .
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Unbraiding the braided tensor product

We recall now the following result from [FSW03], with a different notation and
in a slightly modified (but equivalent) form, adapted to our purpose. Let (H, r) be
a quasitriangular Hopf algebra, H+ and H− two Hopf subalgebras of H such that
r ∈ H+⊗H− (we will denote r = r1⊗ r2 = R1⊗R2 ∈ H+⊗H−). Let B be a
right H+-module algebra and C a right H−-module algebra (actions are denoted
by ·), and consider their braided tensor product B⊗C, which is just the twisted
tensor product B ⊗R C, with respect to the twisting map given by

R : C ⊗B → B ⊗ C, R(c⊗ b) = b · r1 ⊗ c · r2.

Assume there exists an algebra map π : H+#B → B (where H+#B is the right
smash product recalled in Section 2.5.1) such that π(1#b) = b for all b ∈ B.
Define the map

θ : C → B ⊗ C, θ(c) = π(r1#1)⊗ c · r2.

Then θ is an algebra map from C to B⊗C and the braided tensor product B⊗C
is isomorphic to the ordinary tensor product B ⊗ C, and henceforth the existence
of π allows to “unbraid” the braided tensor product. Many examples where this
happens may be found in [FSW03], especially coming from quantum groups.

3.1.2 The results

The four results mentioned in the previous section, though apparently unrelated,
share some common points. Indeed, all of them have the same basic structure:

• Two algebras, X and Y , possibly endowed with some extra structure,

• A twisted tensor product Z = X ⊗R Y ,

• Another algebra X ′ with the same underlying object as X ,

• Yet another twisted tensor product Z ′ = X ′ ⊗R′ Y ,

• An algebra isomorphism Z ′ ∼= Z.

The purpose of this Section is to find a common result that includes all the
former ones, just relying on the fact that the algebras involved in our motivating
results are all twisted tensor products.
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The following results are based upon Section 4 of [JMLPPVO], with slightly
different notation. Proofs have been rewritten in terms of braiding notation in
order to extend the original results appeared in [JMLPPVO] to a more general
framework. In what follows, we shall assume that we are working on a (strict)
monoidal category, and that all maps are morphisms in the category (in order to
recover the original results in [JMLPPVO], just restrict to the category of vector
spaces over the base field k.

Consider A, B two algebras in our category, and let R : B ⊗ A → A ⊗ B

a map, denoted by
B A

R

A B

. Assume that we are given maps, µ : B ⊗ A → A, and

ρ : A → A⊗B, that we shall denote by

B A

µ

A

and

A

ρ

A B

satisfying the following conditions:

µ ◦ (uB ⊗ A) = A (3.3)
ρ ◦ uA = uA ⊗ uB (3.4)

mA ◦ (A⊗ µ) ◦ (ρ⊗ uA) = A. (3.5)

In braiding notation, these conditions read, respectively as follows:

A

BÃ'!&"%#$
µ

A

≡

A

A

AÃ'!&"%#$
ρ

A B

≡
AÃ'!&"%#$ BÃ'!&"%#$

A B

A

ρ AÃ'!&"%#$
µ

A

≡

A

A

now, let us define the “Martini product” ∗ : A⊗ A → A by

∗ := mA ◦ (A⊗ µ) ◦ (ρ⊗ A), (3.6)

and denote it by

A A∗

A

:=

A A

ρ

µ

A

(3.7)
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Under some further assumptions, we can ensure that ∗ is an associative product,
thus giving us a different algebra structure on A. More concretely, we have the
following result:

Proposition 3.1.1. With notation as above, if we have the further conditions

µ ◦ (B ⊗ ∗) = mA ◦ (A⊗ µ) ◦ (A⊗mB ⊗ A)◦
◦(R⊗B ⊗ A) ◦ (B ⊗ ρ⊗ A)

(3.8)

ρ ◦ ∗ = (mA ⊗mB) ◦ (A⊗R⊗B) ◦ (ρ⊗ ρ) (3.9)

then (A, ∗, uA) is an associative unital algebra, denoted in what follows by Ad.

PROOF The fact that uA is a unit for ∗ is immediately deduced from (3.3), (3.4),
(3.5). In order to prove associativity of ∗, first realize that conditions (3.8) and
(3.9) are written in braiding notation as

B A A∗

µ

A

≡

B A A

ρ

R

µ

A

and
A A∗

ρ

A B

≡

A A

ρ ρ

R

A B

respectively. Now we have

A A A∗

∗

A

≡

A A A∗

ρ

µ

A

(3.9)≡

A A A

ρ ρ

R

µ

A

≡

A A A

ρ ρ

R

µ

A

(3.8)≡

A A A∗

ρ

µ

A

≡
A A A∗

∗

A

proving associativity, as we wanted to show. ¤

Remark. The datum in Proposition 3.1.1 is a generalization of the left-right ver-
sion of the so-called left twisting datum in [FST99], which is obtained if B is a
bialgebra and the map R is given by R(b⊗ a) = b1 · a⊗ b2.
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Realize that insofar we have put no restriction in the map R. If we require it
to be a twisting map, condition (3.9) boils down to requiring the map ρ to be an
algebra morphism from Ad to A⊗R B.

As a consequence of Proposition 3.1.1 we can obtain the following result from
[BCZ96]:

Corollary 3.1.2. ([BCZ96]) Let H be a bialgebra and A a right H-comodule al-
gebra with comodule structure

A −→ A⊗H, a 7−→ a(0) ⊗ a(1),

together with a linear map

H ⊗ A −→ A, h⊗ a 7→ h · a,

satisfying

1 · a = a, h · 1 = ε(h)1, (3.10)
(h2 · a)(0) ⊗ h1(h2 · a)(1) = h1 · a(0) ⊗ h2a(1), (3.11)
h · (a ∗ a′) = (h1 · a(0))(h2a(1) · a′), (3.12)

for all h ∈ H , a ∈ A, where we denoted a ∗ a′ = a(0)(a(1) · a′). Then (A, ∗, 1) is
an associative algebra.

PROOF We take B = H and R : H ⊗ A → A ⊗ H , R(h ⊗ a) = h1 · a ⊗ h2.
Then (3.8) is exactly (3.12) and (3.9) is an easy consequence of (3.11) and of the
fact that A is a comodule algebra. ¤

The deformation defined via the datum (R, ρ, µ) allows us to recover the de-
formed product in AF−1 defined by a cocycle twist, or the deformed product in H∗

used in the Drinfeld double. The next theorem will show how can we relate this
kind of deformations with the given isomorphisms. In order to do this, we will
assume that all the hypotheses of Proposition 3.1.1 satisfied. Moreover, we shall
require R to be a twisting map, and that we have another map, λ : A → A ⊗ B,

denoted by
A

λ
A B

, satisfying the following conditions:

λ ◦ uA = uA ⊗ uB (3.13)
λ ◦mA = (∗ ⊗mB) ◦ (A⊗ λ⊗B) ◦ (A⊗R) ◦ (λ⊗ A) (3.14)
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(A⊗mB) ◦ (λ⊗B) ◦ ρ = A⊗ uB (3.15)
(A⊗mB) ◦ (ρ⊗B) ◦ λ = A⊗ uB (3.16)

that we may also write down as

AÃ'!&"%#$

λ
A B

≡ AÃ'!&"%#$ BÃ'!&"%#$
A B

A A

λ
A B

≡

A A

λ
R

λ∗

A B

A

ρ

λ

A B

≡
A

BÃ'!&"%#$

A B

A

λ

ρ

A B

≡
A

BÃ'!&"%#$

A B

Theorem 3.1.3 (Invariance under twisting). Assume that all the hypotheses above
are satisfied; then the map Rd : B ⊗ Ad → Ad ⊗B defined by

Rd := (A⊗mB) ◦ (λ⊗mB) ◦ (R⊗B) ◦ (B ⊗ ρ) (3.17)

is a twisting map, and we have an algebra isomorphism θ : Ad ⊗Rd B → A⊗R B
given by

θ := (A⊗mB) ◦ (ρ⊗B).

PROOF For future reference, in braiding notation, the maps Rd and θ write re-
spectively as

B Ad

Rd

Ad B

:=

B Ad

ρ

R

λ

Ad B

and θ :=
Ad B

ρ

A B

Let us start proving the compatibility of Rd with the unit. On the one hand we
have

Ad

BÃ'!&"%#$
Rd

Ad B

(3.17)≡

Ad

BÃ'!&"%#$ ρ

R

λ

Ad B

(1.3)≡

Ad

ρ

BÃ'!&"%#$

λ

Ad B

≡

A

ρ

λ

A B

(3.15)≡
Ad

BÃ'!&"%#$

Ad B



3.1. Invariance under twisting 97

ensuring compatibility with the unit of B. On the other hand,

B

AÃ'!&"%#$
Rd

Ad B

(3.17)≡

B
AÃ'!&"%#$
ρ

R

λ

Ad B

(3.4)≡

B

AÃ'!&"%#$ BÃ'!&"%#$
R

λ

Ad B

(1.3)≡
AÃ'!&"%#$

B

λ

Ad B

(3.13)≡
B

AÃ'!&"%#$ BÃ'!&"%#$

Ad B

≡
B

AÃ'!&"%#$

Ad B

which proves compatibility with the unit of Ad (that is the same as the unit of A).

Let us now check the twisting conditions for Rd. For (1.1), we have

B Ad Ad

∗

Rd

Ad B

(3.17)≡

B Ad Ad

∗

ρ

R

λ

Ad B

(3.9)≡

B Ad Ad

ρ ρ

R

R

λ

Ad B

(1.1)≡

B Ad Ad

ρ ρ

R R

R

λ

Ad B

(3.14)≡

B Ad Ad

ρ ρ

R R

R

λ
R

λ∗

Ad B

(asoc.)≡

(asoc.)≡

B Ad Ad

ρ ρ

R R

R

λ
R

λ∗

Ad B

(1.2)≡

B Ad Ad

ρ

R

λ

ρ

R

λ∗

Ad B

(3.17)≡
B Ad Ad

Rd

Rd

∗

Ad B
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whilst for (1.2) we get

B B Ad

Rd

Ad B

(3.17)≡

B B Ad

ρ

R

λ

Ad B

(1.2)≡

B B Ad

ρ

R

R

λ

Ad B

(asoc.)≡

B B Ad

ρ

R

R
BÃ'!&"%#$

λ

Ad B

(3.16)≡

B B Ad

ρ

R

λ

ρ

R

λ

Ad B

(asoc)≡

(asoc)≡

B B Ad

ρ

R

λ

ρ

R

λ

Ad B

(3.17)≡
B B Ad

Rd

Rd

Ad B

proving that Rd is a twisting map. Let us prove now that the map θ, is an algebra
isomorphism. First, in order to check that θ is bijective, consider the map ϕ :=
(A⊗mB) ◦ (λ⊗ B), and let us show that it is the inverse of θ. Indeed, for ϕ ◦ θ
we have

Ad B

ρ

λ

Ad B

(asoc)≡

Ad B

ρ

λ

Ad B

(3.15)≡

Ad B

BÃ'!&"%#$

Ad B

≡

Ad B

Ad B
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An analogous proof, using (3.16), shows that θ ◦ϕ = A⊗B. It is straightforward
to check that θ preserves the unit, so we only have to prove that it is multiplicative.

Ad B Ad B

Rd

∗

ρ

A B

(3.17)≡

Ad B Ad B

ρ

R

λ∗

ρ

A B

(3.9)≡

Ad B Ad B

ρ

R

λ

ρ ρ

R

A B

(asoc)≡

Ad B Ad B

ρ

R

λ

ρ ρ

R

A B

(3.16)≡

(3.16)≡

Ad B Ad B

ρ

ρ R

R

BÃ'!&"%#$

A B

≡

Ad B Ad B

ρ

ρ R

R

A B

(1.2)≡

Ad B Ad B

ρ ρ

R

A B

as we wanted to show. ¤

We can recover some of the results given in the motivations as consequences
of the Invariance Theorem.
Example 3.1.4 (The Drinfeld Twist). For this example, under the same assump-
tions given in the motivations section, let us take B = H . The map R : H ⊗A →
A⊗H given by R(h⊗a) = h1 ·a⊗h2 is a twisting map, yielding A⊗RB = A#H
(cf. Example 1.4.8). Now, following the notations of Proposition 3.1.1 and Theo-
rem 3.1.3, we may define the maps

µ : H ⊗ A → A, µ(h⊗ a) := h · a,

ρ : A → A⊗H, ρ(a) := a(0) ⊗ a(1) := G1 · a⊗G2,

λ : A → A⊗H, λ(a) := a[0] ⊗ a[1] := F 1 · a⊗ F 2,

obtaining as the associated Martini product ∗ on A the one given by

a ∗ a′ = a(0)(a(1) · a′) = (G1 · a)(G2 · a′),
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which is exactly the cocycle twist of the usual product of A, thus defining AF−1 .
One can check, by direct computation, that all the necessary conditions for apply-
ing Theorem 3.1.3 are satisfied, hence we have the twisting map Rd : H⊗AF−1 →
AF−1 ⊗H , which looks as follows:

Rd(h⊗ a) = (a(0)R
)[0] ⊗ (a(0)R

)[1]hRa(1) =

= (h1 · a(0))[0] ⊗ (h1 · a(0))[1]h2a(1) =

= (h1G
1 · a)[0] ⊗ (h1G

1 · a)[1]h2G
2 =

= F 1h1G
1 · a⊗ F 2h2G

2 =

= h(1) · a⊗ h(2),

where we denoted by ∆F (h) = h(1) ⊗ h(2) the comultiplication of HF . Hence,
we obtain that Ad ⊗Rd B = AF−1 ⊗Rd H = AF−1#HF , and it is obvious that the
isomorphism Ad⊗Rd B ' A⊗R B provided by Theorem 3.1.3 coincides with the
one given by (3.1).
Example 3.1.5 (Drinfeld Double). We take A = H∗, with its ordinary algebra
structure, B = H , and R : H ⊗H∗ → H∗ ⊗H , the twisting map induced by the
left and right coadjoint actions:

R(h⊗ ϕ) := h1 ⇀ ϕ ↼ S−1(h3)⊗ h2,

so that A⊗R B = D(H), as shown in Example 1.4.12.
Denoting r−1 = u1⊗u2, the inverse of the element giving the (quasi)triangular

structure, we define the maps

µ : H ⊗H∗ → H∗, µ(h⊗ ϕ) := h · ϕ = h1 ⇀ ϕ ↼ S−1(h2),

ρ : H∗ → H∗ ⊗H, ρ(ϕ) := ϕ ↼ S−1(r1)⊗ r2,

λ : H∗ → H∗ ⊗H, λ(ϕ) := ϕ ↼ S−1(u1)⊗ u2,

that induce on H∗ the product ∗ given by

ϕ ∗ ϕ′ = ϕ(0)(ϕ(1) · ϕ′) =

= (ϕ ↼ S−1(r1))(r2 · ϕ′) =

= (ϕ ↼ S−1(r1))(r2
1 ⇀ ϕ′ ↼ S−1(r2

2)),

which is exactly the product of H∗. Again, a direct computation shows that the
necessary conditions for applying Theorem 3.1.3 are satisfied, hence we have the
twisting map Rd : H ⊗H∗ → H∗ ⊗H , which looks as follows:

Rd(h⊗ ϕ) = (ϕ(0)R
)[0] ⊗ (ϕ(0)R

)[1]hRϕ(1) =
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= ϕ(0)R
↼ S−1(u1)⊗ u2hRϕ(1) =

= (ϕ ↼ S−1(r1))R ↼ S−1(u1)⊗ u2hRr2 =

= h1 ⇀ ϕ ↼ S−1(r1)S−1(h3)S
−1(u1)⊗ u2h2r

2 =

= h1 ⇀ ϕ ↼ S−1(u1h3r
1)⊗ u2h2r

2 (QT5)
=

(QT5)
= h1 ⇀ ϕ ↼ S−1(h2)⊗ h3 =

= h1 · ϕ⊗ h2

hence we obtain that Ad⊗Rd B = H∗⊗Rd H = H∗#H , and it is obvious that the
isomorphism Ad⊗Rd B ' A⊗R B provided by Theorem 3.1.3 coincides with the
one given by (3.2).

Proposition 3.1.1 and Theorem 3.1.3 admit right-left versions, that can be
stated as follows:

Proposition 3.1.6. Consider B, C two algebras, and maps R : C ⊗ B → B ⊗ C,
ν : C ⊗B → C, and θ : C → B ⊗ C such that

θ ◦ uC = uB ⊗ uC , (3.18)
ν ◦ (C ⊗ uB) = C, (3.19)

mC ◦ (ν ⊗ C) ◦ (uB ⊗ θ) = C. (3.20)

Denote by ∗ the map ∗ : C ⊗ C → C given by ∗ := mC ◦ (ν ⊗ C) ◦ (C ⊗ θ). If
the following conditions are satisfied,

ν ◦ (∗ ⊗B) = mC ◦ (ν ⊗ C) ◦ (C ⊗mB ⊗ C)◦
◦(C ⊗B ⊗R) ◦ (C ⊗ θ ⊗B),

(3.21)

θ ◦ ∗ = (mB ⊗mC) ◦ (B ⊗R⊗ C) ◦ (θ ⊗ θ), (3.22)

then (C, ∗, uC) is an algebra, that will be denoted in what follows by dC.

Theorem 3.1.7. Assume that the hypotheses of Proposition 3.1.6 are satisfied,
such that moreover R is a twisting map. Assume also that we are given a map
γ : C → B ⊗ C, such that the following relations hold:

γ ◦ uC = uB ⊗ uC , (3.23)
γ ◦mC = (mB ⊗ ∗) ◦ (B ⊗ γ ⊗ C) ◦ (R⊗ C) ◦ (B ⊗ γ), (3.24)

(mB ⊗ C) ◦ (B ⊗ γ) ◦ θ = uB ⊗ C, (3.25)
(mB ⊗ C) ◦ (B ⊗ θ) ◦ γ = uB ⊗ C. (3.26)
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Then, the map dR : dC ⊗B → B ⊗ dC defined as

dR := (mB ⊗ C) ◦ (mB ⊗ γ) ◦ (B ⊗R) ◦ (θ ⊗B), (3.27)

is a twisting map, and we have an algebra isomorphism B ⊗dR
dC ∼= B ⊗R C

given by

ϕ := (mB ⊗ C) ◦ (B ⊗ θ).

Proofs of these results are similar to the left-right versions above and therefore
will be omitted.
Example 3.1.8 (Right smash product). A particular case of Theorem 3.1.7 is the
invariance under twisting of the right smash product from [BPVO06]. Namely, let
H be a bialgebra, C a right H-module algebra (with action denoted by c⊗h 7→ c ·
h) and F ∈ H⊗H a 2-cocycle. The right smash product H#C has multiplication

(h#c)(h′#c′) = hh′1#(c · h′2)c′.
If we define a new multiplication on C, by c ∗ c′ = (c ·F 1)(c′ ·F 2) and denote the
new structure by F C, then F C becomes a right HF -module algebra and we have
an algebra isomorphism

HF # F C ' H#C, h#c 7→ hF 1#c · F 2,

see [BPVO06]. This result may be reobtained as a consequence of Theorem 3.1.7,
by taking B = H , and defining the maps as

R(c⊗ h) = h1 ⊗ c · h2,

ν(c⊗ h) = c · h,

θ(c) = F 1 ⊗ c · F 2,

γ(c) = G1 ⊗ c ·G2,

where we denoted, as before, F−1 = G1 ⊗G2.
Whilst the Invariance Theorem allows us to recover the isomorphisms for our

first two motivating examples (the Drinfeld twist and the Drinfeld double of a qua-
sitriangular Hopf algebra), it is not enough to recover the last two. A careful look
at the proof of the Invariance Theorem 3.1.3 shows that it does not really involve
the datum used to define the deformed product ∗, but rather only the compatibility
of this product with the rest of the mappings. This fact allows us to restate the
Invariance Theorem in a more general form (and, of course, same thing holds for
Theorem 3.1.7). More concretely, we have the following results:
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Theorem 3.1.9 (Second Invariance Theorem). Let A ⊗R B be a twisted tensor
product of algebras, consider another algebra structure, A′ on the object underly-
ing object A such that uA′ = uA, (that is, A′ has the same unit as A). Assume
that we are given an algebra map ρ : A′ → A⊗R B, and a map λ : A → A⊗ B,
such that relations (3.4), (3.14), (3.15), and (3.16) are satisfied. Then the map
R′ : B ⊗ A′ → A′ ⊗B defined by

R′ := (A⊗mB) ◦ (λ⊗mB) ◦ (R⊗B) ◦ (B ⊗ ρ), (3.28)

is a twisting map, and we have an algebra isomorphism η : A′ ⊗R′ B → A⊗R B
given by

η := (A⊗mB) ◦ (ρ⊗B).

Theorem 3.1.10. Let B ⊗R C be a twisted tensor product of algebras, consider
(C ′, ∗) another algebra structure on C with uC′ = uC . Assume that we are given
and algebra map θ : C ′ → B⊗R C, and a map γ : C → B⊗C, such that relations
(3.23), (3.24), (3.25), and (3.26) are satisfied. Then the map R′ : C ′ ⊗ B →
B ⊗ C ′ defined by

R′ := (mB ⊗ C) ◦ (mB ⊗ γ) ◦ (B ⊗R) ◦ (θ ⊗B), (3.29)

is a twisting map, and we have an algebra isomorphism ϕ : B ⊗R′ C
′ → B ⊗R C

given by

ϕ := (mB ⊗ C) ◦ (B ⊗ θ).

These extended Invariance Theorems are general enough to include the last
two examples:

Example 3.1.11 (Fiore’s smash product). We prove that the triviality of Fiore’s
smash product can be recovered as a particular case of Theorem 3.1.10, where we
take B = A and C = C ′ = H (in the notation of Theorem 3.1.10).

Define the map γ : H → A ⊗H , γ(h) = ϕ(1#h1) ⊗ h2, and denote θ(h) =
h<−1> ⊗ h<0> and γ(h) = h{−1} ⊗ h{0}. The relations (3.25) and (3.26) are easy
to check, so we only have to prove (3.24) (here, the map R : H ⊗ A → A ⊗ H
is given by R(h ⊗ a) = h1 · a ⊗ h2). We will need the following relation from
[Fio02]:

ϕ(1#h)a = (h1 · a)ϕ(1#h2), (3.30)
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for all h ∈ H , a ∈ A. Now we compute:

(h′{−1})R(hR){−1} ⊗ (hR){0}h
′
{0} = ϕ(1#h′1)Rϕ(1#(hR)1)⊗ (hR)2h

′
2 =

= (h1 · ϕ(1#h′1))ϕ(1#h2)⊗ h3h
′
2 =

(3.30)
= ϕ(1#h1)ϕ(1#h′1)⊗ h2h

′
2 =

= ϕ(1#h1h
′
1)⊗ h2h

′
2 =

= γ(hh′),

hence (3.24) holds. Theorem 3.1.10 may thus be applied, and we get the twisting
map R′, which looks as follows:

R′(h⊗ a) = h<−1>aR(h<0>R
){−1} ⊗ (h<0>R

){0} =

= ϕ(1#S(h1))aR(h2R
){−1} ⊗ (h2R

){0} =

= ϕ(1#S(h1))(h2 · a)(h3){−1} ⊗ (h3){0} =

= ϕ(1#S(h1))(h2 · a)ϕ(1#h3)⊗ h4 =
(3.30)
= ϕ(1#S(h1))ϕ(1#h2)a⊗ h3 =

= ϕ(1#S(h1)h2)a⊗ h3 =

= a⊗ h,

so R′ is the usual flip, hence we obtain A#H ' A ⊗ H as a consequence of
Theorem 3.1.10.

Remark. Let H be a Hopf algebra, let A be an algebra and u : H → A an algebra
map; consider the strongly inner action of H on A afforded by u, that is, the action
given by h·a = u(h1)au(S(h2)), for all h ∈ H , a ∈ A. Then it is well-known (see
for instance [Mon93], Example 7.3.3) that the smash product A#H is isomorphic
to the ordinary tensor product A ⊗ H . This result is actually a particular case of
Fiore’s theorem presented above (hence of Theorem 3.1.10 too), because one can
easily see that the map ϕ : A#H → A, ϕ(a#h) = au(h) is an algebra map
satisfying ϕ(a#1) = a for all a ∈ A.

Example 3.1.12 (Unbraiding the braided tensor product). We prove now that the
unbraiding of the braided tensor product proved by Fiore Steinacker and Wess can
also be recovered as a particular case of Theorem 3.1.10, where we take C ′ = C
(in the notation of Theorem 3.1.10).

Recall from 1.4.11 the axioms (QT1 -QT5) for a quasitriangular structure (that
in this example is given by the element r). Define the map γ : C → B ⊗ C,
γ(c) = π(u1#1)⊗c ·u2, where we denote r−1 = u1⊗u2 = U1⊗U2 ∈ H+⊗H−.
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Denote as above θ(c) = c<−1> ⊗ c<0> and γ(c) = c{−1} ⊗ c{0}. The relations
(3.25) and (3.26) are easy to check, hence we only have to prove (3.24) (here, we
recall, ∗ coincides with the multiplication of C). We first establish the relation:

c{−1}b⊗ c{0} = bR(cR){−1} ⊗ (cR){0}, ∀ b ∈ B, c ∈ C, (3.31)

which can be proved as follows:

bR(cR){−1} ⊗ (cR){0} = (b · r1)(c · r2){−1} ⊗ (c · r2){0} =

= (b · r1)π(u1#1)⊗ c · r2u2 =

= π(1#b · r1)π(u1#1)⊗ c · r2u2 =

= π((1#b · r1)(u1#1))⊗ c · r2u2 =

= π(u1
1#b · r1u1

2)⊗ c · r2u2 (QT1)
=

(QT1)
= π(U1#b · r1u1)⊗ c · r2u2U2 =

= π(U1#b)⊗ c · U2 =

= π(U1#1)π(1#b)⊗ c · U2 =

= π(U1#1)b⊗ c · U2 =

= c{−1}b⊗ c{0}.

Now we compute:

γ(cc′) = π(u1#1)⊗ (c · u2
1)(c

′ · u2
2)

(QT3)
=

(QT3)
= π(u1U1#1)⊗ (c · u2)(c′ · U2) =

= π(u1#1)π(U1#1)⊗ (c · u2)(c′ · U2) =

= c{−1}c
′
{−1} ⊗ c{0}c

′
{0}

(3.31)
=

(3.31)
= c′{−1}R

(cR){−1} ⊗ (cR){0}c
′
{0},

hence (3.24) holds. Theorem 3.1.10 may thus be applied, and we get the twisting
map R′, which looks as follows:

R′(c⊗ b) = c<−1>bR(c<0>R
){−1} ⊗ (c<0>R

){0} =

= π(r1#1)bR((c · r2)R){−1} ⊗ ((c · r2)R){0} =

= π(r1#1)(b · R1)(c · r2R2){−1} ⊗ (c · r2R2){0} =

= π(r1#1)π(1#b · R1)π(u1#1)⊗ c · r2R2u2 =

= π((r1#1)(1#b · R1)(u1#1))⊗ c · r2R2u2 =
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= π(r1u1
1#b · R1u1

2)⊗ c · r2R2u2 (QT1)
=

(QT1)
= π(r1U1#b · R1u1)⊗ c · r2R2u2U2 =

= π(1#b)⊗ c =

= b⊗ c,

so R′ is again the usual flip, hence we obtain B⊗C ' B⊗C as a consequence of
Theorem 3.1.10.

3.1.3 Iterated version

A natural question that arises is to see whether Theorems 3.1.3 and 3.1.7 can be
combined, namely, if (A, B, C, R1, R2, R3) are as in Theorem 2.1.1 and we have
a datum as in Theorem 3.1.3 between A and B and a datum as in Theorem 3.1.7
between B and C, under what conditions does it follow that (Ad, B, dC, Rd

1,
dR2, R3) satisfy again the hypotheses of Theorem 2.1.1.

Our first remark is that this does not happen in general, since a counterexample
may be obtained as follows.

Take B = H a bialgebra, A a left H-module algebra, C a right H-module
algebra and F ∈ H ⊗H a 2-cocycle. Here R1(h⊗ a) = h1 · a⊗ h2, R2(c⊗ h) =
h1 ⊗ c · h2 and R3 = τCA, the usual flip, hence A⊗R1 H ⊗R2 C = A#H#C, the
two-sided smash product. We consider the datum between A and H that allows
us to define AF−1#HF , hence Rd

1(h⊗ a) = F 1h1G
1 · a⊗F 2h2G

2, and the trivial
datum between H and C. One can see that in general (Rd

1, R2, R3) do not satisfy
the hexagon condition.

Hence, the best we can do is to find sufficient conditions on the initial data
ensuring that (Rd

1,
dR2, R3) satisfy the hexagon condition. This is achieved in the

next result.

Theorem 3.1.13. Let (A,B,C,R1, R2, R3) be as in Theorem 2.1.1. Assume that
we have a deformation datum (mA′ , ρ, λ) between A and B as in Theorem 3.1.9
and (mC′ , θ, γ) between B and C as in Theorem 3.1.10, where mA′ and mC′

represent the multiplication in the deformed algebras A′ and C ′, and let R′
3 :

C ′ ⊗ A′ → A′ ⊗ C ′ be a twisting map between the deformed algebras. Assume
also that the following compatibility conditions hold:

(A⊗mB ⊗ C) ◦ (A⊗B ⊗ γ) ◦ (A⊗R2) ◦ (R2 ⊗B) ◦ (C ⊗ ρ) =
= (A⊗mB ⊗ C) ◦ (R1 ⊗B ⊗ C) ◦ (B ⊗ ρ⊗ C) ◦ (B ⊗R′

3) ◦ (γ ⊗ A),

(3.32)
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(A⊗mB ⊗ C) ◦ (A⊗B ⊗R2) ◦ (A⊗ θ ⊗B) ◦ (R′
3 ⊗B) ◦ (C ⊗ λ)

= (A⊗mB ⊗ C) ◦ (λ⊗B ⊗ C) ◦ (R1 ⊗ C) ◦ (B ⊗R3) ◦ (θ ⊗ A),

(3.33)

(A⊗mB ⊗ C) ◦ (R1 ⊗R2) ◦ (B ⊗R3 ⊗B) ◦ (θ ⊗ ρ) =
= (A⊗mB ⊗ C) ◦ (ρ⊗ θ) ◦R′

3,
(3.34)

Then (A′, B, C ′, R′
1R

′
2, R

′
3) satisfy also the hypotheses of Theorem 2.1.1, and we

have an algebra isomorphism ψ : A′ ⊗R′1 B ⊗R′2 C ′ → A⊗R1 B ⊗R2 C given by

ψ := (A⊗mB ⊗ C) ◦ (A⊗mB ⊗B ⊗ C) ◦ (ρ⊗B ⊗ θ). (3.35)

PROOF First, in braiding notation conditions (3.32), (3.33), and (3.34) are written
as:

C A

ρ

R3

R2

γ

A B C

≡

C A

γ
R′3

ρ

R1

A B C

,

C A

λ
R′3

θ

R2

A B C

≡

C A

θ

R3

R1

λ

A B C

and

C A

θ ρ

R3

R1 R2

A B C

≡

C A
R′3

ρ θ

A B C

Now, we check the hexagon equation (2.1) for the maps R′
1, R

′
2, R

′
3:

C B A
R′2

R′3

R′1

A B C

(3.28),(3.29)≡

C B A

θ

R2

γ
R′3

ρ

R1

λ

A B C

(1.2)≡

C B A

θ

R2

γ
R′3

ρ

R1

R1

R1

λ

A B C

(asoc)≡

C B A

θ

R2

γ
R′3

ρ

R1

R1

R1

λ

A B C

(3.32)≡
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(3.32)≡

C B A

θ

R2 ρ

R3

R1 R2

R1
γ

λ

A B C

(2.1)≡

C B A

ρ

θ
R1

R3

R1 R2

λ
R2

γ

A B C

(3.33)≡

C B A

ρ

R1

λ
R′3

θ

R2

R2

R2

γ

A B C

(1.1)≡

(1.1)≡

C B A

ρ

R1

λ
R′3

θ

R2

γ

A B C

(3.28),(3.29)≡

C B A
R′1

R′3

R′2

A B C

as we wanted to show.

We prove now that the map ψ is an algebra isomorphism. First, using (3.15),
(3.16), (3.25), (3.26), it is easy to see that ψ is bijective, its inverse being the map
η := (A⊗mB ⊗ C) ◦ (A⊗B ⊗mB ⊗ C) ◦ (λ⊗B ⊗ γ). We prove now that ψ
is multiplicative.
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A B C A B C
R′3

R′1 R′2

ρ θ

A B C

(3.28),(3.29)≡

A B C A B C
R′3

ρ θ

R1 R2

λ γ

ρ θ

A B C

≡

A B C A B C
R′3

ρ θ

R1 R2

λ γ

ρ ρ θ θ

R1 R2

A B C

(asoc.)≡

(asoc.)≡

A B C A B C
R′3

ρ θ

R1 R2

λ γ

ρ ρ θ θ

R1 R2

A B C

(3.16),(3.26)≡

A B C A B C
R′3

ρ θ

ρ
R1 R2

θ

R1
BÃ'!&"%#$ BÃ'!&"%#$R2

A B C

≡
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≡

A B C A B C
R′3

ρ θ

ρ
R1 R2

θ

R1 R2

A B C

(1.1),(1.2)≡

A B C A B C

ρ
R′3

θ

ρ θ

R1 R2

A B C

(3.34)≡

(3.34)≡

A B C A B C

ρ θ ρ θ

R3

R1 R2

R1 R2

A B C

≡

A B C A B C

ρ θ ρ θ

R3

R1 R2

R1 R2

A B C

(1.1),(1.2)≡

(1.1),(1.2)≡

A B C A B C

ρ θ ρ θ

R3

R1 R2

A B C

concluding the proof.
¤

Example 3.1.14. Let now H be a bialgebra, A a left H-module algebra, C a right
H-module algebra and F ∈ H ⊗H a 2-cocycle. Then, by [BPVO06], we have an
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algebra isomorphism (notation as before):

AF−1#HF # F C ' A#H#C, a#h#c 7→ G1 · a#G2hF 1#c · F 2.

One can easily see that this result is a particular case of Theorem 3.1.13; indeed,
the relations (3.32), (3.33), (3.34) are easy consequences of the 2-cocycle condi-
tion for F .

3.2 Twisted tensor products of free algebras

Consider A =
⊕

n≥0 An and B =
⊕

n≥0 Bn graded algebras, such that A0 ∼=
B0 ∼= k (that is, A and B are separated, positively graded algebras), and let R :
B ⊗ A → A⊗B a twisting map. Then the map R can be described by

R =
⊕

l,m≥0

Rl,m,

being Rl,m : Bl⊗Am → A⊗B the restriction of R to the space Bl⊗Am. Observe
that, being R a twisting map, we must always have

R0,0 = k, Rl,0(B
l ⊗ 1) = 1⊗Bl, R0,m(1⊗ Am) = Am ⊗ 1.

We would like to find sufficient conditions for recovering the whole map R from
its smallest nontrivial component, R1,1. This problem turns out to be a very dif-
ficult one for general graded algebras, and hence we shall restrict ourselves to a
very particular case.

Let A be an algebra freely generated by {x1, . . . , xm}, and B an algebra freely
generated by {y1, . . . , yn}, that we will identify with the tensor algebras TE and
TF over vector spaces E and F with basis {x1, . . . , xm} and {y1, . . . , yn} respec-
tively, so that A1 = E, Ak = E⊗k, and similarly for B, and lets study in detail the
structure of the twisted tensor products of TE and TF .

First of all, realize that, being E and F generating spaces for TE and TF
respectively, for any given linear map R1,1 : F ⊗ E → E ⊗ F , there exists a
unique twisting map R : TF⊗TE → TE⊗TF such that R|F⊗E ≡ R1,1. Indeed,
given R1,1, we can define a family of mappings {Ri,j : F⊗i⊗E⊗j → TE ⊗ TF}
as follows:

• Set R0,0 the identity map in k ⊗ k ∼= k.

• Set Ri,0(F
⊗i ⊗ 1) := 1⊗ F⊗i, and R0,j(1⊗ E⊗j) := E⊗j ⊗ 1.
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• Define the rest of the maps from the former ones using the twisting condi-
tions. For instance, define

R2,1 := (R1,1 ⊗ F ) ◦ (F ⊗R1,1),

and similarly
R1,2 := (E ⊗R1,1) ◦ (R1,1 ⊗ E).

The twisting map R defined through this procedure satisfies a particular extra
condition; namely, the image of Ri,j lies in E⊗j ⊗ F⊗i. In general, when we
have graded algebras A and B, and a twisting map R = ⊕Ri,j : B ⊗A → A⊗B
satisfying that Ri,j(B

i⊗Aj) ⊆ Aj⊗Bi, we say that R is a homogeneous twisting
map. For a homogeneous twisting map R, the twisting conditions can be rewritten
in terms of the maps Ri,j : Bi ⊗ Aj → Aj ⊗Bi as follows:

Ri,l+m ◦ (A⊗ µA) = (µA ⊗B) ◦ (A⊗Ri,m) ◦ (Ri,l ⊗ A), (3.36)
Ri+j,l ◦ (µB ⊗ A) = (A⊗ µB) ◦ (Ri,l ⊗B) ◦ (B ⊗Rj,l). (3.37)

Let us return again to the case of A = TE, B = TF as before, and let
R̂ := R1,1 : F ⊗ E → E ⊗ F the linear operator giving rise to the twisting map
R : TF ⊗ TE → TE ⊗ TF . In coordinates with respect to the basis {yi ⊗ xj}
and {xj ⊗ yi} of F ⊗ E and E ⊗ F respectively, we may express R̂ by it matrix
elements R̂ij

lm, meaning that

R̂(yi ⊗ xj) = R̂ij
lmxl ⊗ ym, (3.38)

where we are using Einstein’s notation. Using these matrix elements, let us calcu-
late all the components Rl,m of R.

Obviously, if we take l = 1, m > 1 then we get the map

R1,m : F ⊗ E⊗m −→ E⊗m ⊗ F

given by
R1,m = R(m)

m ◦R(m−1)
m ◦ · · · ◦R(1)

m ,

where the maps R
(i)
m are defined as

R(i)
m : E⊗(i−1) ⊗ F ⊗ E⊗(m−i+1) −→ E⊗i ⊗ F ⊗ E⊗(m−i)

R(i)
m := E⊗(i−1) ⊗ R̂⊗ E⊗(m−i).
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With this notation, it is easy to verify that R
(i)
m ◦ R

(j)
m = R

(j)
m ◦ R

(i)
m whenever

|j − i| ≥ 2. Now, for arbitrary l,m ≥ 1 we obtain the map

Rl,m : F⊗l ⊗ E⊗m −→ E⊗m ⊗ F⊗l

Rl,m := (R1,l)
(1) ◦ · · · ◦ (R1,l)

(k),

where (R1,l)
(i) are defined in a similar way as R

(1)
l . We get the following result:

Lemma 3.2.1 ([BM00a]). Let TE and TF be free algebras and R̂ a linear operator
defined by matrix elements (Rij

lm) as in (3.38). Then, there exists a homogeneous
twisting map R : TF ⊗ TE → TE ⊗ TF given by the components Ri,j defined
above.

We may summarize all the results that we have obtained in this Section in the
following theorem:

Theorem 3.2.2 ([BM00a]). Let R : TF ⊗TE → TE⊗TF a twisting map. Then
we have that

TE ⊗R TF ∼= T (E ⊕ F )/IR,

being IR := 〈{b⊗ a− aR ⊗ bR}〉. If the map R is homogeneous, the we have
that

IR =
〈{

yi ⊗ xj − R̂ij
lmxm ⊗ yl

}〉
.

This description of the (homogeneous) twisting maps between free algebras
has several applications, especially when combined with the results about ideals
given in Section 1.2.3. For instance, when the algebras A and B are presented as
a certain quotient of free algebras, we get the following results concerning twisted
tensor product covers:

Lemma 3.2.3 ([BM00a]). Let A, B algebras with presentation A = TE/IA, B =

TF/IB. If we have a twisting map R̃ : TF⊗TE → TE⊗TF , the corresponding
twisted tensor product TE ⊗R′ TF is a cover for a product A⊗R B with respect
to a certain twisting map R : B⊗A → A⊗B if, and only if, the ideal IA is a left
R̃–ideal and IB is a right R̃–ideal in TE ⊗ eR TF .

Lemma 3.2.4 ([BM00a]). Let A ⊗R B a twisted tensor product of A = TE/IA

and B = TF/IB; if there exists a twisting map R̃ : TF ⊗ TE → TE ⊗ TF such
that TE ⊗ eR TF is a cover of A⊗R B, then we have that

A⊗R B ∼= T (E ⊕ F )/I,
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being I the ideal in the tensor algebra T (E ⊕ F ) given by

I := I1 + I2 + I eR,

where I1 := 〈IA〉T (E⊕F ) is the ideal generated by the inclusion of IA in T (E⊕F ),
I2 := 〈IB〉T (E⊕F ) is the ideal generated by the inclusion of IB in T (E ⊕ F ), and

I eR :=
〈
v ⊗ u− R̃(v ⊗ u)

〉
T (E⊕F )

Lemma 3.2.5 ([BM00a]). Let E, F be two linear spaces and S : E⊗E → E⊗E,
T = F ⊗ F → F ⊗ F two linear operators. Let also A and B two quadratic
algebras generated by E and F , meaning that we have the quotients A = TE/IS ,
B = TF/IT , where the ideals IS and IT are given by the quadratic relations

IS := 〈TE − S〉TE , IT := 〈TF − T 〉TF .

Assume also that a homogeneous twisting map R̃ : TF ⊗ TE → TE ⊗ TF is
induced by a linear operator C : F ⊗ E → E ⊗ F , then, there is a twisting map
R : B ⊗ A → A⊗B such that TE ⊗ eR TF is a cover for A⊗R B if, and only if,
we have the following relations:

(E ⊗ C) ◦ (C ⊗ E) ◦ (F ⊗ E ⊗ E − F ⊗ S) =

= (E ⊗ E ⊗ F − S ⊗ F ) ◦ (E ⊗ C) ◦ (C ⊗ E),

(C ⊗ F ) ◦ (F ⊗ C) ◦ (F ⊗ F ⊗ E − T ⊗ E) =

(E ⊗ F ⊗ F − E ⊗ T ) ◦ (C ⊗ F ) ◦ (F ⊗ C).

Moreover, we have that

T (E ⊕ F )/I ∼= TE/IS ⊗R TF/IT ,

for the ideal I = I1 + I2 + IC defined by

I1 := 〈IS〉T (E⊕F ) , I2 := 〈IT 〉T (E⊕F ) ,

and IC is given by

IC := 〈v ⊗ u− C(v ⊗ u)〉T (E⊕F ) .
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Remark. Sufficient conditions for the maps S, C and T to satisfy the relations on
the former lemma are, for instance, requiring the following equalities:

(S ⊗ F ) ◦ (E ⊗ C) ◦ (C ⊗ E) = (E ⊗ C) ◦ (C ⊗ E) ◦ (F ⊗R)

(E ⊗ T ) ◦ (C ⊗ F ) ◦ (F ⊗ C) = (C ⊗ F ) ◦ (F ⊗ C) ◦ (T ⊗ E),

which are pretty similar to the well known braid relation.

Further applications of the structure of homogeneous twisting maps between
tensor algebras, concerning Koszulity and Hochschild cohomology, may be given
using some of the results recalled in this Section. Further work is going on along
these lines.

3.3 Noncommutative duplicates

Very little is known about the classification of the existing twisting maps between
two given algebras. Even in the simplest cases, this turns out to be a very difficult
problem to tackle. In [Cib06], Claude Cibils proposed a method for describing all
the twisting maps between A and B, being A = kn the algebra of functions over
an n–points set, and B = k2 the two-points algebra. The resulting twisted tensor
product algebras, which are dubbed noncommutative duplicates can be realized
up to some extent as a sort of Ore extensions associated to the quotient algebra
k[x]/(x2 − x). For the sake of completeness, we sketch the procedure followed
by Cibils to obtain the classification of the noncommutative duplicates.

Proposition 3.3.1 ([Cib06]). The set of twisting maps between A and k2 (also
called the set of 2–interlacings of A) is in one to one correspondence with the set
YA of couples (f, δ) with f ∈ End A an algebra endomorphism and δ : A → A
an idempotent f -twisted derivation such that

f = f 2 + δf + fδ

Every algebra endomorphism f of the algebra A = kn may be given in terms
of a set map ϕ, to which we can associate a one-valued quiver with n vertices. To
this quiver, using the derivation δ we may assign a coloration satisfying certain
conditions. Conversely, every one valued quiver which admits a coloration satis-
fying those properties give rise to an algebra endomorphism and a derivation as in
the former Proposition, and thus to a twisting map. Henceforth, there is a one to



116 3. The classification problem

one correspondence between the set of 2-interlacings of kn and the set of coloured
one valued quivers with n vertices.

Using this equivalence, Cibils gives a classification of all the noncommutative
duplicates of the algebras kn, and computes their Hochschild (co)homology using
the techniques developed in [Cib98]. More concretely, the following results are
used in order to compute the Hochschild cohomology:

Theorem 3.3.2 ([Cib06]). Let Q be a connected quiver which is not a crown, and
let us denote by (kQ)2 the quotient of the path algebra kQ by the two sided ideal
(Q≥2) generated by the paths of length 2, then we have:

1. dimk HH0((kQ)2) = #(Q1//Q0) + 1,

2. dimk HH1((kQ)2) = #(Q1//Q1)−#(Q0) + 1,

3. dimk HHn((kQ)2) = #(Qn//Q1)−#(Qn−1//Q0) for all n ≥ 2.

where for two sets of paths X and Y , by X//Y we denote the set of parallel
paths, that is, the set of couples (x, y) ∈ X × Y where x and y have the same
source and target.

Proposition 3.3.3 ([Cib98]). Let Q be a c–crown, with c ≥ 2, then the center of
(kQ)2 is one-dimensional. If the characteristic of k is different from 2, for any n
which is an even multiple of c we have

dimk HHn ((kQ)2) = dimk HHn+1 ((kQ)2) = 1.

The cohomology vanishes in all other degrees.

These two results have an important consequence (see Corollary 3.2 of [Cib98]):

Corollary 3.3.4. Let Q be a connected quiver which is not a crown, then the
graded cohomology HH•((kQ)2) is finite dimensional if, and only if, Q has no
oriented cycles.

3.3.1 The space of twisting maps

Let us consider the algebras A and B both isomorphic to k[Z2], the group algebra
of the cyclic group Z2, and let us fix 〈1A, a〉 basis of A and 〈1B, b〉 basis of B,
satisfying a2 = 1A and b2 = 1B. Then the sets

〈1A ⊗ 1B, 1A ⊗ b, a⊗ 1B, a⊗ b〉 and 〈1B ⊗ 1A, b⊗ 1A, 1B ⊗ a, b⊗ a〉
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are bases of A⊗B and B ⊗ A, respectively.
The choice of these bases simplifies the required computations for finding out

all the twisting maps τ : B⊗A → A⊗B, since the unitality condition on τ forces
us to take

τ(1⊗ 1) = 1⊗ 1, τ(1⊗ a) = a⊗ 1, τ(b⊗ 1) = 1⊗ b,

so in order to give a twisting map between A and B it is enough to give a value
for τ(b ⊗ a) and check that it satisfies the required compatibility conditions with
respect to multiplications in A and B. In [CIMZ00], an explicit approach to this
problem is performed, obtaining that any twisting map is one of the following list:

(a) If char(k) = 2, then:

(i) τ(b⊗ a) = α(1A ⊗ 1B) + (a⊗ b), where α ∈ k.

(ii) τ(b ⊗ a) = α(1A ⊗ 1B) + α(1A ⊗ b) + α(a ⊗ 1B) + (α + 1)(a ⊗ b),
where α ∈ k.

(b) If char(k) 6= 2, then:

(i) τ(b⊗ a) = (a⊗ b).

(ii) τ(b⊗ a) = −(1A ⊗ 1B) + α(a⊗ b), where α ∈ k.

(iii) τ(b⊗ a) = −(1A ⊗ 1B) + (1A ⊗ b) + (a⊗ 1B).

(iv) τ(b⊗ a) = (1A ⊗ 1B)− (1A ⊗ b) + (a⊗ 1B).

(v) τ(b⊗ a) = (1A ⊗ 1B) + α(1A ⊗ b)− (a⊗ 1B).

(vi) τ(b⊗ a) = −(1A ⊗ 1B)− (1A ⊗ b)− (a⊗ 1B).

The space of twisting maps over these particular algebras may also be com-
puted by means of certain coloured quivers, which are associated to twisting maps
following the procedure developed in [Cib06], as summarized above.

In our situation, the algebra maps f : k2 → k2 are all given as the lifting of
the set maps ϕ : {a, b} → {a, b}, thus obtaining the four possible algebra maps
given in generators by:

• f1(a) = a and f1(b) = b.

• f2(a) = b and f2(b) = a.

• f3(a) = a + b and f3(b) = 0.
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• f4(a) = 0 and f4(b) = a + b.

Associated to these maps, we have the following quivers (where Qi stands for
the quiver associated to the algebra map fi):

Q1 := ÂÁÀ¿»¼½¾½½ ÂÁÀ¿»¼½¾½½
, Q2 := ÂÁÀ¿»¼½¾ ** ÂÁÀ¿»¼½¾jj ,

Q3 := ÂÁÀ¿»¼½¾ // ÂÁÀ¿»¼½¾½½
, Q4 := ÂÁÀ¿»¼½¾½½ ÂÁÀ¿»¼½¾oo

Now, the colorations attached to these quivers are given by:

(i′) '&%$Ã!"#0½½ '&%$Ã!"#0½½

(ii′) '&%$Ã!"#α
**/.-,()*+βjj where β = −1− α.

(iii′) /.-,()*+−1 //'&%$Ã!"#0½½ , '&%$Ã!"#0 //'&%$Ã!"#0½½ , '&%$Ã!"#0½½ /.-,()*+−1oo and '&%$Ã!"#0½½ '&%$Ã!"#0oo

Here we may observe that the twisting map (i) corresponds to the coloured
quiver (i′), the one–parameter family of maps (ii) is associated to the quivers
(ii′) when we vary the coloration, and the twisting maps (iii), (iv), (v) and (vi)
correspond to the given colorations of (iii′).

Remark. As a consequence of this, the set of twisting maps gives rise to a variety
consisting on five isolated points, which correspond to the twisting maps (i) and
(iii)-(vi), plus a k–line, associated to the one-parameter family of maps described
in (ii).

3.3.2 The isomorphism classes of the twisted algebras

In the former section we described the set of all twisting maps between k2 and k2

but, as we mentioned earlier, different twisting maps could give rise to isomorphic
algebras. In this section we will describe the algebras associated to the twisting
maps that we obtained in the previous subsection, describing the different iso-
morphism classes and giving a description of the orbitspace in the corresponding
variety of twisting maps.
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In [CIMZ00], a description of these algebras by means of generators and rela-
tions is given, in particular mentioning that the algebras obtained from the (non-
invertible) twisting maps (iii)-(vi) are all isomorphic to the algebra

k〈a, b | a2 = b2 = 1, ba = a + b + 1〉.

A different, but equivalent, description may be given following [Cib06], where it
is shown that the algebras associated to the four non-invertible twisting maps are
all isomorphic to the path algebra of the quiver

Q̃ :=
ÂÁÀ¿»¼½¾

ÂÁÀ¿»¼½¾ // ÂÁÀ¿»¼½¾

This means that four out of the five isolated points in our variety provide the
same point in the orbitspace. For the remaining isolated point, which is the one
corresponding to the flip map, i.e. (i), the corresponding algebra is just the usual
tensor product algebra:

kZ2 ⊗ kZ2
∼= k〈a, b | a2 = b2 = 1, ba = ab〉.

Again, this algebra may be described as the path algebra of the quiver

ÂÁÀ¿»¼½¾ ÂÁÀ¿»¼½¾
ÂÁÀ¿»¼½¾ ÂÁÀ¿»¼½¾

This algebra is clearly non-isomorphic to the former one, since it is commutative,
and thus it gives a new point in the orbitspace.

Henceforth, the only remaining case is the one-parameter family of twisting
maps described in (ii). The family of algebras obtained out of these twisting
maps is described in [CIMZ00] in terms of generators and relations, obtaining the
family

Aq := k〈a, b | a2 = b2 = 1, ab + ba = q〉, where q ∈ k.

The authors of [CIMZ00] are not concerned by the number of different isomor-
phism classes of algebras which are obtained according to different values of the
parameter. On the other hand, according to [Cib06, Theorem 4.4], all these al-
gebras should be isomorphic to the quotient of the path algebra of the so-called
round-trip quiver

Q := ÂÁÀ¿»¼½¾ ** ÂÁÀ¿»¼½¾jj
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modulo the ideal generated by the set Q≥2 of paths of length greater than one. In
other words, the obtained algebra would not depend on the coloration. Unfortu-
nately, the proof contains a slight mistake. Within this one-parameter family of
algebras we can find two different kinds of algebras:

• If we take q 6= ±2, then the algebra map

k〈a, b〉 −→M2(k)

defined by

a 7−→
(

1 0
0 −1

)
, b 7−→

(
q
2

2−q
4

2+q
4

− q
2

)

provides an isomorphism of algebras between the algebra Aq and the 2× 2
matrix ring M2(k).

• If q ∈ {2,−2}, the algebra map f : A−2 → A2 defined by

f(1A ⊗ 1B) := (1A ⊗ 1B), f(1A ⊗ b) := (a⊗ 1B),

f(a⊗ 1B) := (1A ⊗ b)− 2(a⊗ 1B), f(a⊗ b) := −(a⊗ b)

is an isomorphism.

Now, consider R := kQ/(Q≥2) the quotient of the path algebra of the
round-trip quiver modulo the ideal generated by Q≥2. We may explicitly
describe R as the algebra having a basis consisting in the four elements
e, f, x, y such that the multiplication is given by the following table:

e f x y
e e 0 0 y
f 0 f x 0
x x 0 0 0
y 0 y 0 0

Considering the algebra map φ : R → A−2 defined by:

φ(e) := 1/2((1A ⊗ 1B)− (a⊗ 1B)),

φ(f) := 1/2((1A ⊗ 1B) + (a⊗ 1B)),

φ(x) := 1/4((1A ⊗ 1B) + (1A ⊗ b) + (a⊗ 1B) + (a⊗ b)),

φ(y) := 1/4((1A ⊗ 1B)− (1A ⊗ b)− (a⊗ 1B) + (a⊗ b)),

we have φ is an algebra isomorphism between A−2 and R, obtaining that
both A2 and A−2 are isomorphic to the algebra R.
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Finally, the line associated to the one-parameter family of twisting maps corre-
sponds to two points in the orbit space, one non-closed orbit corresponding to the
matrix ring, plus one more point in the closure of this orbit, corresponding to the
quotient of the path algebra of the round-trip quiver. From the point of view of
deformation theory, this means that the matrix algebra, realized as a twisted tensor
product, admits a deformation to the algebra kQ/(Q≥2).

•kZ2⊗kZ2 •k eQ ◦ M2(k)

•kQ/(Q≥2)

◦

Fig. 3.1: The orbit space

Summarizing, we have proved the following result:

Proposition 3.3.5. Let k be a field with char(k) 6= 2. Let A ∼= B ∼= k2, and let
τ : B ⊗ A → A ⊗ B be a twisting map, then the twisted tensor product algebra
R : A⊗τ B must be isomorphic to one of the following algebras:

(I) k4, or equivalently, the path algebra of the quiver

ÂÁÀ¿»¼½¾ ÂÁÀ¿»¼½¾
ÂÁÀ¿»¼½¾ ÂÁÀ¿»¼½¾

(IIa) The algebra of matrices M2(k).

(IIb) The quotient kQ/(Q≥2) of the path algebra kQ of the round-trip quiver

Q = ÂÁÀ¿»¼½¾ ** ÂÁÀ¿»¼½¾jj

modulo the ideal generated by the set Q≥2 of paths of length greater than
one.

(III) The path algebra kQ̃ of the quiver

Q̃ =
ÂÁÀ¿»¼½¾

ÂÁÀ¿»¼½¾ // ÂÁÀ¿»¼½¾



122 3. The classification problem

Remark. As we mentioned above, the classification given by Cibils for noncom-
mutative duplicates of set algebras in [Cib06], is almost complete, with the only
exception being given by[Cib06, Theorem 4.4], dealing with the connected com-
ponents of the (coloured) quivers that are precisely the round-trip quiver.

Next we consider the formalism developed by Cibils for a two-fold purpose,
namely to highlight where the slight mistake in his proof has been done and, sec-
ondly, to obtain a characteristic free classification of the isomorphism classes. We
have communicated to Cibils the complete previous classification we have ob-
tained, then he provided us the precise localization of the error in [Cib06].

Following the same notation as Cibils does in [Cib06], the algebra structure of
A⊗ k[X]/(X2 −X) is determined by the products

Xa = τ(X ⊗ a) = δ(a) + f(a)X (3.39)

for each a ∈ A, where (δ, f) is the pair of the derivation and the endomorphism
associated to the twisting map τ , see [Cib06, Proposition 2.10].

In our particular situation, that is, when we deal with the round-trip quiver, the
algebra endomorphism is given by

f(u) = v, f(v) = u

whilst the derivation is given by

δ(u) = avv − auu, δ(v) = auu− avv,

being au and av some parameters in k and, u and v the primitive orthogonal idem-
potent elements of k2 = k{u, v} (cf. [Cib06, Lemma 3.3]). Applying formula
(3.39) to this particular situation we have:

Xu = −auu + auv + vX (3.40)
Xv = auu− auv + uX. (3.41)

Remember that in order to get a well-defined, associative structure, it is necessary
and sufficient to have au + av + 1 = 0, as mentioned in [Cib06, Theorem 3.14].
Using this, the multiplication of the resulting algebra may be summarized in the
following table:

u uX v vX
u u uX 0 0

uX −auu −auuX auu + uX −avuX
v 0 0 v vX

vX avv + vX −auvX −avv −avvX
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Now, observe that we have

(vXu)(uXv) = (vX)(uX)v = auavv, (3.42)
(uXv)(vXu) = (uX)(vX)u = auavu, (3.43)

and this products are zero if, and only if, auav = 0, a condition which is equivalent
to have au = 0 and av = −1, or au = −1 and av = 0. In this two cases we may
carry on with the proof of [Cib06, Theorem 4.4], obtaining the isomorphism with
the quotient of the path algebra of the round-trip quiver, as Cibils states (in our
classification these algebras correspond to A2 and A−2).

However, if the product auav is non-zero, that is, if neither au nor av are 0, then
the map ψ : kQf → k{u, v} ⊗ k[X]/(X2 − X) considered in [Cib06, Theorem
4.4] is no longer an algebra map. Still, for these cases it is possible to consider the
algebra isomorphism

f : k{u, v} ⊗ k[X]/(X2 −X) −→M2(k) (3.44)

given by

u 7−→
(

1 0
0 0

)
, v 7−→

(
0 0
0 1

)
,

uXv 7−→
(

0 auav

0 0

)
, vXu 7−→

(
0 0

auav 0

)
,

in agreement with the result that we got in Proposition 3.3.5.

Remark. It is worth noting that the fact that a matrix algebra may be written in
this way shows that the twisted tensor product of two elementary algebras (as is
the case for the algebras that we are considering) is not in general an elementary
algebra, even if we require the twisting map to be bijective. Actually, the example
that we present shows that we can build a twisted tensor product of two elementary
algebras by means of an invertible twisting map, and obtain an algebra which is
not even basic!

3.3.3 Hochschild cohomology of noncommutative duplicates

In this section we give a description of some facts related to the Hochschild co-
homology of the twisted tensor product algebras that we have described above.
Due to the similarity in the construction of the twisted tensor product with the one
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performed for the usual tensor product, it is reasonable to expect that Hochschild
homology groups should satisfy a sort of (maybe twisted) Künneth formula that
would allow to compute the homology groups of the twisted tensor product alge-
bra out of the homology groups of the factors. A step in this direction was given
by J. A. Guccione and J. J. Guccione in [GG99], where they build up a bicomplex
which should allow to compute the (co)homology for the twisted tensor product
when the twisting map is bijective, stating as a consequence that the Hochschild
dimension of a twisted tensor product is bounded by the sum of the Hochschild
dimensions of the factors. In particular, this result would imply that any twisted
tensor product of two separable algebras (i.e. having Hochschild dimension equal
to 0) is again separable.

This result is false, and the counterexample we consider shows that there is
no hope to obtain a correct reformulation. We can build up a twisted tensor prod-
uct of two separable algebras (both of them isomorphic to k2) with respect to an
invertible twisting map, and such that the resulting algebra does not even have
finite Hochschild dimension. In order to do this, we give explicit descriptions, us-
ing some methods developed by Cibils in [Cib98] and [Cib06], of the Hochschild
cohomology of all the algebras that we classified in the former section.

Proposition 3.3.6. Let A ∼= B ∼= k2, and let τ : B⊗A → A⊗B be a twisting map,
then the Hochschild cohomology of twisted tensor product algebra R := A⊗τ B
is given by:

(I) If R ∼= k4, then HH0(R) = k4 and HHn(R) = 0 for any n ≥ 0.

(IIa) If R ∼= M2(k), then HH0(R) = k and HHn(R) = 0 for any n ≥ 0.

(IIb) If R ∼= kQ/(Q≥2), then HHn(R) = k for all n ≥ 0. In particular R has
infinite Hochschild dimension.

(III) If R = kQ̃, then HH0(R) = k3, and HHn(R) = 0 for all n ≥ 1.

PROOF The cases (I) and (IIa) are trivial, since both k4 andM2(k) are separable
algebras (the latest because it is Morita equivalent to the ground field k).

Case (III) is a consequence of Theorem 3.3.2.
Case (IIb) is a direct consequence of Proposition 3.3.3. Since this is the sit-

uation that provides us the aforementioned counterexample, for the sake of com-
pleteness, we sketch Cibils’ procedure applied to this particular example:

Recall (cf. [Cib90a], [Cib90b]) that, if we have a finite dimensional algebra R
admitting a decomposition R = E⊕J , being E a maximal semisimple subalgebra
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of R (which is separable) and J the Jacobson radical of R, then the Hochschild
cohomology of R may be computed as the cohomology of the following complex
of cochains:

0 // RE // HomE−E(J,R) // // HomE−E(J⊗
n
E , R) // (3.45)

where J⊗
n
E is the tensor product over E of n copies of J . Whenever the Jacobson

radical satisfies that J2 = 0, the coboundary is given by

(δr)(x) := rx− xr ∀ r ∈ RE, x ∈ J,

(δf)(x1 ⊗ · · · ⊗ xn+1) := x1f(x2 ⊗ · · · ⊗ xn+1) +

+ (−1)n+1f(x1 ⊗ · · · ⊗ xn)xn+1

for all f ∈ HomE−E(J⊗
n
E , R). In our particular example, we have kQ/(Q≥2) ∼=

kQ0 ⊕ kQ1, being E = kQ0
∼= k2 the (commutative) maximal semisimple sub-

algebra of R and kQ1 = J its Jacobson radical (whose square is 0). It is im-
mediate to check that J⊗

n
E admits as a basis the set Qn of paths of length n.

Now, using the additivity of the Hom functor, we have HomE−E(kQn, R) ∼=
HomE−E(kQn, kQ0)⊕HomE−E(kQn, kQ1), and, as every simple subbimodule of
kQn corresponds to the bimodule generated by a path γ of length n, which we can
associate to the couple of vertices (s(γ), t(γ)) of starting and ending points of γ.
Applying Schur’s lemma, we have HomE−E(kγ, kγ′) = 0 unless γ and γ′ have the
same starting and ending points, that is, unless γ and γ′ are parallel paths. Using
this, we find a linear isomorphism HomE−E(kQn, kQ0) ' k(Qn//Q0). Similarly,
we have a linear isomorphism HomE−E(kQn, kQ1) ' k(Qn//Q1). Through these

identifications, the coboundary δ is translated into the coboundary
(

0 0
D 0

)
,

where the map D : k(Qn//Q0) → k(Qn+1//Q1) is given by

D(γ, e) :=
∑

a∈Q1e

(aγ, γ) + (−1)n+1
∑

a∈eQ1

(γa, a).

By construction, we obtain a complex isomorphism between (3.45) and the com-
plex

0 → kQ0 −→ k(Q1//Q0)⊕ k(Q1//Q1) −→ · · · −→
−→ k(Qn//Q0)⊕ k(Qn//Q1) −→ · · · .

(3.46)

Since our quiver has no loops, whenever n is odd we have

k(Qn//Q0) = k(Qn+1//Q1) = {0},
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whilst for n even we get

k(Qn//Q0) ∼= k(Qn+1//Q1) ∼= kZ2,

as every path is uniquely determined by its starting (and ending) point, where the
identification consists on sending a path to 1 if it starts at the vertex e or to t if
it starts at the vertex f , and we are considering kZ2 = k{1, t| t2 = 1}. Via this
identification, for even n, the map D transforms into the map D′ : kZ2 → kZ2

defined by
D′(1) = 1− t, D′(t) = t− 1.

This map obviously has one dimensional kernel, generated by the element 1 + t,
and one dimensional image. Summing everything up, we may rewrite the complex
(3.46) as

0 // k2 D′ // k2 0 // k2 D′ // ,

and thus, for n odd we have

dimk HHn ((kQ)2) = dimk

(
ker 0

Im D′

)
= dimk k2 − dimk(Im D′) = 1,

whilst, for n even we get

dimk HHn ((kQ)2) = dimk

(
ker D′

Im 0

)
= dimk(ker D′)− dimk(0) = 1,

as we wanted to prove.
¤

As we announced, the algebra of type (IIb) provides us an example of a
twisted tensor product of two separable algebras, with respect to a bijective twist-
ing map, which does not have finite Hochschild dimension. This example con-
tradicts [GG99, Corollary 1.8]. It is worth noting that in order to disprove Guc-
ciones’ results, it is not necessary to give an explicit description of the Hochschild
cohomology, being enough to show that the twisted tensor product algebra is not
separable. An immediate proof of this fact follows from the realization of this
algebra as the quotient R = kQ/(Q≥2), as we can immediately check that the ele-
ments of R corresponding to (the equivalence classes of) the arrows of Q provide
nonzero elements of the Jacobson radical of R (actually, the Jacobson radical is
precisely the ideal generated by these two elements).
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After contacting the authors, J.J. Guccione pointed us out the precise location
of their mistake. Namely, it was implicitly assumed in [GG99] that the fact that
Corollary 1.8 was deduced from Theorem 1.7 was a general fact.

More precisely, their assumption was that whenever we have a (first quadrant)
bicomplex with row (co)homology bounded at dimension n, and with column
(co)homology bounded at dimension m, then the (co)homology of the total com-
plex also has to be bounded.

A counterexample to this fact (provided by J.J. Guccione) may be given as
follows:

Consider a family of nonzero modules X0, X1, X2, . . . and consider the dou-
ble complex having Xi+j ⊕Xi+j+1 at position (i, j), with horizontal and vertical
differentials

dh = dv : Xi+j ⊕Xi+j+1 → Xi+j−1 ⊕Xi+j

given by dh(x, y) = dv(x, y) = (0, x). Rows and columns of this bicomplex have
homology 0 (except in degree 0), but the homology of the total complex at degree
i is Xi, so it does not vanish at any degree.
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4. PRODUCT CONNECTIONS ON FACTORIZATION
STRUCTURES

I am coming more and more to the conviction that the
necessity of our geometry cannot be demonstrated, at least
neither by, nor for, the human intellect. . . geometry should
be ranked, not with arithmetic, which is purely aprioristic,
but with mechanics.

Karl Friedrich Gauss

One of the main tools in classical differential geometry is the use of the tangent
bundle associated to a manifold. The rôle of the algebra of functions on the mani-
fold is taken by the sections of the tangent bundle, namely, the vector fields. As a
dual of the vector fields space, the algebra of differential forms (endowed with the
exterior product) turns out to be an useful tool in the study of global properties of
the manifold, giving rise to invariants such as the de Rham cohomology. A prob-
lem arises when trying to compare vector fields and differential forms at different
points of the manifold, the solution to it being given by the concepts of (linear)
connection and covariant derivative, that allow us to define the derivative of a
curve on a point of orders higher than one, hence giving us a way to speak about
acceleration on a path. The notion of connection also has another meanings in
physics, like the existence of an electromagnetic potential, which is equivalent to
the existence of a connection in a rank one trivial bundle with fixed trivialization.

Jean–Louis Koszul gave in [Kos60] a powerful algebraic generalization of dif-
ferential geometry, in particular giving a completely algebraic description of the
notion of connection. These notions were extended to a noncommutative frame-
work by Alain Connes in [Con86], what meant the dawn of Noncommutative
Differential Geometry. Much research has been done about the theory of connec-
tions in this context. On the one hand, Joachim Cuntz and Daniel Quillen, in their
seminal paper [CQ95] started the theory of quasi-free algebras (also named for-
mally smooth by Maxim Kontsevich or qurves by Lieven Le Bruyn), opening the
way to an approach to noncommutative (algebraic) geometry (also dubbed non-
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geometry to avoid confusions with Michael Artin and Michel Van den Bergh’s
style of noncommutative algebraic geometry). These formally smooth algebras
are characterized by the projectiveness (as a bimodule) of the first order univer-
sal differential calculus, or equivalently as those algebras that admit a universal
linear connection. On the other hand, in Connes’ style of noncommutative geom-
etry, the study of the general theory of connections leads to the definition of the
Yang–Mills action, which turns out to be nothing but the usual gauge action when
we specialize it to the commutative case (cf. [Con86], [Lan97], [GBVF01] and
references therein).

In this chapter, we deal with the problem of building up products of those
connection operators. Basically, there are two different notions of “product con-
nection” that one might want to build. Firstly, one might want to consider two
different bundles over a manifold, each of them endowed with a connection, and
then try to build a product connection on the (fibre) product bundle. A noncom-
mutative version of this construction was given by Michel Dubois–Violette and
John Madore in [DV99], [Mad95]. Further steps on this direction, including its
relations with the realization of vector fields as Cartan pairs as proposed by An-
drzej Borowiec in [Bor96], have been given by Edwin Beggs in [Beg]. The other
possible notion of product connection, and the one with which we want to deal,
refers to the consideration of the cartesian product of two given manifolds, and
the building of a connection of the bundle associated to this product manifold.
Following the framework that we have developed in the former chapters, we will
use a factorization structure as a representative of the (noncommutative) cartesian
product of two manifolds. It is worth noting that under some extra assumptions, a
twisted tensor product can also be realized as a principal bundle defined over the
first factor. This interpretation was developed by Tomasz Brzeziński and Shahn
Majid in [BM98] and [BM00b], where the second factor was firstly chosen to
satisfy certain Hopf-Galois condition (that, amongst other things, required the
algebra to be finite dimensional), and lately replaced by a coalgebra for greater
generality. A notion of connection defined on these coalgebra bundles can also
be found in [BM00b].

4.1 Preliminaries

4.1.1 Connections on algebras

Let A be an associative, unital algebra over a field k, and ΩA =
⊕

p≥0 ΩpA a
differential calculus over A, that is, a differential graded algebra generated, as a
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differential graded algebra, by Ω0A ∼= A, with differential d = dA (cf. Appendix
C). Let E be a (right) A–module; a (right) connection on E is a linear mapping

∇ : E −→ E ⊗A Ω1A

satisfying the (right) Leibniz rule:

∇(s · a) = (∇s) · a + s⊗ da ∀ s ∈ E, a ∈ A. (4.1)

Under these conditions, the mapping ∇ can be extended in a unique way to an
operator

∇ : E ⊗A ΩA −→ E ⊗A ΩA

of degree 1, by setting

∇(s⊗ ω) = ∇s⊗ ω + (−1)ps⊗ dω ∀ s ∈ E, ω ∈ ΩpA, (4.2)

where we are using the identification (E ⊗A Ω1A) ⊗A ΩnA ∼= E ⊗A Ωn+1A.
Regarding E ⊗A ΩA as a right ΩA–module, we find that the following graded
Leibniz rule is satisfied:

∇(σω) = (∇σ)ω + (−1)pσdω ∀σ ∈ E ⊗A ΩpA,ω ∈ ΩA. (4.3)

There are analogous concepts for left modules.
Sometimes, we will be interested on working with the universal differential

calculus over an algebra A. Connections over the universal differential calculus
will be called universal connections. It is a well known fact (cf. [CQ95, Corollary
8.2]) that a right A–module admits a universal connection if, and only if, it is
projective over A. The constructions we want to work with, however, do not rely
on the universality of the differential calculus, and can thus be defined in a more
general framework.

Whenever A is a commutative algebra, the tensor product E ⊗A F of two A–
modules E and F is again an A–module. If E and F carry respective connections
∇E and∇F , we may build the tensor product connection on E⊗A F by defining

∇E⊗AF := ∇E ⊗ F + E ⊗∇F . (4.4)

A possible generalization of this construction was given by Dubois–Violette and
Madore in [DV99], [Mad95]. If E and F are A–bimodules equipped with right
connections ∇E and ∇F , and such that there exists a linear mapping

σ : Ω1A⊗A F −→ F ⊗A Ω1A
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satisfying that

∇F (am) = a∇F (m) + σ(da⊗A m) ∀ a ∈ A,m ∈ F, (4.5)

then we may define

∇E⊗AF : E ⊗A F −→ E ⊗A F ⊗ Ω1A

by setting

∇E⊗AF := (E ⊗ σ) ◦ (∇E ⊗ F ) + E ⊗∇F , (4.6)

and this ∇E⊗AF is a right connection on E ⊗A F .
Our aim is to define a different kind of “product connection” with a more

geometrical flavour. Namely, consider that our algebras A = C∞(M) and B =
C∞(N) represent the algebras of functions over certain manifolds M and N , and
that E = X(M) and F = X(N) are the modules of vector fields on the manifolds.
The algebra associated to the cartesian product of the manifolds is C∞(M×N) ∼=
C∞(M) ⊗ C∞(N) (more precisely, a suitable completion of the latest). For the
modules of vector fields and differential 1–forms, we have that

X(M ×N) ∼= X(M)⊗ C∞(N)⊕ C∞(M)⊗ X(N),

Ω1(C∞(M)⊗ C∞(N)) ∼= Ω1(C∞(M))⊗ C∞(N)⊕ C∞(M)⊗ Ω1(C∞(N)),

hence, a “product connection” of two connections defined on E and F should be
defined as a linear mapping

∇ : E ⊗B ⊕ A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗B (Ω1A⊗B ⊕ A⊗ Ω1B)

Firstly, realize that if E is a right (resp. left) A–module, and F is a right (resp.
left) B–module, then E ⊗B ⊕ A⊗ F is a right (A⊗B)–module, with actions

(e⊗ b, a⊗ f) · (α⊗ β) := (eα⊗ bβ, aα⊗ fβ)

(resp. (α⊗ β) · (e⊗ b, a⊗ f) := (αe⊗ βb, αa⊗ βf) )

For simplicity, we will only work with right connections. Left connections
admit a similar treatment.
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4.1.2 Product Connection

Suppose then that E is a right A–module endowed with a (right) connection ∇E ,
and that F is a right B–module endowed with a (right) connection ∇F . Let us
consider the mappings

∇1 : E ⊗B −→ (E ⊗B ⊕ A⊗ F )⊗A⊗B (Ω1A⊗B ⊕ A⊗ Ω1B),

∇2 : A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗B (Ω1A⊗B ⊕ A⊗ Ω1B)

respectively given by

∇1 := (E ⊗ τ ⊗ uB) ◦ (∇E ⊗B) + (E ⊗ uA ⊗ uB ⊗ Ω1B) ◦ (E ⊗ dB), and
∇2 := (A⊗ F ⊗ uA ⊗ Ω1B) ◦ (A⊗∇F ) + (uA ⊗ τ ⊗ uB) ◦ (dA ⊗ F ),

where τ represent classical flips. If we use the shorthand notation ∇E(e) = ei ⊗
dAai, where the summation symbol is omitted, the Leibniz rule for ∇E is written
as

∇E(eα) = ei ⊗ (dAai)α + e⊗ dα, (4.7)

and we have

∇1((e⊗ b) · (α⊗ β)) = ∇1(eα⊗ bβ) =

= ei ⊗ bβ ⊗A⊗B (dAai)α⊗ 1 + e⊗ bβ ⊗A⊗B dα⊗ 1+
+ eα⊗ 1⊗A⊗B 1⊗ dB(bβ) =

= ei ⊗ b⊗A⊗B (dAai)α⊗ β + e⊗ b⊗A⊗B dα⊗ β+
+ e⊗ 1⊗A⊗B α⊗ dB(b)β + e⊗ 1⊗A⊗B α⊗ bdBβ =

= (ei ⊗ b⊗A⊗B dai ⊗ 1 + e⊗ 1⊗A⊗B 1⊗ db) · (α⊗ β) +
+ e⊗ b⊗A⊗B dAα⊗ β + e⊗ b⊗A⊗B α⊗ dBβ =

= ∇1(e⊗ b) · (α⊗ β) + (e⊗ b)⊗A⊗B d(α⊗ β).

A similar computation shows that

∇2((a⊗ f) · (α⊗ β)) = ∇2(a⊗ f) · (α⊗ β) + (a⊗ f)⊗A⊗B d(α⊗ β).

Adding up these two equalities, we conclude that the map

∇ : E ⊗B ⊕ A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗B (Ω1A⊗B ⊕ A⊗ Ω1B)

(e⊗ b, a⊗ f) 7−→ ∇1(e⊗ b) +∇2(a⊗ f)

verifies that

∇((e⊗b, a⊗f)·(α⊗β)) = ∇(e⊗b, a⊗f)·(α⊗β)+(e⊗b, a⊗f)⊗A⊗Bd(α⊗β),

and henceforth,∇ is a (right) connection on the module E⊗B⊕A⊗F . We shall
call this map the (classical) product connection of ∇E and ∇F .
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4.2 Twisted tensor product connection

In the former section we introduced the definition of a connection within the for-
malism of differential calculus over algebras, and showed how to build the prod-
uct connection for a tensor product of two algebras, extending the definition of
the classical product connection in differential geometry. In this section, we will
show how to extend the definition of the product connection to a twisted tensor
product of two algebras under suitable conditions.

Let A and B be algebras, R : B ⊗ A → A⊗ B a twisting map, E a right A–
module endowed with a right connection ∇E , and F a right B–module endowed
with a right connection ∇F . Assume that we can lift the twisting map R to a
twisting map R̃ : ΩB ⊗ ΩA → ΩA ⊗ ΩB on the differential graded algebras of
differential forms (that is always possible for the universal calculi, check Section
1.3.1, or [CSV95] for full detail, for sufficient conditions to obtain this lifting on
general differential calculi), so that the algebra

ΩA⊗ eR ΩB =
⊕

n∈N

( ⊕
p+q=n

ΩpA⊗ ΩqB

)

is a differential calculus over A ⊗R B. For this differential calculus, the module
of 1–forms can be identified as Ω1A ⊗ B ⊕ A ⊗ Ω1B, with the natural action
induced by the twisting map. As the situation is pretty much the same as in the
tensor product case, the natural way for defining a “twisted product” connection
of ∇E and ∇F would be considering a linear map

∇ : E ⊗B ⊕ A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗RB

(
Ω1A⊗B ⊕ A⊗ Ω1B

)
.

The first step on making this map becoming a connection is giving a right (A⊗R

B)–module action on E ⊗ B ⊕ A ⊗ F , which means finding a right (A ⊗R B)–
module structure on both E ⊗B and A⊗F . For the first one we may just use the
twisting map and define:

(e⊗ b) · (α⊗ β) := eαR ⊗ bRβ. (4.8)

For the second one, a sufficient way of giving a module structure is finding a
(right) module twisting map τF,A : F ⊗ A → A⊗ F , and then taking

(a⊗ f) · (α⊗ β) := aατ ⊗ fτβ. (4.9)
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The fact that the former definitions are indeed module actions follows directly
from the fact that both R and τF,A are right module twisting maps (cf. (1.8),
(1.9)).

Following the lines given by the definition of the classical tensor product con-
nection, in order to build∇ we have to find suitable maps∇1 and∇2. For the first
one, it suffices to define

∇1 : E ⊗B −→ (E ⊗B ⊕ A⊗ F )⊗A⊗B (Ω1A⊗B ⊕ A⊗ Ω1B)

∇1 := (E ⊗ uB ⊗ Ω1A⊗B) ◦ (∇E ⊗B) + (E ⊗ uB ⊗ uA ⊗ Ω1B) ◦ (E ⊗ dB).

With this definition, when R is the classical flip we obtain something trivially
equivalent to the one given in the former section, and we have

∇1((e⊗ b) · (α⊗ β)) = ∇1(aαR ⊗ bRβ) =

= (E ⊗ uB ⊗ Ω1A⊗B)(∇E(eαR)⊗ bRβ) +

+(E ⊗ uB ⊗ uA ⊗ Ω1B)(eαR ⊗ d(bRβ))
1
=

1
= ei ⊗ 1⊗A⊗RB (dAai)αR ⊗ bRβ +

+ e⊗ 1⊗A⊗RB dαR ⊗ bRβ +

+ eαR ⊗ 1⊗A⊗RB 1⊗ (dBbR)β +

+eαR ⊗ 1⊗A⊗RB 1⊗ bRdBβ =

= ei ⊗ 1⊗A⊗RB (dAai)αR ⊗ bRβ +

+ e⊗ 1⊗A⊗RB dαR ⊗ bRβ +

+ e⊗ 1⊗A⊗RB αR ⊗ (dBbR)β +

+e⊗ 1⊗A⊗RB αR ⊗ bRdBβ
2
=

2
= (ei ⊗ 1⊗A⊗RB dAai ⊗ b +

+ e⊗ 1⊗A⊗RB 1⊗ b) · (α⊗ β) +

+ e⊗ b⊗A⊗RB dAα⊗ β +

+ e⊗ b⊗A⊗RB α⊗ dBβ =

= ∇1(e⊗ b) · (α⊗ β) + e⊗ b⊗A⊗RB d(α⊗ β),

where in 1 we are using Leibniz’s rules (for the connection∇E and the differential
dB), in 2 the definition of the action (4.8) and the compatibility of the twisting map
with the differential, as mentioned in equations (1.21) and (1.22).
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The definition of ∇2 is more involved, and we are forced to assume some
extra conditions on the maps R and τF,A. Namely, assume that R is invertible,
with inverse S : A ⊗ B → B ⊗ A, that τF,A is invertible with inverse σA,F :
A⊗ F → F ⊗A, and such that the following relation, ensuring the compatibility
of the module twisting map with the connection ∇F , is satisfied:

(A⊗∇F ) ◦ τF,A = (τF,A ⊗ Ω1B) ◦ (F ⊗ R̃) ◦ (∇F ⊗ A). (4.10)

From this condition, that in Sweedler’s like notation is written as

aτ ⊗ (fτ )j ⊗B (dbτ )j = (a eR)τ ⊗ (fj)τ ⊗B ((dbj) eR)τ , (4.11)

the module twisting conditions (1.11) and (1.12) for τF,A, and the twisting map
conditions (1.1) and (1.2) for R, we may easily deduce the following equalities:

(σA,F ⊗ Ω1B) ◦ (A⊗∇F ) = (F ⊗ R̃) ◦ (∇F ⊗ A) ◦ σA,F , (4.12)
(µA ⊗ F ) ◦ (A⊗ τF,A) = τF,A ◦ (F ⊗ µA) ◦ (σA,F ⊗ A), (4.13)

σA,F ◦ (A⊗ λF ) ◦ (τF,A ⊗B) = (λF ⊗ A) ◦ (F ⊗ S), (4.14)
σA,F ◦ (µA ⊗ F ) = (F ⊗ µA) ◦ (σA,F ⊗ A) ◦ (A⊗ σA,F ), (4.15)

σA,F ◦ (B ⊗ λF ) ◦ (R⊗ F ) = (λF ⊗ A) ◦ (B ⊗ σA,F ). (4.16)

If we define the map

∇2 : A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗B (Ω1A⊗B ⊕ A⊗ Ω1B)

∇2 := (A⊗ F ⊗ uB ⊗ Ω1B) ◦ (A⊗∇F ) + (uA ⊗ F ⊗ dA ⊗ uB) ◦ σ

then we have

∇2((a⊗ f) · (α⊗ β)) = ∇2(aατ ⊗ fτβ) =

= (A⊗ F ⊗ uA ⊗ Ω1B)(aατ ⊗∇F (fτβ)) +

+ 1⊗ (fτβ)σ ⊗ dA((aατ )σ)⊗ 1
(4.15)
=

(4.15)
= aατ ⊗ (fτ )j ⊗A⊗RB 1⊗ dB(bτ )jβ +

+ aατ ⊗ fτ ⊗A⊗RB 1⊗ dBβ +

+ 1⊗ (fτβ)σσ ⊗A⊗RB (dAaσ)ατσ ⊗ 1 +

+ 1⊗ (fτβ)σσ ⊗A⊗RB aσdA(ατσ)⊗ 1
(4.10)
=

(4.10)
= a(α eR)τ ⊗ (fj)τ ⊗A⊗RB 1⊗ (dBbj) eRβ +
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+ a⊗ f ⊗A⊗RB α⊗ dBβ +

+ 1⊗ (fτβ)σσ ⊗A⊗RB (dAaσ)ατσ ⊗ 1 +

+ a⊗ (fτβ)σ ⊗A⊗RB dA(ατσ)⊗ 1
(4.14)
=

(4.14)
= a⊗ fj ⊗A⊗RB α eR ⊗ (dBbj) eRβ +

+ a⊗ f ⊗A⊗RB α⊗ dBβ +

+ 1⊗ (fβS)σ ⊗A⊗RB (dAaσ)αS ⊗ 1 +

+ a⊗ fβS ⊗A⊗RB dA(αS)⊗ 1
(4.13)
=

(4.13)
= (a⊗ fj ⊗A⊗RB 1⊗ (dBbj)) · (α⊗ β) +

+ a⊗ f ⊗A⊗RB α⊗ dBβ +

+ 1⊗ fσβSS ⊗A⊗RB dA(aσS)αS ⊗ 1 +

+ a⊗ f ⊗A⊗RB dAα⊗ β =

= (a⊗ fj ⊗A⊗RB 1⊗ (dBbj)) · (α⊗ β) +

+ 1⊗ fσ ⊗A⊗RB dA(aσ)α⊗ β +

+ a⊗ f ⊗A⊗RB α⊗ dBβ +

+ a⊗ f ⊗A⊗RB dAα⊗ β =

= ∇2(a⊗ f) · (α⊗ β) + a⊗ f ⊗A⊗RB d(α⊗ β).

Henceforth, the mapping

∇ : E ⊗B ⊕ A⊗ F −→ (E ⊗B ⊕ A⊗ F )⊗A⊗RB

(
Ω1A⊗B ⊕ A⊗ Ω1B

)

defined as
∇(e⊗ b, a⊗ f) := ∇1(e⊗ b) +∇2(a⊗ f) (4.17)

is a (right) connection on the module E⊗B⊕A⊗F . We will call this connection
the (twisted) product connection of ∇E and ∇F .

4.3 Curvature on product connections

In this section our aim is to study the curvature for the formerly defined product
connections. If we have a connection ∇ : E → E ⊗A Ω1A, we will also denote
by∇ : E⊗A ΩA → E⊗A ΩA the extension given by (4.2), occasionally denoting
by ∇[n] : E ⊗A ΩnA → E ⊗A Ωn+1A its restriction to E-valued n–forms. The
curvature of the connection∇ is defined to be the operator θ := ∇[1]◦∇[0] : E →
E ⊗A Ω2A. It is well known (cf. for instance [Lan97, Sect. 7.2]) that the map
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θ is right A–linear. A connection ∇ is said to be a flat connection whenever the
associated curvature map is equal to 0. As curvature map may be extended to a
(right) ΩA–linear map θ : E⊗A ΩA → E⊗A ΩA of degree 2 given at degree n by
θ[n] := ∇[n+1] ◦ ∇[n], and it is easily checked that θ[n] = (E ⊗ µΩA) ◦ (ΩnA⊗ θ),
(cf. [BB05, Prop 2.3]), we have that a flat connection can be used for building a
noncommutative de Rham cohomology with a nontrivial coefficient bundle.

Let then A and B algebras, R : B⊗A → A⊗B a twisting map, E a right A–
module endowed with a right connection ∇E , and F a right B–module endowed
with a right connection ∇F such that we can build the product connection ∇ as
in the former section, let also ∇ = (∇[n]) denote the extension of ∇ to (E ⊗
B ⊕ A ⊗ F ) ⊗A⊗RB (ΩA ⊗ eR ΩB). For e ∈ E, let us denote ∇E(e) = ei ⊗A

dAai, and ∇E(ei) := eij ⊗A dAaij , where summation symbols are omitted. In the
same spirit, for f ∈ F , we will denote ∇F (f) = fk ⊗B dBbk, and ∇F (fk) :=
fkl ⊗B dBbkl. With this notation, the respective curvatures are written as θE(e) =
eij ⊗A dAaijdAai, θF (f) = fkl ⊗B dBbkldBbk. We will also denote by iE and
iF the canonical inclusions (as vector spaces) of E ⊗A Ω2A and F ⊗B Ω2B into
(E ⊗B ⊕A⊗ F )⊗A⊗RB (ΩA⊗ eR ΩB)2. For a generic element (e⊗ b, a⊗ f) ∈
(E⊗B⊕A⊗F ), using the definition of the product connection, (4.17), we have

∇(e⊗ b, a⊗ f) = ei ⊗ 1⊗A⊗RB dAai ⊗ b + e⊗ 1⊗A⊗RB 1⊗ dBb +

+1⊗ fσ ⊗A⊗RB dA(aσ)⊗ 1 + a⊗ fk ⊗A⊗RB 1⊗ dBbk

Applying ∇[1] to each of these four term we obtain:

∇[1](ei ⊗ 1⊗A⊗RB dAai ⊗ b) =

= ∇(ei ⊗ 1) · (dAai ⊗ b) + (ei ⊗ 1)⊗A⊗RB d(dai ⊗ b)
1
=

1
= (eij ⊗ 1⊗A⊗RB dAaij ⊗ 1) · (dAai ⊗ b)

−ei ⊗ 1⊗A⊗RB dAai ⊗ dBb =
= eij ⊗ 1⊗A⊗RB dAaijdAai ⊗ b

−ei ⊗ 1⊗A⊗RB dAai ⊗ dBb =
= iE(θE(e)) · b− ei ⊗ 1⊗A⊗RB dAai ⊗ dBb,

∇[1](e⊗ 1⊗A⊗RB 1⊗ dBb) =

= ∇(e⊗ 1) · 1⊗ dBb + (e⊗ 1)⊗A⊗RB d(1⊗ dBb) =
= ei ⊗ 1⊗A⊗RB dAai ⊗ dBb,
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∇[1](1⊗ fσ ⊗A⊗RB dA(aσ)⊗ 1) =

= ∇(1⊗ fσ) · (dA(aσ)⊗ 1) + (1⊗ fσ)⊗A⊗RB d(dA(aσ)⊗ 1) =
= (1⊗ (fσ)k ⊗A⊗RB 1⊗ dB(bσ)k) · (dA(aσ)⊗ 1) =

= 1⊗ (fσ)k ⊗A⊗RB (dA(aσ)) eR ⊗ (dB(bσ)k) eR
2
=

2
= −1⊗ (fσ)k ⊗A⊗RB dA(aσ) eR ⊗ (dB(bσ)k) eR

(4.12)
=

(4.12)
= −1⊗ (fk)σ ⊗A⊗RB dA(aσ)⊗ dBbk,

∇[1](a⊗ fk ⊗A⊗RB 1⊗ dBbk) =

= ∇(a⊗ fk) · (1⊗ dBbk) + a⊗ fk ⊗A⊗RB d(1⊗ dBbk) =
= (a⊗ fkl ⊗A⊗RB 1⊗ dBbkl) · (1⊗ dBbk)+

+(1⊗ (fk)σ ⊗A⊗RB dAaσ ⊗ 1) · (1⊗ dBbk) =
= a⊗ fkl ⊗A⊗RB 1⊗ dBbkldBbk+

+1⊗ (fk)σ ⊗A⊗RB dAaσ ⊗ dBbk =
= a · iF (θF (f)) + 1⊗ (fk)σ ⊗A⊗RB dAaσ ⊗ dBbk.

where in 1 we are using the definitions of ∇ and the differential d, in 2 the com-
patibility of R̃ with dA. Adding up these four equalities we obtain the following
result:

Theorem 4.3.1 (Rigidity Theorem). The curvature of the product connection is
given by

θ(e⊗ b, a⊗ f) = iE(θE(e)) · b + a · iF (θF (f)). (4.18)

An interesting remark at the sight of the former result is that the product cur-
vature does not depend neither on the twisting map R nor on the module twisting
map τF,A, but only on the curvatures of the factors. As an immediate consequence
of Equation (4.18) we obtain the following result:

Corollary 4.3.2. The product connection of two flat connections is a flat connec-
tion.

Henceforth, one might ask the question of describing the de Rham cohomol-
ogy with coefficients in the sense of Beggs and Brzeziński (ref. [BB05]) for the
(twisted) product connection of two flat connections. It is also worth noticing that
formula (4.18) drops down in the commutative case to the classical formula for
the curvature on a product manifold.
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4.4 Bimodule connections

For many purposes, only considering right (or left) modules is not enough. On
the one hand, if we want to apply our theory to ∗–algebras, then sooner or later
we will be bond to deal with ∗–modules and hermitian modules, but since the in-
volution reverses the order of the products, these notions only make sense when
we consider bimodules. On the other hand, there is a special kind of connections,
known as linear connections, obtained when we take E = Ω1A. Since Ω1A is a
bimodule in a natural way, there is no reason to neglect one of its structures re-
straining ourselves to look at it just as a one-sided module. Reasons for extending
the notion of connection to bimodules have been largely discussed at [Mou95],
[DV99] and references therein.

Different approaches for dealing with this problem have been tried. The first
one, described by Cuntz and Quillen in [CQ95], consists on considering a couple
(∇l,∇r) where∇l is a left connection which is also a right A–module morphism,
and ∇r a right connection which is also a left A–module morphism. As it was
pointed out in [DHLP96], this approach, though rising a very interesting algebraic
theory, is not well suited for our geometrical point of view, since it does not behave
as expected when restricted to the commutative case. A different approach was
introduced by Mourad in [Mou95] for the particular case of linear connections
and later generalized to arbitrary bimodules by Dubois-Violette and Masson in
[DVM96] (see also [DV99, Chapter 10]). Their approach goes as follow: let E
be an A–bimodule; a (right) bimodule connection on E is a right connection
∇ : E → E ⊗A Ω1A together with a bimodule homomorphism σ : Ω1A⊗A E →
E ⊗A Ω1A such that

∇(ma) = a∇(m) + σ(dA(a)⊗A m) for any a ∈ A, m ∈ E. (4.19)

Giving a right bimodule connection in the above sense is equivalent to give a pair
(∇L,∇R) consisting in a left connection ∇L and a right connection ∇R that are
σ–compatible, meaning that

∇R = σ ◦ ∇L. (4.20)

Remark. A weaker definition of σ–compatibility, namely requiring that equation
(4.20) holds only in the center Z(E) := {m ∈ E : am = ma ∀a ∈ A} of E
rather than in the whole bimodule, has also been studied in [DHLP96].

So, assume that we have E bimodule over A, ∇E a bimodule connection on
E with respect to the morphism ϕ : Ω1A⊗A E → E ⊗A Ω1A, and F a bimodule
over B endowed with ∇F a bimodule connection with respect to the bimodule
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morphism ψ : Ω1B ⊗B F → F ⊗B Ω1B. As before, let R : B ⊗ A → A ⊗ B
an invertible twisting map with inverse S, and assume also that we have a right
module twisting maps τF,A : F ⊗ A → A ⊗ F satisfying condition (4.10) and a
left module twisting map τB,E : B ⊗ E → E ⊗B satisfying condition

(∇E ⊗B) ◦ τB,E = (E ⊗ R̃) ◦ (τB,E ⊗ Ω1A) ◦ (B ⊗∇E), (4.21)

which is the (left) analogous of condition (4.10), and such that (E⊗B)⊕ (A⊗F )
becomes an A⊗R B bimodule with left action

(α⊗ β) · (e⊗ b, a⊗ f) := (αeτ ⊗ βτb, αaR ⊗ βRf),

then we have that

∇((α⊗ β)(e⊗ b)) = ∇1(αeτ ⊗ βτb) =

= (αeτ )i ⊗ 1⊗A⊗RB dA(a′i)⊗ βτb +

+ αeτ ⊗ 1⊗A⊗RB 1⊗ dB(βτb) =

= α(eτ )i ⊗ 1⊗A⊗RB dA(aτ )i ⊗ βτb +

+ (eτ )ϕ ⊗ 1⊗A⊗RB (dAα)ϕ ⊗ βτb +

+ αeτ ⊗ 1⊗A⊗RB 1⊗ dB(βτ )b +

+ αeτ ⊗ 1⊗A⊗RB 1⊗ βτdBb
(4.21)
=

(4.21)
= α(ei)τ ⊗ 1⊗A⊗RB (dAai) eR ⊗ (βτ ) eRb +

αeτ ⊗ 1⊗A⊗RB 1⊗ βτdBb +

+ (eτ )ϕ ⊗ 1⊗A⊗RB (dAα)ϕ ⊗ βτb +

+ αeτ ⊗ 1⊗A⊗RB 1⊗ dB(βτ )b =

= (α⊗ β)∇1(e⊗ b) +

+ (eτ )ϕ ⊗ 1⊗A⊗RB (dAα)ϕ ⊗ βτb +

+ αeτ ⊗ 1⊗A⊗RB 1⊗ dB(βτ )b.

On the other hand,

∇((α⊗ β)(a⊗ f)) = ∇2(αaR ⊗ βRf) =

= 1⊗ (βRf)σ ⊗A⊗RB dA((αaR)σ)⊗ 1 +

+ αaR ⊗ (βRf)k ⊗A⊗RB 1⊗ dBb′k)
(4.15)
=

(4.15)
= 1⊗ (βRf)σσ̄ ⊗A⊗RB dA(ασ̄(aR)σ)⊗ 1 +
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+ αaR ⊗ (βRf)k ⊗A⊗RB 1⊗ dB(b′k)
(4.16)
=

(4.16)
= 1⊗ (βfσ)σ̄ ⊗A⊗RB dA(ασ̄aσ)⊗ 1 +

+ αaR ⊗ (βRf)k ⊗A⊗RB 1⊗ dB(b′k) =

= 1⊗ (βfσ)σ̄ ⊗A⊗RB dA(ασ̄)aσ ⊗ 1 +

+ 1⊗ (βfσ)σ̄ ⊗A⊗RB ασ̄dA(aσ)⊗ 1 +

+ αaR ⊗ βRfk ⊗A⊗RB 1⊗ dBbk +

+ αaR ⊗ fψ ⊗A⊗RB 1⊗ (dB(βR))ψ =

= (α⊗ β)∇2(a⊗ f) +

+ 1⊗ (βfσ)σ̄ ⊗A⊗RB dA(ασ̄)aσ ⊗ 1 +

+ αaR ⊗ fψ ⊗A⊗RB 1⊗ (dB(βR))ψ.

Adding up these two equalities we obtain

∇((α⊗ β)(e⊗ b, a⊗ f)) = (α⊗ β)∇(e⊗ b, a⊗ f) +

+ ξ(d(α⊗ β)⊗A⊗RB (e⊗ b, a⊗ f)),

where the map ξ : (Ω1A⊗B⊕A⊗Ω1B)⊗A⊗RB (E⊗B⊕A⊗F ) → (E⊗B⊕
A⊗ F )⊗A⊗RB (Ω1A⊗B ⊕ A⊗ Ω1B) is defined by ξ := ξ11 + ξ12 + ξ21 + ξ22,
being

ξ11(dAα⊗ β ⊗A⊗RB e⊗ b) := (eτ )ϕ ⊗ 1⊗A⊗RB (dAα)ϕ ⊗ βτb,

ξ12(α⊗ dBβ ⊗A⊗RB e⊗ b) := αeτ ⊗ 1⊗A⊗RB 1⊗ dB(βτ )b,

ξ21(dAα⊗ β ⊗A⊗RB a⊗ f) := 1⊗ (βfσ)σ̄ ⊗A⊗RB dA(ασ̄)aσ ⊗ 1,

ξ22(α⊗ dBβ ⊗A⊗RB a⊗ f) := αaR ⊗ fψ ⊗A⊗RB 1⊗ (dB(βR))ψ.

Hence, in order to show that the product connection ∇ is a bimodule connection
we only have to show that ξ is a bimodule morphism, which is equivalent to prove
that all the ξij are bimodule morphisms.

Lemma 4.4.1. The map ξ11 is a left (A⊗R B)–module morphism, if, and only if,
the equality

(ϕ⊗B) ◦ (Ω1A⊗ τB,E) ◦ (R̃⊗E) = (E⊗ R̃) ◦ (τB,E ⊗Ω1A) ◦ (B⊗ϕ) (4.22)

is satisfied in B ⊗ Ω1A⊗ E.
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PROOF In order to check that the compatibility condition is necessary, just apply
the compatibility with the module action to an element of the form 1 ⊗ b ⊗ ω ⊗
1⊗ e⊗ 1.

Conversely, assuming condition (4.22), we have that

ξ11((x⊗ y) · (dα⊗ β ⊗A⊗RB e⊗ b)) =

= ξ11(x(dα) eR ⊗ y eRβ ⊗A⊗RB e⊗ b) =

= (eτ )ϕ ⊗ 1⊗A⊗RB (x(dα) eR)ϕ ⊗ (y eRβ)τb
[1]
=

[1]
= x(eτ )ϕ ⊗ 1⊗A⊗RB ((dα) eR)ϕ ⊗ (y eRβ)τb

[2]
=

[2]
= x((eτ )τ̄ )ϕ ⊗ 1⊗A⊗RB ((dα) eR)ϕ ⊗ (y eR)τ̄βτb

(4.22)
=

(4.22)
= x((eτ )ϕ)τ̄ ⊗ 1⊗A⊗RB ((dα)ϕ) eR ⊗ (yτ̄ ) eRβτb =
= x((eτ )ϕ)τ̄ ⊗ 1⊗A⊗RB ((1⊗ yτ̄ ) · ((dα)ϕ ⊗ βτb)) =
= x((eτ )ϕ)τ̄ ⊗ yτ̄ ⊗A⊗RB (dα)ϕ ⊗ βτb =
= (x⊗ y)ξ11(dα⊗ β ⊗A⊗RB e⊗ b),

where in [1] we are using that ϕ is a left module map, in [2] that τB,E is a module
twisting map. ¤
It is straightforward checking that ξ11 is a right module map, and thus left to the
reader. In a completely analogous way, it is straightforward to check that ξ22 is a
left module map, whilst for the right module condition we need a compatibility
relation similar to (4.22). More concretely, we have the following result, whose
proof is analogous to the one of Lemma 4.4.1:

Lemma 4.4.2. The map ξ22 is a right A ⊗R B–module morphism if, and only if,
the equality

(A⊗ψ) ◦ (R̃⊗F ) ◦ (Ω1B⊗ τF,A) = (τF,A⊗Ω1B) ◦ (F ⊗ R̃) ◦ (ψ⊗A) (4.23)

is satisfied in Ω1B ⊗ F ⊗ A.

For ξ12 and ξ21, the right (resp. left) module map conditions are also straight-
forward. We will show now that ξ12 is a left module map, the proof that ξ21 is a
right module map being analogous.

ξ12((x⊗ y) · (α⊗ dβ⊗A⊗RB)e⊗ b) = ξ12(xαR ⊗ ydβ ⊗A⊗RB e⊗ b) =
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= ξ12(xαR ⊗ d(yRβ)⊗A⊗RB e⊗ b)−
−ξ12(xαR ⊗ d(yR)⊗A⊗RB eτ ⊗ βτb) =

= xαReτ ⊗ 1⊗A⊗RB 1⊗ (d(yRβ)τ )b−
−xαR(eτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ d((yR)τ̄ )βτb

[1]
=

[1]
= xαR(eτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ (d((yR)τ̄βτ ))b−

−xαR(eτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ d((yR)τ̄ )βτb =
= xαR(eτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ d((yR)τ̄ )βτb+

+xαR(eτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ (yR)τ̄ (d(βτ ))b−
−xαR(eτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ d((yR)τ̄ )βτb =

= xαR(eτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ (yR)τ̄ (d(βτ ))b
[2]
=

[2]
= x(αeτ )τ̄ ⊗ 1⊗A⊗RB 1⊗ yτ̄ (dβτ )b =
= x(αeτ )τ̄ ⊗ yτ̄ ⊗A⊗RB 1⊗ (dβτ )b =
= (x⊗ y) · ξ12(α⊗ dβ⊗A⊗RB)e⊗ b),

where in [1] and [2] we use that τF,A is a module twisting map.
Summarizing, we have proved the following result:

Theorem 4.4.3. Let E be a bimodule over A, (∇E, ϕ) a bimodule connection on
E, F a bimodule over B, (∇F , ψ), R : B ⊗ A → A ⊗ B an invertible twisting
map; τF,A : F ⊗ A → A ⊗ F a right module twisting map satisfying condition
(4.10) and τB,E : B ⊗ E → E ⊗ B a left module twisting map satisfying condi-
tion (4.21). Assume also that conditions (4.22) and (4.23) are satisfied, then the
product connection of ∇E and ∇F is a bimodule connection with respect to the
morphism ξ.

4.5 Examples

Let us start by recalling some facts from [CQ95]. For any projective (right) mod-
ule E over an algebra A, there exists a module E ′ such that E⊕E ′ = An, and we
have two canonical mappings

p : An = E ⊕ E ′ −→ E and λ : E ↪→ E ⊕ E ′,

we can then define the map∇0 := (p⊗Id)◦(An⊗d)◦(λ⊗Id) as the composition
given by

E ⊗A ΩpA
λ⊗Id // An ⊗A ΩpA

An⊗d // Ωp+1A
p⊗Id // E ⊗A Ωp+1A
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The operator∇0 is a (flat) connection on E, called the Grassmann connection on
E.

Remark. Physicists sometimes use the shorthand notation ∇0 = pd to denote the
Grassmann connection.

It is also well known (cf. for instance [CQ95]) that the space of all linear
connections over a projective module E is an affine space modeled on the space
of A–module morphisms EndA(E) ⊗A Ω1A, and henceforth we can write any
linear connection ∇ on E as ∇ = ∇0 + α, being α ∈ EndA(E) ⊗A Ω1A, where
the “matrix” α is called the gauge potential of the connection ∇.

4.5.1 Product connections on the quantum plane kq[x, y]

Consider now A := k[x] the polynomial algebra in one variable. Since, by
Quillen-Suslin Theorem, any projective module over A is free, it is enough to
consider connections for modules of the form E = Am.

If we denote by {ei}i=1,...,m the canonical generator set for E, we may write
the Grassmann connection on E as

∇E
0 (a1, . . . , am) = e1 ⊗A da1 + · · ·+ em ⊗A dam ∈ E ⊗A Ω1A. (4.24)

Analogously, let B := k[y], F := Bn with canonical generating system {fj}j=1,...,n

and Grassmann connection

∇F
0 (b1, . . . , bn) = f1 ⊗B db1 + · · ·+ fn ⊗B dbn. (4.25)

Recall that the quantum plane kq[x, y] may be seen as the twisted tensor prod-
uct k[x]⊗R k[y] with respect to the twisting map obtained by extension of R(y ⊗
x) := qx ⊗ y. This is an invertible twisting map which extends to an invert-
ible module twisting map τF,A : F ⊗ A → A ⊗ F in a natural way. For ele-
ments e ⊗ b ∈ E ⊗ B, where e = (a1, . . . , am), and a generator x ⊗ f with
f = (yi1 , . . . , yin) of A⊗ F , using the definition of our product connection given
by Equation (4.17), we have that the product of the Grassmann connections is

∇gr(e⊗ b, x⊗ f) =
(∑

ei ⊗ 1⊗ dai

)
⊗ b + e⊗ 1⊗ 1⊗ db+

+ x⊗
(∑

fk ⊗ 1⊗ dyik
)

+ 1⊗ (q−i1yi1 , . . . , q−inyin)⊗ dx⊗ 1.
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Remark. If we introduce the notation λq(p(y)) := p(qy), we can give the former
expression for an element a⊗ f of the form a = xj , f = (b1, . . . , bn) ∈ F as

∇gr(e⊗ b, a⊗ f) =
∑

i

ei ⊗ 1⊗ dai ⊗ b + e⊗ 1⊗ 1⊗ db+

+
∑

k

a⊗ fk ⊗ 1⊗ dbk +
∑

k

1⊗ λq−j(bk)⊗ d(xj)⊗ 1

Now, for a generic connection∇E over the module E, there must exist a poten-
tial αE = ϕi⊗ωi ∈ End E⊗A Ω1A given by αE(a1, . . . , am) =

∑
i,j ϕi(aj)⊗ωi

such that ∇E = ∇E
0 + αE . In the same way, for a generic connection ∇F on

F there must exist a potential αF =
∑

k ψk ⊗ ηk, given by αF (b1, . . . , bn) =∑
k,l ψkbl ⊗ ηk, and such that ∇F = ∇F

0 + αF . Applying the formula for the
product connection to ∇E and ∇F we easily observe that

∇(e⊗b, a⊗f) = ∇gr(e⊗b, a⊗f)+
∑
i,j

ϕi(aj)⊗1⊗ωi⊗b+
∑

k,l

a⊗ψk(bl)⊗1⊗ηk,

expression that tells us the formula for all possible product connections on the
quantum plane.



5. A MORE GENERAL APPROACH TO DEFORMED
PRODUCTS

Algebra reverses the relative importance of the factors in
ordinary language. It is essentially a written language,
and it endeavors to exemplify in its written structures the
patterns which it is its purpose to convey. The pattern of
the marks on paper is a particular instance of the pattern
to be conveyed to thought. The algebraic method is our
best approach to the expression of necessity, by reason of
its reduction of accident to the ghostlike character of the
real variable.

Alfred Whitehead

Beyond twisted tensor products, there are many other constructions in which a
different algebra structure is obtained from a given one without changing the un-
derlying vector space (or whatever object, if we are working over a monoidal cat-
egory). One example of this is the case of twisted bialgebras, if H is a bialgebra
and σ : H⊗H → k is a normalized and convolution invertible left 2-cocycle, one
can consider the “twisted bialgebra” σH , which is an associative algebra structure
on H with multiplication given by

a ∗ b = σ(a1, b1)a2b2.

This is an important and well-known construction, containing as particular case
the classical twisted group rings.

Apparently, there is no relation between twisted tensor products of algebras
and twisted bialgebras, except for the fact that their names suggest that they are
both obtained via a process of twisting. However, as a consequence of the ideas
developed in this Chapter, it will turn out that this suggestion is correct: we will
find a framework in which both constructions fit as particular cases.

Our initial aim was to relate the multiplications µA⊗RB of a twisted tensor
product A⊗R B associated to the twisting map R, and µA⊗B of A⊗B. It is easy
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to see that µA⊗RB = µA⊗B ◦ T , where

T : (A⊗B)⊗ (A⊗B) −→ (A⊗B)⊗ (A⊗B)

is a map depending on R, and the problem is to find the abstract properties sat-
isfied by this map T , which together with the associativity of µA⊗B imply the
associativity of µA⊗RB. We are thus led to introduce the concept of twistor for an
algebra D, as a linear map T : D⊗D → D⊗D satisfying a list of axioms which
imply that the new multiplication µD ◦T gives an associative algebra structure on
the vector space D (these axioms are similar to, but different from, the ones of an
R-matrix for an associative algebra, a concept introduced by Richard Borcherds).
It turns out that the map T affording the multiplication of A⊗RB is such a twistor,
and that various other examples of twistors may be identified in the literature, in
particular the noncommutative 2n-plane may be regarded as a deformation of a
polynomial algebra via a twistor.

But there exist in the literature many examples of deformed multiplications
which are not afforded by twistors. For instance, the map

T (a⊗ b) = σ(a1, b1)a2 ⊗ b2

affording the multiplication of σH is far from being a twistor. Also the map

T (ω ⊗ ζ) = ω ⊗ ζ − (−1)|ω|d(ω)⊗ d(ζ),

affording the so-called Fedosov product in a differential graded algebra, is not a
twistor, though it does not drift too far, it looks like a graded analogue. We are thus
led to a more general concept, called braided twistor, of which this T becomes
an example. And from this concept we arrive at a much more general one, called
pseudotwistor, which is general enough to include as example the map affording
the multiplication of σH , as well as some other (nonrelated) situations from the
literature, e.g. some examples arising in the context of Durdevich’s braided quan-
tum groups, and the morphism c2

A,A, where A is an algebra in a braided monoidal
category with braiding c.

We also present some properties of (pseudo)twistors, e.g. we show how to lift
modules and bimodules over D to the same structures over the deformed algebra,
and how to extend a twistor T from an algebra D to a braided (graded) twistor
T̃ of the algebra of universal differential forms ΩD. The results contained in this
Chapter originally appeared in [LPVO07].
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5.1 R-matrices and twistors

In the literature there exist various schemes producing, from a given associative
algebra A and some datum corresponding to it, a new associative algebra structure
on the vector space A. The aim of this section is to prove that there exists such a
general scheme that produces the twisted tensor product starting from the ordinary
tensor product. Our source of inspiration is the following result of Borcherds from
[Bor98], [Bor01], which arose in his Hopf algebraic approach to vertex algebras:

Theorem 5.1.1. ([Bor98], [Bor01]) Let D be an algebra with multiplication de-
noted by µD = µ and let T : D ⊗ D → D ⊗ D be a linear map satisfying the
following conditions:

T (1⊗ d) = 1⊗ d, T (d⊗ 1) = d⊗ 1, for all d ∈ D, (5.1)
µ23 ◦ T12 ◦ T13 = T ◦ µ23, (5.2)
µ12 ◦ T23 ◦ T13 = T ◦ µ12, (5.3)

T12 ◦ T13 ◦ T23 = T23 ◦ T13 ◦ T12, (5.4)

with standard notation for µij and Tij . Then the bilinear map µ ◦T : D⊗D → D
is another associative algebra structure on D, with the same unit 1. The map T is
called an R-matrix.

If A ⊗R B is a twisted tensor product of algebras, we want to obtain it as a
twisting (in the sense above) of A⊗B. We might try defining the map

T : (A⊗B)⊗ (A⊗B) → (A⊗B)⊗ (A⊗B)

by T := (A⊗ τ ⊗B) ◦ (A⊗R⊗B), that is,

T ((a⊗ b)⊗ (a′ ⊗ b′)) := (a⊗ bR)⊗ (a′R ⊗ b′). (5.5)

Then the multiplication of A ⊗R B is obtained as µA⊗B ◦ T , also T satisfies
T (1⊗ (a⊗ b)) = 1⊗ (a⊗ b) and T ((a⊗ b)⊗ 1) = (a⊗ b)⊗ 1, but in general T
does not satisfy the other axioms in Theorem 5.1.1 (for instance take R to be the
twisting map corresponding to a Hopf smash product), hence we cannot obtain
A ⊗R B from A ⊗ B using Borcherds’ scheme, and we are forced to find an
alternative one. This is achieved in the next result, whose proof is postponed till
Section 5.4, where it will be given in a more general framework.
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Theorem 5.1.2. Let D be an algebra with multiplication denoted by µD = µ and
T : D ⊗D → D ⊗D a linear map satisfying the following conditions:

T (1⊗ d) = 1⊗ d, T (d⊗ 1) = d⊗ 1, for all d ∈ D, (5.6)
µ23 ◦ T13 ◦ T12 = T ◦ µ23, (5.7)
µ12 ◦ T13 ◦ T23 = T ◦ µ12, (5.8)

T12 ◦ T23 = T23 ◦ T12. (5.9)

Then the bilinear map µ◦T : D⊗D → D is another associative algebra structure
on D, with the same unit 1, which will be denoted in what follows by DT , and the
map T will be called a twistor for D.

If T is a twistor, we will usually denote T (d⊗d′) = dT ⊗d′T , for d, d′ ∈ D, so
the new multiplication µ ◦ T on D is given by d ∗ d′ = dT d′T . With this notation,
the relations (5.7)–(5.9) may be written as:

dT ⊗ (d′d′′)T = (dT )t ⊗ d′T d′′t , (5.10)
(dd′)T ⊗ d′′T = dT d′t ⊗ (d′′t )T , (5.11)

dT ⊗ (d′T )t ⊗ d′′t = dT ⊗ (d′t)T ⊗ d′′t . (5.12)

Now, if A⊗RB is a twisted tensor product of algebras, then one can check that the
map T given by (5.5) satisfies the axioms in Theorem 5.1.2 for D = A ⊗ B, and
the deformed multiplication is the one of A⊗R B, that is, A⊗R B = (A⊗B)T , so
we recover the associativity of the (deformed) product in A⊗RB as a consequence
of Theorem 5.1.2.

Conversely, if R : B ⊗A → A⊗B is a linear map such that the map T given
by (5.5) is a twistor for A⊗B, then R is a twisting map, and (A⊗B)T = A⊗R B.
If this is the case, we will say that the twistor T is afforded by the twisting map
R.

Remark. If T is a twistor for an algebra D, a consequence of (5.10) and (5.11) is:

T (ab⊗ cd) = (aT )t(bT )T ⊗ (cT )T (dT )t, (5.13)

for all a, b, c, d ∈ D, where T = t = T = T .

Remark. Let T be a twistor satisfying the extra conditions

T12 ◦ T13 = T13 ◦ T12, (5.14)
T13 ◦ T23 = T23 ◦ T13. (5.15)
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Then it is easy to see that T is also an R-matrix. Conversely, a bijective R-matrix
satisfying (5.14)) and (5.15) is a twistor.

An example of a twistor T satisfying (5.14) and (5.15) can easily be obtained
as follows: take H a cocommutative bialgebra, σ : H⊗H → k a bicharacter, that
is, a map satisfying

σ(1, h) = σ(h, 1) = ε(h),

σ(h, h′h′′) = σ(h1, h
′)σ(h2, h

′′),

σ(hh′, h′′) = σ(h, h′′1)σ(h′, h′′2)

for all h, h′, h′′ ∈ H , then we may define the map T : H ⊗H → H ⊗H , by

T (h⊗ h′) = σ(h1, h
′
1)h2 ⊗ h′2,

having the required property.

Remark. We have seen before (formula (5.5)) a basic example of a twistor which
in general is not an R-matrix. We present now a basic example of an R-matrix
which is not a twistor. Namely, for any algebra D, define the map

T : D ⊗D −→ D ⊗D

d⊗ d′ 7−→ d′d⊗ 1 + 1⊗ d′d− d′ ⊗ d.

Then one can check that T is an R-matrix (the fact that it satisfies (5.4) follows
from [Nus97] or [Nic99]) whilst it is not a twistor. Note that the multiplication
µ ◦ T afforded by T is just the multiplication of the opposite algebra Dop.

5.2 More examples of twistors

In this section we present more situations where Theorem 5.1.2 may be applied.

5.2.1 Iterated twisted tensor products

Let A, B, C be three algebras and R1 : B ⊗A → A⊗B, R2 : C ⊗B → B ⊗C,
R3 : C ⊗A → A⊗C twisting maps. Consider the algebra D = A⊗B ⊗C, and
the map T : D ⊗D → D ⊗D given by

T ((a⊗b⊗c)⊗(a′⊗b′⊗c′)) = (a⊗bR1⊗(cR3)R2)⊗((a′R3
)R1⊗b′R2

⊗c′). (5.16)

In general T is not a twistor for D, even if the maps R1, R2, R3 are compatible.
However, we have the following result:
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Proposition 5.2.1. With notation as above, T is a twistor for D if, and only if, the
following conditions hold:

aR1 ⊗ (bR1)R2 ⊗ cR2 = aR1 ⊗ (bR2)R1 ⊗ cR2 , (5.17)
(aR1)R3 ⊗ bR1 ⊗ cR3 = (aR3)R1 ⊗ bR1 ⊗ cR3 , (5.18)
aR3 ⊗ bR2 ⊗ (cR3)R2 = aR3 ⊗ bR2 ⊗ (cR2)R3 , (5.19)

for all a ∈ A, b ∈ B, c ∈ C. Moreover, in this case it follows that R1, R2, R3 are
compatible twisting maps and DT = A⊗R1 B ⊗R2 C.

PROOF The fact that T is a twistor if and only if (5.17)–(5.19) hold follows by a
direct computation, we leave the details to the reader. We only prove that R1, R2,
R3 are compatible. We compute:

(A⊗R2)(R3 ⊗B)(C ⊗R1)(a⊗ b⊗ c) =

= (aR1)R3 ⊗ (bR1)R2 ⊗ (cR3)R2

(5.17)
=

(5.17)
= (aR1)R3 ⊗ (bR2)R1 ⊗ (cR3)R2

(5.18)
=

(5.18)
= (aR3)R1 ⊗ (bR2)R1 ⊗ (cR3)R2

(5.19)
=

(5.19)
= (aR3)R1 ⊗ (bR2)R1 ⊗ (cR2)R3

= (R1 ⊗ C)(B ⊗R3)(R2 ⊗ A)(a⊗ b⊗ c).

The fact that DT = A⊗R1 B ⊗R2 C is obvious.
¤

Remark. The conditions in Proposition 5.2.1 are satisfied whenever we start with
compatible twisting maps R1, R2, R3 such that one of them is a usual flip; a
concrete example where this happens is for the so-called two-sided smash product,
as described in Proposition 2.2.3.

Proposition 5.2.1 may be extended to an iterated twisted tensor product of any
number of factors by means of the Coherence Theorem (Theorem 2.1.8). In or-
der to do this, just realize that conditions (5.17), (5.18), and (5.19) mean simply
requiring that {R1, R2, τAC}, {R1, τBC , R3} and {τAB, R2, R3} are sets of com-
patible twisting maps, where the τ ’s are classical flips.

Proposition 5.2.2. Let A1, . . . , An be some algebras, {Rij}i<j a set of twisting
maps, with Rij : Aj ⊗ Ai → Ai ⊗ Aj , and let D = A1 ⊗ · · · ⊗ An. Then the
following two conditions are equivalent:
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1. The map T : D ⊗D → D ⊗D defined by

T := (IdA1⊗···⊗An−1 ⊗ τn 1 ⊗ IdA2⊗···⊗An) ◦ · · · ◦
◦ (IdA1⊗···⊗An−k−1

⊗ τn−k 1 ⊗ · · · ⊗ τn k+1 ⊗ IdAk+2⊗···⊗An)◦
◦· · ·◦(IdA1⊗τ21⊗· · ·⊗τn n−1⊗IdAn)◦(IdA1⊗R12⊗· · ·⊗Rn−1 n⊗IdAn)◦
◦ · · · ◦ (IdA1⊗···⊗An−k−1

⊗R1 n−k ⊗ · · · ⊗Rk+1 ⊗ IdAk+2⊗···⊗An) ◦ · · · ◦
◦ (IdA1⊗···⊗An−1 ⊗Rn 1 ⊗ IdA2⊗···⊗An)

is a twistor.

2. For any triple i < j < k ∈ {1, . . . , n}, we have that {Rij, Rjk, τik},
{Rij, τjk, Rik} and {τij, Rjk, Rik} are sets of compatible twisting maps.

Moreover, if the conditions are satisfied, then the twisting maps {Rij}i<j are com-
patible, and we have DT = A1 ⊗R12 · · · ⊗Rn−1 n An, that is, the twisting induced
by the twistor T gives the iterated twisted tensor product associated to the maps.

PROOF We just outline the main ideas of the proof, leaving details to the reader.
The proof goes by induction on the number of terms n ≥ 3; for n = 3, the result
is just Proposition 5.2.1. Now, assuming the result is true for n− 1 algebras with
their corresponding twisting maps, and given A1, . . . , An algebras, satisfying the
hypothesis of the proposition, we consider the algebras B1 := A1, . . . , Bn−2 :=
An−2, Bn−1 := An−1⊗Rn−1 n An, with the twisting maps defined as in the Coher-
ence Theorem. Directly from the hypothesis of the proposition, it follows from the
Coherence Theorem that the newly defined twisting maps also satisfy the condi-
tions in the proposition, so we may apply our induction hypothesis to the algebras
B1, . . . , Bn−1.

¤

A particular case of the former proposition is found in the realization of the
noncommutative planes of Connes and Dubois–Violette as iterated twisted tensor
products (cf. Section 2.5.3, a description of the noncommutative planes is given
in [CDV02] and Appendix D). As the twisting maps involved in this process are
just multiples of the classical flips, the compatibility conditions are trivially sat-
isfied, and the proposition tells us that any noncommutative 2n–plane Calg(R2n

θ )
may also be realized as a deformation through a twistor of the commutative al-
gebra C[z1, z̄1, . . . , zn, z̄n]. Moreover, the former proposition provides an explicit
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formula for the twistor T that recovers the iterated twisted tensor product. Taking
into account the identification

C[z1, z̄1, . . . , zn, z̄n] −→ C[z1, z̄1]⊗ · · · ⊗ C[zn, z̄n],

zi 7−→ 1⊗ · · · ⊗ zi ⊗ · · · ⊗ 1,

z̄i 7−→ 1⊗ · · · ⊗ z̄i ⊗ · · · ⊗ 1,

where zi and z̄i map to the i-th position, it is easy to realize that the twistor given
by the proposition is defined on generators as:

T (zi ⊗ zj) =

{
zi ⊗ zj if i ≤ j,
λijzi ⊗ zj otherwise,

T (z̄i ⊗ z̄j) =

{
z̄i ⊗ z̄j if i ≤ j,
λij z̄i ⊗ z̄j otherwise,

T (z̄i ⊗ zj) =

{
z̄i ⊗ zj if i ≤ j,
λjiz̄i ⊗ zj otherwise,

T (zi ⊗ z̄j) =

{
zi ⊗ z̄j if i ≤ j,
λjizi ⊗ z̄j otherwise.

5.2.2 L-R-twisting datum

Let A be an algebra with multiplication µ, and H a bialgebra such that A is an
H-bimodule algebra with actions denoted by

πl : H ⊗ A → A
πl(h⊗ a) = h · a and

πr : A⊗H → A
πr(a⊗ h) = a · h

also A is an H-bicomodule algebra, with coactions

ψl : A → H ⊗ A
a 7→ a[−1] ⊗ a[0]

and
ψr : A → A⊗H
a 7→ a<0> ⊗ a<1>

and such that the following compatibility conditions hold, for all h ∈ H and
a ∈ A:

(h · a)[−1] ⊗ (h · a)[0] = a[−1] ⊗ h · a[0],

(h · a)<0> ⊗ (h · a)<1> = h · a<0> ⊗ a<1>,

(a · h)[−1] ⊗ (a · h)[0] = a[−1] ⊗ a[0] · h,

(a · h)<0> ⊗ (a · h)<1> = a<0> · h⊗ a<1>.

Such a datum was considered in [PVO], where it is called a L-R-twisting datum
for A (and contains as particular case the concept of very strong left twisting
datum from [FST99], which is obtained if the right action and coaction are trivial).
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Proposition 5.2.3. ([PVO]) Given an L-R-twisting datum, define a new multipli-
cation on A by

a • a′ = (a[0] · a′<1>)(a[−1] · a′<0>), ∀ a, a′ ∈ A. (5.20)

Then (A, •, 1) is an associative unital algebra.

This result may be obtained as a consequence of Theorem 5.1.2. Namely,
define

T : A⊗ A → A⊗ A
T (a⊗ a′) := a[0] · a′<1> ⊗ a[−1] · a′<0>

(5.21)

Then one can check that T is a twistor for A, and obviously the new multiplication
• defined above coincides with µ ◦ T .

5.2.3 Deformation via bialgebra action and coaction

Let H , K be two bialgebras, A an algebra which is a left H-comodule algebra
with coaction

A −→ H ⊗ A

a 7−→ a[−1] ⊗ a[0],

and a left K-module algebra with action

K ⊗ A −→ A

k ⊗ a 7−→ k · a,

such that

(k · a)[−1] ⊗ (k · a)[0] = a[−1] ⊗ k · a[0], for all a ∈ A, k ∈ K.

Let also consider f : H → K, a bialgebra map. Then, by [CZ00], the new
multiplication defined on A by

a ·f a′ = a[0](f(a[−1]) · a′),
is associative, with unit 1. This multiplication may be regarded as afforded by the
map

T : A⊗ A −→ A⊗ A,

a⊗ a′ 7−→ a[0] ⊗ f(a[−1]) · a′,
which is easily seen to be a twistor.
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5.2.4 Drinfeld twist

Let H be a bialgebra and F = F 1 ⊗ F 2 ∈ H ⊗H an element satisfying

(ε⊗H)(F ) = (H ⊗ ε)(F ) = 1.

Assume that F satisfies the following list of axioms, considered in [JC97], [KM00]:

(H ⊗∆)(F ) = F13F12,

(∆⊗H)(F ) = F13F23,

F12F23 = F23F12.

Let D be a left H-module algebra and define

T : D ⊗D −→ D ⊗D

d⊗ d′ 7−→ F 1 · d⊗ F 2 · d′.

Then it is easy to see that T is a twistor for D. In case F is invertible, the multi-
plication of DT fits into the well-known procedure of twisting a module algebra
by a Drinfeld twist.

5.2.5 Deformation via neat elements

Let H be a bialgebra and σ : H ⊗H → k a linear map. Define

T : H ⊗H −→ H ⊗H

a⊗ b 7−→ σ(a1, b1)a2 ⊗ b2,

for all a, b ∈ H . Then, T is a twistor for H if, and only if, σ satisfies the following
conditions:

σ(a, 1) = ε(a) = σ(1, a),

σ(a, bc) = σ(a1, b)σ(a2, c),

σ(ab, c) = σ(a, c2)σ(b, c1),

σ(a, b1)σ(b2, c) = σ(b1, c)σ(a, b2),

for all a, b, c ∈ H . Note that elements satisfying the last condition have been
considered in [PSVO06], under the name of neat elements.
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5.2.6 Deformation via derivations

Let (D, δ) be a differential associative algebra, that is D is an associative algebra
and δ : D → D is a derivation, i.e. a linear map satisfying

δ(dd′) = δ(d)d′ + dδ(d′)

and such that δ2 = 0. Then, one can see that the map

T : D ⊗D −→ D ⊗D

d⊗ d′ 7−→ d⊗ d′ + δ(d)⊗ δ(d′)

is a twistor for D.

5.3 Some properties of twistors

Proposition 5.3.1. Let T be a twistor for an algebra D and U a twistor for an
algebra F . If ν : D → F is an algebra map such that

(ν ⊗ ν) ◦ T = U ◦ (ν ⊗ ν),

then ν is also an algebra map from DT to FU .

It was proved in [BM00a] (and recalled in Lemma 1.2.6) that, whenever we
have A⊗R B and A′ ⊗R′ B

′ twisted tensor products of algebras, and

f : A −→ A′ and g : B −→ B′

algebra maps such that

(f ⊗ g) ◦R = R′ ◦ (g ⊗ f),

then the map
f ⊗ g : A⊗R B −→ A′ ⊗R′ B

′

is an algebra map. One can easily see that this result is a particular case of Propo-
sition 5.3.1, with D = A ⊗ B, F = A′ ⊗ B′, ν = f ⊗ g and T (respectively U )
the twistor afforded by R (respectively R′).

We present one more situation where Proposition 5.3.1 may be applied. We
recall that the L-R-smash product over a cocommutative Hopf algebra was intro-
duced in [BBM05], [BGGD04], and generalized to an arbitrary Hopf algebra in
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[PVO] as follows: if A is an H-bimodule algebra, the L-R-smash product A \ H
is defined as the deformed algebra structure on A⊗H given by:

(a \ h)(a′ \ h′) = (a · h′2)(h1 · a′) \ h2h
′
1, ∀ a, a′ ∈ A, h, h′ ∈ H.

The diagonal crossed product A ./ H is the following algebra structure on A⊗H ,
see [HN99], [BPVO06] (cf. also section 2.5.2):

(a ./ h)(a′ ./ h′) = a(h1 · a′ · S−1(h3)) ./ h2h
′, ∀ a, a′ ∈ A, h, h′ ∈ H.

It was proved in [PVO] that actually A ./ H and A \ H are isomorphic as
algebras. This result may be reobtained using Proposition 5.3.1 as follows. Denote
by A#rH the algebra structure on A⊗H with multiplication

(a⊗ h)(a′ ⊗ h′) = (a · h′2)a′ ⊗ hh′1,

and by A ./r H the algebra structure on A⊗H given by the product

(a⊗ h)(a′ ⊗ h′) = a(a′ · S−1(h2))⊗ h1h
′.

One may check that the map

ν : A ./r H −→ A#rH

a⊗ h 7−→ a · h2 ⊗ h1

is an algebra map, which is actually an isomorphism, with inverse given by

ν−1(a⊗ h) = a · S−1(h2)⊗ h1.

Define now the map

T : (A⊗H)⊗ (A⊗H) −→ (A⊗H)⊗ (A⊗H)

(a⊗ h)⊗ (a′ ⊗ h′) 7−→ (a⊗ h2)⊗ (h1 · a′ ⊗ h′).

Then one may check, by direct computation, that T is a twistor for both algebras
A#rH and A ./r H . Moreover, we have

(A#rH)T = A \ H, (A ./r H)T = A ./ H, and (ν⊗ν)◦T = T ◦ (ν⊗ν).

Hence, Proposition 5.3.1 may be applied and we obtain as a consequence that ν is
an algebra map from A ./ H to A \ H .

By [PVO], the L-R-twisted product described in Equation (5.20) may be ob-
tained as a left twisting followed by a right twisting and viceversa. This fact also
admits an interpretation in terms of twistors.
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Proposition 5.3.2. Let D be an algebra and X, Y : D⊗D → D⊗D two twistors
for D, satisfying the following conditions:

X23 ◦ Y12 = Y12 ◦X23, (5.22)
X23 ◦ Y13 = Y13 ◦X23, (5.23)
X12 ◦ Y23 = Y23 ◦X12, (5.24)
X12 ◦ Y13 = Y13 ◦X12. (5.25)

Then Y is a twistor for DX , X is a twistor for DY , X ◦ Y and Y ◦X are twistors
for D and of course (DX)Y = DX◦Y and (DY )X = DY ◦X .

PROOF Note first that (5.23) and (5.25) are respectively equivalent to X13 ◦Y23 =
Y23 ◦ X13 and Y12 ◦ X13 = X13 ◦ Y12, hence the above conditions are actually
symmetric in X and Y , so we only have to prove that Y is a twistor for DX and
X ◦ Y is a twistor for D.
To prove that Y is a twistor for DX we only have to check (5.10) and (5.11) for Y
with respect to the multiplication ∗ of DX ; we compute:

dY ⊗ (d′ ∗ d′′)Y = dY ⊗ (d′Xd′′X)Y =
(5.10)
= (dY )y ⊗ (d′X)Y (d′′X)y =

(5.23)
= (dY )y ⊗ (d′X)Y (d′′y)X =

(5.22)
= (dY )y ⊗ (d′Y )X(d′′y)X =

= (dY )y ⊗ d′Y ∗ d′′y,

(d ∗ d′)Y ⊗ d′′Y = (dXd′X)Y ⊗ d′′Y =
(5.11)
= (dX)Y (d′X)y ⊗ (d′′y)Y =

(5.24)
= (dX)Y (d′y)X ⊗ (d′′y)Y =

(5.25)
= (dY )X(d′y)X ⊗ (d′′y)Y =

= dY ∗ d′y ⊗ (d′′y)Y .

Now we check (5.10) and (5.11) for T := X ◦ Y ; we compute:

dT ⊗ (d′d′′)T = (dY )X ⊗ ((d′d′′)Y )X =
(5.10)
= ((dY )y)X ⊗ (d′Y d′′y)X =
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(5.10)
= (((dY )y)X)x ⊗ (d′Y )X(d′′y)x =

(5.25)
= (((dY )X)y)x ⊗ (d′Y )X(d′′y)x =

= (dT )t ⊗ d′T d′′t ,

(dd′)T ⊗ d′′T = ((dd′)Y )X ⊗ (d′′Y )X =
(5.11)
= (dY d′y)X ⊗ ((d′′y)Y )X =

(5.11)
= (dY )X(d′y)x ⊗ (((d′′y)Y )x)X =

(5.23)
= (dY )X(d′y)x ⊗ (((d′′y)x)Y )X =

= dT d′t ⊗ (d′′t )T .

It remains to prove (5.9) for T ; we compute:

T12 ◦ T23 = X12 ◦ Y12 ◦X23 ◦ Y23 =
(5.22)
= X12 ◦X23 ◦ Y12 ◦ Y23 =

(5.9)
= X23 ◦X12 ◦ Y23 ◦ Y12 =

(5.24)
= X23 ◦ Y23 ◦X12 ◦ Y12 =

= T23 ◦ T12,

and the proof is finished. ¤

Let now A be as in Proposition 5.2.3 and define the maps X,Y : A ⊗ A →
A⊗ A by

X(a⊗ a′) = a · a′<1> ⊗ a′<0>, Y (a⊗ a′) = a[0] ⊗ a[−1] · a′.
Then one can check that X and Y satisfy the hypotheses of Proposition 5.3.2, and
moreover we have X ◦ Y = Y ◦X = T , where T is given by (5.21). Hence, we
obtain (A, •, 1) = (AX)Y = (AY )X .

Also as a consequence of Proposition 5.3.2, we obtain that if T is a twistor for
an algebra D, satisfying (5.14) and (5.15), then T is a twistor also for DT , hence
we obtain a sequence of associative algebras D, DT , DT 2 , DT 3 , etc.

A particular case of Proposition 5.3.2 is the following:

Corollary 5.3.3. Let A, B be two algebras and R,S : B ⊗ A → A ⊗ B two
twisting maps. Denote by X (respectively Y ) the twistor for A ⊗ B afforded by
R (respectively S) and assume that the following conditions are satisfied:

(aR)S ⊗ bR ⊗ b′S = (aS)R ⊗ bR ⊗ b′S,
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aR ⊗ a′S ⊗ (bR)S = aR ⊗ a′S ⊗ (bS)R,

for all a, a′ ∈ A and b, b′ ∈ B. Define R ∗ S, S ∗R : B ⊗ A → A⊗B by

(R ∗ S)(b⊗ a) = (aS)R ⊗ (bS)R,

(S ∗R)(b⊗ a) = (aR)S ⊗ (bR)S.

Then Y is a twistor for A ⊗R B, X is a twistor for A ⊗S B, X ◦ Y (respectively
Y ◦ X) is a twistor for A ⊗ B afforded by the twisting map R ∗ S (respectively
S ∗R) and we have

(A⊗R B)Y = A⊗R∗S B,

(A⊗S B)X = A⊗S∗R B.

We are now interested, whenever given an algebra D endowed with a twistor
T , in lifting (bi)module structures from the algebra D to the deformed algebra
DT . This is achieved in the next results, whose proofs follow from some direct
computations and will therefore be omitted.

Proposition 5.3.4. Let D be an algebra, T a twistor for D, V be a left D-module,
with action

λ : D ⊗ V −→ V

d⊗ v 7−→ d · v.

Assume that we are given a linear map

Γ : D ⊗ V −→ D ⊗ V

d⊗ v 7−→ dΓ ⊗ vΓ,

for all d ∈ D, v ∈ V , such that

Γ(1⊗ v) = 1⊗ v, (5.26)
λ23 ◦ Γ13 ◦ T12 = Γ ◦ λ23, (5.27)
µ12 ◦ Γ13 ◦ Γ23 = Γ ◦ µ12, (5.28)

T12 ◦ Γ23 = Γ23 ◦ T12. (5.29)

Then V becomes a left DT -module, under the action λ ◦ Γ. We denote by V Γ this
DT -module structure on V and by d → v = dΓ · vΓ the action of DT on V Γ. We
call the map Γ a left module twistor for V relative to T .
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Proposition 5.3.5. Let D be an algebra, T a twistor for D, V be a right D-module,
with action

ρ : V ⊗D −→ V

v ⊗ d 7−→ v · d,

and assume that we are given a linear map

Π : V ⊗D −→ V ⊗D

v ⊗ d 7−→ vΠ ⊗ dΠ,

for all d ∈ D, v ∈ V , such that

Π(v ⊗ 1) = v ⊗ 1, (5.30)
µ23 ◦ Π13 ◦ Π12 = Π ◦ µ23, (5.31)
ρ12 ◦ Π13 ◦ T23 = Π ◦ ρ12, (5.32)

Π12 ◦ T23 = T23 ◦ Π12. (5.33)

Then V becomes a right DT -module, with action ρ ◦ Π. We denote by ΠV this
DT -module structure on V and by v ← d = vΠ · dΠ the action of DT on V . We
call the map Π a right module twistor for V relative to T .

Proposition 5.3.6. Let D be an algebra, T a twistor for D, let V be a D-bimodule,
and let Γ and Π be a left respectively a right module twistor for V relative to T .
Assume that the following conditions hold:

ρ23 ◦ T13 ◦ Γ12 = Γ ◦ ρ23, (5.34)
λ12 ◦ T13 ◦ Π23 = Π ◦ λ12, (5.35)

Γ12 ◦ Π23 = Π23 ◦ Γ12. (5.36)

Let ΠV Γ be V Γ as a left DT -module and ΠV as a right DT -module. Then ΠV Γ is
a DT -bimodule.

Recall from [CSV95] (cf. also Section 1.2.1) that whenever we have A⊗R B
a twisted tensor product of algebras, M a left A-module, N a left B-module and
τM,B : B ⊗ M → M ⊗ B a left module twisting map (i.e. a map satisfying
equations (1.7)–(1.9)), then M ⊗N becomes a left A ⊗R B-module, with action
λτM,B

= (λA ⊗ λB) ◦ (A ⊗ τM,B ⊗ N). This result is a particular case of Propo-
sition 5.3.4 (i). Indeed, we consider the algebra D = A ⊗ B (the ordinary tensor
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product), the twistor T for D given by (5.5), the left D-module V = M ⊗N with
the usual action (a⊗ b) · (m⊗ n) = a ·m⊗ b · n, and the map

Γ : (A⊗B)⊗ (M ⊗N) −→ (A⊗B)⊗ (M ⊗N)

(a⊗ b)⊗ (m⊗ n) 7−→ (a⊗ bτ )⊗ (mτ ⊗ n).

Then one can check that Γ satisfies the axioms of a left module twistor, and the left
DT = A⊗R B-module V Γ is obviously the A⊗R B-module structure on M ⊗N
presented above. Similarly, one can see that Proposition 5.3.4 (ii) contains as
particular case the lifting of right module structures to a twisted tensor product by
means of right module twisting maps of [CSV95] (see also Section 1.2.1).

Another example may be obtained as follows. Let A be as in Proposition 5.2.3,
and V a vector space which is a left A-module (with action a⊗ v 7→ a · v), a left
H-module (with action h ⊗ v 7→ h · v) and a right H-comodule (with coaction
v 7→ v<0> ⊗ v<1> ∈ V ⊗H) such that the following conditions are satisfied, for
all h ∈ H , a ∈ A, v ∈ V :

(h · v)<0> ⊗ (h · v)<1> = h · v<0> ⊗ v<1>,

h · (a · v) = (h1 · a) · (h2 · v),

(a · v)<0> ⊗ (a · v)<1> = a<0> · v<0> ⊗ a<1>v<1>.

Define the map

Γ : A⊗ V −→ A⊗ V

(a⊗ v) 7−→ a[0] · v<1> ⊗ a[−1] · v<0>.

Then one can check that Γ and the twistor T given by (5.21) satisfy the hypotheses
of Proposition 5.3.4 (i), hence V becomes a left module over (A, •), with action
a → v = (a[0] · v<1>) · (a[−1] · v<0>).

We present now an application of Proposition 5.3.4 to the particular case of
the bimodule of universal differential 1–forms:

Proposition 5.3.7. Let (D,µ, u) be an algebra and consider the universal first or-
der differential calculus Ω1

u(D) = Ker(µ), with its canonical D-bimodule struc-
ture. If T is a twistor for D, then Ω1

u(D) becomes also a DT -bimodule.

PROOF Consider the maps

Γ, Π : D ⊗D ⊗D −→ D ⊗D ⊗D
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given by Γ := T13 ◦ T12, and Π := T13 ◦ T23.

We claim that

Γ(D ⊗Ker(µ)) ⊆ D ⊗Ker(µ),

Π(Ker(µ)⊗D) ⊆ Ker(µ)⊗D.

To prove this, we recall the following result from linear algebra: if f : V → V ′

and g : W → W ′ are linear maps, then

Ker(f ⊗ g) = Ker(f)⊗W + V ⊗Ker(g).

We apply this result for the map

D ⊗ µ : D ⊗D ⊗D −→ D ⊗D ⊗D,

and we obtain

Ker(D ⊗ µ) = Ker(D)⊗D ⊗D + D ⊗Ker(µ) = D ⊗Ker(µ).

Let x ∈ D ⊗ Ker(µ); in order to prove that Γ(x) ∈ D ⊗ Ker(µ), taking into
account the above remark, it is enough to prove that ((D ⊗ µ) ◦ Γ)(x) = 0. But
using (5.7) and the definition of Γ, we see that

(D ⊗ µ) ◦ Γ = T ◦ µ23,

and since x ∈ D ⊗Ker(µ), we obviously have (T ◦ µ23)(x) = 0.
Similarly one can prove that

Π(Ker(µ)⊗D) ⊆ Ker(µ)⊗D.

Now, if we denote by λ : D ⊗Ker(µ) → Ker(µ) and ρ : Ker(µ)⊗D → Ker(µ)
the left and right D-module structures of Ker(µ) (given by λ = µ12 and ρ = µ23),
then the maps λ, ρ, Γ, and Π satisfy all the hypotheses of Proposition 5.3.4 (the
proof of this fact goes by a direct computation and henceforth is omitted), and
whence Ker(µ) becomes a DT -bimodule, as we wanted to show.

¤

Actually, more can be said about the DT -bimodule Ker(µ). Let us denote by

δ : D −→ Ker(µ),

d 7−→ d⊗ 1− 1⊗ d

the canonical D-derivation. We have the following result:
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Proposition 5.3.8. The map δ is also a DT -derivation from DT to Ker(µ), where
the DT -bimodule structure on Ker(µ) is the one presented above.

PROOF Using the formulae for Γ and Π, one can easily see that

d → δ(d′) = dT · δ(d′T ), and
δ(d) ← d′ = δ(dT ) · d′T

for all d, d′ ∈ D so we immediately obtain:

δ(d ∗ d′) = δ(dT d′T ) =

= dT · δ(d′T ) + δ(dT ) · d′T =

= d → δ(d′) + δ(d) ← d′,

finishing the proof.
¤

Proposition 5.3.9. If the twistor T is bijective, then (Ker(µ), δ) is also a first order
differential calculus over the algebra DT .

PROOF We only have to prove that Ker(µ) is generated by {δ(d) : d ∈ D}
as a DT -bimodule. If d, d′ ∈ D, we denote by T−1(d ⊗ d′) = dU ⊗ d′U . If
x =

∑
i ai ⊗ bi ∈ Ker(µ), we can write x =

∑
i δ(ai) · bi, which in turn may be

written as
x =

∑
i

(
δ(aU

i ) ← (bi)U

)
,

as we wanted to show.
¤

5.4 Pseudotwistors and braided (graded) twistors

Let (Ω, d) be a differential graded algebra, that is Ω =
⊕

n≥0 Ωn is a graded
algebra and d : Ω → Ω is a linear map with d(Ωn) ⊆ Ωn+1 for all n ≥ 0, d2 = 0
and

d(ωζ) = d(ω)ζ + (−1)|ω|ωd(ζ)
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for all homogeneous ω and ζ , where |ω| is the degree of ω (cf. Appendix C). The
Fedosov product ([Fed74], [CQ95]), given by

ω ◦ ζ = ωζ − (−1)|ω|d(ω)d(ζ), (5.37)

for homogeneous ω and ζ , defines a new associative algebra structure on Ω. If we
define the map

T : Ω⊗ Ω −→ Ω⊗ Ω
ω ⊗ ζ 7−→ ω ⊗ ζ − (−1)|ω|d(ω)⊗ d(ζ),

(5.38)

then T satisfies (5.9) but fails to satisfy (5.7) and (5.8). However, the failure is
only caused by some signs, so we were led to introduce a graded analogue of a
twistor, which in turn leads us to the following much more general concept:

Proposition 5.4.1. Let C be a (strict) monoidal category, A an algebra in C with
multiplication µ and unit u, T : A ⊗ A → A ⊗ A a morphism in C such that
T ◦ (u ⊗ A) = u ⊗ A and T ◦ (A ⊗ u) = A ⊗ u. Assume that there exist two
morphisms T̃1, T̃2 : A⊗ A⊗ A → A⊗ A⊗ A in C such that

(A⊗ µ) ◦ T̃1 ◦ (T ⊗ A) = T ◦ (A⊗ µ), (5.39)

(µ⊗ A) ◦ T̃2 ◦ (A⊗ T ) = T ◦ (µ⊗ A), (5.40)

T̃1 ◦ (T ⊗ A) ◦ (A⊗ T ) = T̃2 ◦ (A⊗ T ) ◦ (T ⊗ A). (5.41)

Then (A, µ ◦ T, u) is also an algebra in C, denoted by AT . The morphism T is
called a pseudotwistor and the two morphisms T̃1, T̃2 are called the companions
of T .

PROOF Obviously u is a unit for (A, µ ◦T ), so we only check the associativity of
µ ◦ T :

(µ ◦ T ) ◦ ((µ ◦ T )⊗ A) = (µ ◦ T ) ◦ (µ⊗ A) ◦ (T ⊗ A)
(5.40)
=

(5.40)
= µ ◦ (µ⊗ A) ◦ T̃2 ◦ (A⊗ T ) ◦ (T ⊗ A)

(5.41)
=

(5.41)
= µ ◦ (µ⊗ A) ◦ T̃1 ◦ (T ⊗ A) ◦ (A⊗ T ) =

= µ ◦ (A⊗ µ) ◦ T̃1 ◦ (T ⊗ A) ◦ (A⊗ T )
(5.39)
=

(5.39)
= µ ◦ T ◦ (A⊗ µ) ◦ (A⊗ T ) =

= (µ ◦ T ) ◦ (A⊗ (µ ◦ T )),

finishing the proof. ¤
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Remark. Obviously, an ordinary twistor T is a pseudotwistor with companions
T̃1 = T̃2 = T13. Also, if T : A ⊗ A → A ⊗ A is a bijective R-matrix, one can
easily check that T is a pseudotwistor, with companions T̃1 = T12 ◦T13 ◦T−1

12 and
T̃2 = T23 ◦ T13 ◦ T−1

23 .

A pseudotwistor may be thought of as some sort of analogue of a (Hopf) 2-
cocycle, as suggested by the following examples (for which C is the usual category
of vector spaces):

Example 5.4.2. Let H be a bialgebra and F = F 1 ⊗ F 2 = f 1 ⊗ f 2 ∈ H ⊗ H a
Drinfeld twist, i.e. an invertible element (with inverse denoted by F−1 = G1⊗G2)
such that

F 1f 1
1 ⊗ F 2f 1

2 ⊗ f 2 = f 1 ⊗ F 1f 2
1 ⊗ F 2f 2

2 ,

(ε⊗H)(F ) = (H ⊗ ε)(F ) = 1.

If A is a left H-module algebra, it is well-known that the new product on A given
by a ∗ b = (G1 · a)(G2 · b) is associative. This product is afforded by the map

T : A⊗ A −→ A⊗ A

a⊗ b 7−→ G1 · a⊗G2 · b,

and one may check that T is a pseudotwistor with companions T̃1, T̃2 given by the
formulae

T̃1(a⊗ b⊗ c) = G1F 1 · a⊗G2
1F

2 · b⊗G2
2 · c,

T̃2(a⊗ b⊗ c) = G1
1 · a⊗G1

2F
1 · b⊗G2F 2 · c.

Dually, let H be a bialgebra and σ : H ⊗ H → k a normalized and convolution
invertible left 2-cocycle, i.e. σ is a map satisfying

σ(h1, h
′
1)σ(h2h

′
2, h

′′) = σ(h′1, h
′′
1)σ(h, h′2h

′′
2)

for all h, h′, h′′ ∈ H . If A is a left H-comodule algebra with comodule structure
given by the coaction a 7→ a(−1) ⊗ a(0), one may consider the new associative
product on A given by a ∗ b = σ(a(−1), b(−1))a(0)b(0). This product is afforded by
the map

T : A⊗ A −→ A⊗ A,

a⊗ b 7−→ σ(a(−1), b(−1))a(0) ⊗ b(0),
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which is a pseudotwistor with companions T̃1, T̃2 given by the formulae

T̃1(a⊗ b⊗ c) = σ−1(a(−1)1 , b(−1)1)σ(a(−1)2 , b(−1)2c(−1))a(0) ⊗ b(0) ⊗ c(0),

T̃2(a⊗ b⊗ c) = σ−1(b(−1)1 , c(−1)1)σ(a(−1)b(−1)2 , c(−1)2)a(0) ⊗ b(0) ⊗ c(0).

In particular, for A = H , we obtain that the “twisted bialgebra” σH , with multi-
plication a ∗ b = σ(a1, b1)a2b2, for all a, b ∈ H , is obtained as a deformation of H
through the pseudotwistor T (a⊗ b) = σ(a1, b1)a2 ⊗ b2 with companions defined
by

T̃1(a⊗ b⊗ c) = σ−1(a1, b1)σ(a2, b2c1)a3 ⊗ b3 ⊗ c2,

T̃2(a⊗ b⊗ c) = σ−1(b1, c1)σ(a1b2, c2)a2 ⊗ b3 ⊗ c3,

for all a, b, c ∈ H .

Lemma 5.4.3. Let C be a (strict) braided monoidal category with braiding c. Let
V be an object in C and T : V ⊗ V → V ⊗ V a morphism in C. Then

(V ⊗ cV,V ) ◦ (T ⊗ V ) ◦ (V ⊗ c−1
V,V ) = (c−1

V,V ⊗ V ) ◦ (V ⊗ T ) ◦ (cV,V ⊗ V ),

(5.42)

(V ⊗ c−1
V,V ) ◦ (T ⊗ V ) ◦ (V ⊗ cV,V ) = (cV,V ⊗ V ) ◦ (V ⊗ T ) ◦ (c−1

V,V ⊗ V ),

(5.43)

as morphisms V ⊗V ⊗V → V ⊗V ⊗V in C. These two morphisms will be denoted
by T̃1(c) and T̃2(c) and will be called the companions of T with respect to the
braiding c. If c−1

V,V = cV,V (for instance if C is symmetric), the two companions
coincide and will be simply denoted by T13(c).

PROOF The naturality of c implies (V ⊗ T ) ◦ cV⊗V,V = cV⊗V,V ◦ (T ⊗ V ). Since
c is a braiding, we have cV⊗V,V = (cV,V ⊗ V ) ◦ (V ⊗ cV,V ), hence we obtain

(V ⊗ T ) ◦ (cV,V ⊗ V ) ◦ (V ⊗ cV,V ) = (cV,V ⊗ V ) ◦ (V ⊗ cV,V ) ◦ (T ⊗ V ).

By composing to the left with c−1
V,V ⊗ V and to the right with V ⊗ c−1

V,V , we obtain
the desired equality (5.42). Similarly one can check that (5.43) holds, too.

¤

Definition 5.4.4. Let C be a (strict) braided monoidal category, (A, µ, u) an alge-
bra in C and T : A ⊗ A → A ⊗ A a morphism in C. Assume that c−1

A,A = cA,A
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(so we have the morphism T13(c) in C as above). If T is a pseudotwistor with
companions T̃1 = T̃2 = T13(c) and moreover we have

(T ⊗ A) ◦ (A⊗ T ) = (A⊗ T ) ◦ (T ⊗ A), (5.44)

we will call T a braided twistor for A in C.

Remark. Realize that the extra condition required for being a braided twistor, in
particular, implies condition (5.41) for being a pseudotwistor. Whenever T13(c) is
bijective (or, equivalently, whenever T is bijective) both conditions are equivalent,
and hence if this is the case condition (5.44) may be dropped from the definition
of a braided twistor.

Consider now C to be the category ofZ2-graded vector spaces, which is braided
(even symmetric) with braiding given by

c(v ⊗ w) = (−1)|v||w|w ⊗ v,

for v, w homogeneous elements. If (Ω, d) is a differential graded algebra, then Ω
becomes a Z2-graded algebra (i.e. an algebra in C) by putting even components
in degree zero and odd components in degree one. The map T given by (5.38)
is obviously a morphism in C, and using the above braiding one can see that the
morphism T13(c) in C is given by the formula

T13(c)(ω ⊗ ζ ⊗ η) = ω ⊗ ζ ⊗ η − (−1)|ω|+|ζ|d(ω)⊗ ζ ⊗ d(η),

for homogeneous ω, ζ , η (which is different from the ordinary T13), and one can
now check that T is a braided twistor for Ω in C, and obviously ΩT is just the
algebra Ω endowed with the Fedosov product, regarded as a Z2-graded algebra.

Theorem 5.4.5. Let (A, µ, u) be an algebra in a (strict) monoidal category C, let
T, R : A⊗ A → A⊗ A be morphisms in C, such that R is an isomorphism and a
twisting map between A and itself. Consider the morphisms

T̃1(R) := (R−1 ⊗ A) ◦ (A⊗ T ) ◦ (R⊗ A), (5.45)

T̃2(R) := (A⊗R−1) ◦ (T ⊗ A) ◦ (A⊗R). (5.46)

Define the morphism P := R ◦ T : A⊗ A → A⊗ A. Then:

(i) The relation (1.2) holds for P if, and only if, (5.39) holds for T , with T̃1(R)

in the place of T̃1.
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(ii) The relation (1.1) holds for P if, and only if, (5.40) holds for T , with T̃2(R)

in the place of T̃2.

In particular, it follows that if T is a pseudotwistor for A with companions
T̃1(R) and T̃2(R), then P is a twisting map between A and itself.

(iii) Conversely, assume that P is a twisting map and the following relations are
satisfied:

(P ⊗ A) ◦ (A⊗ P ) ◦ (P ⊗ A) = (A⊗ P ) ◦ (P ⊗ A) ◦ (A⊗ P ), (5.47)
(R⊗ A) ◦ (A⊗R) ◦ (R⊗ A) = (A⊗R) ◦ (R⊗ A) ◦ (A⊗R), (5.48)
(P ⊗ A) ◦ (A⊗ P ) ◦ (R⊗ A) = (A⊗R) ◦ (P ⊗ A) ◦ (A⊗ P ), (5.49)
(R⊗ A) ◦ (A⊗ P ) ◦ (P ⊗ A) = (A⊗ P ) ◦ (P ⊗ A) ◦ (A⊗R). (5.50)

Then T is a pseudotwistor for A with companions T̃1(R) and T̃2(R).

(iv) Assume that (iii) holds and moreover

(P ⊗ A) ◦ (A⊗R) ◦ (R⊗ A) = (A⊗R) ◦ (R⊗ A) ◦ (A⊗ P ), (5.51)
(R⊗ A) ◦ (A⊗R) ◦ (P ⊗ A) = (A⊗ P ) ◦ (R⊗ A) ◦ (A⊗R). (5.52)

Then R is also a twisting map between AT and itself.

PROOF We prove (i), the proof of (ii) being similar and left to the reader. Assume
in the first place that (1.2) holds for P . Then we can compute:

T ◦ (A⊗ µ) = R−1 ◦ P ◦ (A⊗ µ)
(1.2)
=

(1.2)
= R−1 ◦ (µ⊗ A) ◦ (A⊗ P ) ◦ (P ⊗ A) =

= R−1 ◦ (µ⊗ A) ◦ (A⊗R) ◦ (A⊗ T ) ◦ (R⊗ A) ◦ (T ⊗ A)
(1.2)
=

(1.2)
= (A⊗ µ) ◦ (R−1 ⊗ A) ◦ (A⊗ T ) ◦ (R⊗ A) ◦ (T ⊗ A) =

= (A⊗ µ) ◦ T̃1(R) ◦ (T ⊗ A),

which is precisely condition (5.39). Conversely, assuming that (5.39) holds, we
compute:

P ◦ (A⊗ µ) = R ◦ T ◦ (A⊗ µ)
(5.39)
=
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(5.39)
= R ◦ (A⊗ µ) ◦ T̃1(R) ◦ (T ⊗ A) =

= R ◦ (A⊗ µ) ◦ (R−1 ⊗ A) ◦ (A⊗ T ) ◦ (R⊗ A) ◦ (T ⊗ A)
(1.2)
=

(1.2)
= (µ⊗ A) ◦ (A⊗R) ◦ (A⊗ T ) ◦ (R⊗ A) ◦ (T ⊗ A) =
= (µ⊗ A) ◦ (A⊗ P ) ◦ (P ⊗ A),

which is (1.2) for P . Now we prove (iii). Taking into account (i) and (ii), it is
enough to check (5.41). We compute:

T̃1(R) ◦ (T ⊗ A) ◦ (A⊗ T ) =

= (R−1 ⊗ A) ◦ (A⊗ T ) ◦ (R⊗ A)◦
◦(T ⊗ A) ◦ (A⊗ T ) =

= (R−1 ⊗ A) ◦ (A⊗R−1) ◦ (A⊗ P )◦
◦(P ⊗ A) ◦ (A⊗R−1) ◦ (A⊗ P )

(5.50)
=

(5.50)
= (R−1 ⊗ A) ◦ (A⊗R−1) ◦ (R−1 ⊗ A)◦

◦(A⊗ P ) ◦ (P ⊗ A) ◦ (A⊗ P )
(5.47),(5.48)

=
(5.47),(5.48)

= (A⊗R−1) ◦ (R−1 ⊗ A) ◦ (A⊗R−1)◦
◦(P ⊗ A) ◦ (A⊗ P ) ◦ (P ⊗ A)

(5.49)
=

(5.49)
= (A⊗R−1) ◦ (R−1 ⊗ A) ◦ (P ⊗ A)◦

◦(A⊗ P ) ◦ (R−1 ⊗ A) ◦ (P ⊗ A)
= (A⊗R−1) ◦ (T ⊗ A) ◦ (A⊗R)◦

◦(A⊗ T ) ◦ (T ⊗ A) =

= T̃2(R) ◦ (A⊗ T ) ◦ (T ⊗ A).

(iv) We check (1.2) and leave (1.1) to the reader. We compute:

R ◦ (A⊗ µ ◦ T ) = R ◦ (A⊗ µ ◦R−1 ◦ P ) =

= R ◦ (A⊗ µ) ◦ (A⊗R−1) ◦ (A⊗ P )
(1.2)
=

(1.2)
= (µ⊗ A) ◦ (A⊗R) ◦ (R⊗ A) ◦ (A⊗R−1) ◦ (A⊗ P )

(5.48)
=

(5.48)
= (µ⊗ A) ◦ (R−1 ⊗ A) ◦ (A⊗R) ◦ (R⊗ A) ◦ (A⊗ P )

(5.51)
=

(5.51)
= (µ⊗ A) ◦ (R−1 ⊗ A) ◦ (P ⊗ A) ◦ (A⊗R) ◦ (R⊗ A) =
= (µ ◦R−1 ◦ P ⊗ A) ◦ (A⊗R) ◦ (R⊗ A) =
= (µ ◦ T ⊗ A) ◦ (A⊗R) ◦ (R⊗ A),

finishing the proof. ¤
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Our motivating example for Theorem 5.4.5 was provided by the theory of
braided quantum groups, a concept introduced by M. Durdevich in [Dur97] as a
generalization of the usual braided groups (also called Hopf algebras in braided
categories, in Majid’s terminology), which in turn contains as examples some
important algebras such as braided and ordinary Clifford algebras, see [Dur94].
If G = (A, µ, ∆, ε, S, σ) is a braided quantum group (so σ is a bijective twisting
map between A and itself) and n ∈ Z, Durdevich defined some operators

σn : A⊗ A → A⊗ A

and proved that the maps

µn : A⊗ A → A,

µn := µ ◦ σ−1
n ◦ σ,

give new associative algebra structures on A (with the same unit). This result may
be regarded as a consequence of Theorem 5.4.5. Indeed, for any n, the maps R :=
σn and P := σ satisfy the hypotheses of the theorem, hence the map T := R−1 ◦
P = σ−1

n ◦ σ is a pseudotwistor for A, giving rise to the associative multiplication
µn.

More generally, if A is an algebra, Durdevich introduced the concept of braid
system over A, as being a collection F of bijective twisting maps between A and
itself, satisfying the condition

(α⊗ A) ◦ (A⊗ β) ◦ (γ ⊗ A) = (A⊗ γ) ◦ (β ⊗ A) ◦ (A⊗ α).

for all α, β, γ in F . If we take α, β ∈ F and define T : A ⊗ A → A ⊗ A by
T := α−1 ◦β, by Theorem 5.4.5 we obtain that T is a pseudotwistor for A, giving
rise to a new associative multiplication on A.

We record the following two easy consequences of Theorem 5.4.5.

Corollary 5.4.6. Let C be a (strict) braided monoidal category with braiding c,
(A, µ, u) an algebra in C and T : A ⊗ A → A ⊗ A a morphism in C; assume
also that c−1

A,A = cA,A (this happens, for instance, if C is symmetric). Define the
morphism R : A⊗A → A⊗A by R := cA,A ◦ T . Then T satisfies the condition
(5.39) (respectively (5.40)) with T13(c) in place of T̃1 (respectively T̃2) if and only
if R satisfies (1.2) (respectively (1.1)). In particular, if T is a braided twistor for
A in C, then R is a twisting map between A and itself.
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Corollary 5.4.7. Let C be a (strict) braided monoidal category with braiding c and
(A, µ, u) an algebra in C. Then T := c2

A,A is a pseudotwistor for A in C (this
follows by taking R = c−1

A,A and P = cA,A in Theorem 5.4.5). In particular it
follows that (A, µ ◦ c2

A,A, u) is a new algebra in C.

This algebra (A, µ ◦ c2
A,A, u) allows us to give an interpretation of the concept

of ribbon algebra introduced by Akrami and Majid in [AM04], as an essential
ingredient for constructing braided Hochschild and cyclic cohomology. Recall
from [AM04] that a ribbon algebra in a braided monoidal category (C, c) is an
algebra (A, µ, u) in C equipped with an isomorphism σ : A → A in C such that

µ ◦ (σ ⊗ σ) ◦ c2
A,A = σ ◦ µ,

σ ◦ u = u

(such a σ is called a ribbon automorphism for A). The naturality of c implies

(σ ⊗ σ) ◦ c2
A,A = c2

A,A ◦ (σ ⊗ σ),

so the above relation may be written as

µ ◦ c2
A,A ◦ (σ ⊗ σ) = σ ◦ µ.

Hence, a ribbon automorphism for A is the same thing as an algebra isomorphism
from (A, µ, u) to the deformed algebra (A, µ ◦ c2

A,A, u).
Let D be an algebra and T a twistor for D. We intend to lift T to the algebra

ΩD of universal differential forms on D; it will turn out that the natural way of
doing this does not provide a twistor, but a braided twistor. In order to simplify
the proof, we will use a braiding notation. Namely, we denote a braided twistor
T for an algebra A in a braided monoidal category with braiding c satisfying
c−1
A,A = cA,A by

T

where we will omit the label T whenever there is no risk of confusion. With this
notation, the conditions for T to be a braided twistor are written as:
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A A A

c

c

A A

≡

A A A

A A

,

A A A

c

c

A A

≡

A A A

A A

,

A A A

A A A

≡
A A A

A A A

It is also worth writing the two equivalent definitions of T13(c) using this no-
tation, namely:

T13(c) ≡

A A A

c

c

A A A

≡

A A A

c

c

A A A

Let us consider now an algebra D together with a twistor T : D⊗D → D⊗D.
From Corollary 5.4.6 we know that the map R := τ ◦T is a twisting map between
D and itself. But then, using Theorem 1.3.1, we may lift the twisting map R to
a twisting map R̃ : ΩD ⊗ ΩD → ΩD ⊗ ΩD between the algebra of universal
differential forms ΩD and itself. Using again Corollary 5.4.6 in the category of
graded vector spaces (with the graded flip τgr as a braiding) we obtain that the
map T̃ : ΩD⊗ΩD → ΩD⊗ΩD defined as T̃ := τgr ◦ R̃ satisfies the conditions
(5.39) and (5.40) with T̃1 = T̃2 = T13(τgr). Moreover, it is clear that T̃ 0 ≡ T ,
since R̃ extends R and the graded flip coincides with the classical flip on degree 0
elements. Let us check that T̃ also satisfies the condition

(T̃ ⊗ ΩD) ◦ (ΩD ⊗ T̃ ) = (ΩD ⊗ T̃ ) ◦ (T̃ ⊗ ΩD), (5.53)

and hence T̃ is a braided (graded) twistor for the algebra ΩD. In order to do this,
we follow a standard procedure when dealing with differential calculi. First, as
the restriction of T̃ to Ω0D is a twistor, it satisfies the condition. Second, assume
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that the condition is satisfied for an element ω ⊗ η ⊗ θ in ΩD ⊗ ΩD ⊗ ΩD, and
let us prove that it is also satisfied for dω ⊗ η ⊗ θ, ω ⊗ dη ⊗ θ and ω ⊗ η ⊗ dθ.
First of all, realize that, for homogeneous ω, η ∈ ΩD, we have

τgr(η ⊗ dω) = (−1)|dω||η|dω ⊗ η =
= (−1)(|ω|+1)|η|dω ⊗ η =
= (ε⊗ d) ◦ τgr(η ⊗ ω),

(5.54)

where d and ε denote respectively the differential and the grading of ΩD. As a
consequence of this equality and the compatibilities of R̃ with the differential (cf.
(1.21) and (1.22)), we realize immediately that the map T̃ satisfies the following
compatibility relations with the differential:

T̃ ◦ (d⊗ ΩD) = (d⊗ ΩD) ◦ T̃ , (5.55)

T̃ ◦ (ΩD ⊗ d) = (ΩD ⊗ d) ◦ T̃ . (5.56)

Using braiding knotation we have:

ΩD ΩD ΩD

d

ΩD ΩD ΩD

(1)≡

ΩD ΩD ΩD

d

ΩD ΩD ΩD

IH≡

ΩD ΩD ΩD

d

ΩD ΩD ΩD

(1)≡

ΩD ΩD ΩD

d

ΩD ΩD ΩD

where in (1) we are using (5.55), and in the second equality we are using the
induction hypothesis, and so the condition (5.53) for T̃ behaves well under the
differential in the first factor. The proof for the condition with the differential on
the second or third factors is similar, and left to the reader.

Finally, we have to check that this condition also behaves well under products
on any of the factors. For doing this, we need slightly stronger induction hypothe-
ses. Namely, assume that we have ω1, ω2, η, θ such that the condition is satisfied
for ωi⊗η′⊗θ′, being η′, θ′ any elements in ΩD such that |η′| ≤ |η| and |θ′| ≤ |θ|,
i.e. we assume that the condition is true when we fix the ωi’s and let the η′ and
θ′ vary up to some degree bound, and let us prove that in this case the condition
holds for ω1ω2⊗ η′⊗ θ′. For this, take into account that T̃ preserves the degree of
homogeneous elements, since both R̃ and τgr do. Now, we have
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ΩD ΩD ΩD ΩD

ΩD ΩD ΩD

(1)≡

ΩD ΩD ΩD ΩD

τgr

τgr

ΩD ΩD ΩD

IH≡

ΩD ΩD ΩD ΩD

τgr

τgr

ΩD ΩD ΩD

IH≡

ΩD ΩD ΩD ΩD

τgr

τgr

ΩD ΩD ΩD

(1)≡

ΩD ΩD ΩD ΩD

ΩD ΩD ΩD

where in (1) we are using (5.39), in the equalities labeled with IH we are using
our strengthened induction hypotheses. The desired result follows. Similar proofs
exist when applying multiplication in the second or third factors. It is easy to see
that, as a consequence of the properties we have just proved, we obtain that the
map T̃ is a braided (graded) twistor on the differential graded algebra ΩD. More
concretely, we have proved the first part of the following result:

Theorem 5.4.8. Let D be an algebra and T : D ⊗D → D ⊗D a twistor for D.
Consider R := τ ◦ T , the twisting map associated to T . Let R̃ be the extension
of R to ΩD, then the map T̃ := τgr ◦ R̃ is a braided (graded) twistor for ΩD.
Moreover, the algebra (ΩD)

eT is a differential graded algebra with differential d.

PROOF The only part left to prove is that the map d is still a differential for the
deformed algebra (ΩD)

eT , but this is an easy consequence of the fact that both the
differential d and the grading ε commute with the twistor T̃ .

¤

The deformed algebra (ΩD)
eT has, as the 0-th degree component, the algebra

DT , and, whenever T is bijective, it is generated (as a graded differential algebra)
by DT , henceforth (ΩD)

eT is a differential calculus over DT . Thus, as a conse-
quence of the Universal Property for the algebra of universal differential forms, we
may conclude that (ΩD)

eT is a quotient of the graded differential algebra Ω(DT ).
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A. MONOIDAL AND BRAIDED CATEGORIES

Although we have mostly undertaken a geometrical approach to our research, and
thus our main motivations and examples come from algebras defined over the real
or complex numbers, for many situations it is convenient to indulge ourselves in
a more general context: the one of monoidal categories (also called tensor cate-
gories). Informally, a monoidal category is a category in which we are allowed to
construct tensor products of objects pretty much the same way we do for vector
spaces over a field k. This turns out to be the natural context in which we can de-
fine the notions of algebra, coalgebra, module, ideal. There are many advantages
on using this framework. In the first place, it provides a natural way for unifiying
disctinct results in different areas. Also, working categorically forces to use an
element-free notation, which often helps to get a better understanding of what is
going on, and sometimes even provides new proofs for well known results. Clas-
sical sources for terminology and definitions on monoidal categories are [JS93],
[Kas95], [Maj95] and [ML98]. A recent interesting discussion on monoidal cate-
gories and their applications can be found at [Ard06].

A monoidal category consist on a category M, endowed with a functor ⊗ :
M×M →M, a distinguished object 1 ∈ M of M (that will be calld the unit
of M) and functorial isomorphisms

aU,V,W : (U ⊗ V )⊗W −→ U ⊗ (V ⊗W ) (associativity constraints),
lU : 1⊗ U −→ U (left unit constraints),
rU : U ⊗ 1 −→ U (right unit constraints),

satisfying the following conditions:

(U ⊗ V )⊗ (W ⊗X)
aU,V,W⊗X

,,XXXXXXXXXXXX

((U ⊗ V )⊗W )⊗X

aU⊗V,W,X 22ffffffffffff

aU,V,W⊗X ((QQQQQQQ
U ⊗ (V ⊗ (W ⊗X))

(U ⊗ (V ⊗W ))⊗XaU,V⊗W,X

// U ⊗ ((V ⊗W )⊗X)
U⊗aV,W,X

66mmmmmmm

(A.1)
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known as the Pentagon Axiom, and

(V ⊗ 1)⊗W
aV,1,W //

rV ⊗W ''OOOOOOOOOOO
V ⊗ (1⊗W )

V⊗lWwwooooooooooo

V ⊗W

(A.2)

which is the so-called Triangle Axiom.
The Pentagon Axiom for ⊗ ensures associativity of the tensor product of ob-

jects (this fact is known in the literature by the name of MacLane’s Coherence
Theorem), regardless the number of terms we plug in, whilst the Triangle Axiom
takes care of compatibility with the unit object. The maps aU,V,W are also called
the associators of the monoidal category. M is said to be strict if the associators
are trivial. Since every monoidal category is equivalent to a strict one, it is not
a big restriction to assume that all the monoidal categories we shall work in are
strict.

Given a (strict) monoidal category M, an algebra in M consists on an object
A ∈M, together with morphisms

m : A⊗ A −→ A

u : 1 −→ A

obeying the associativity and unity axioms:

A⊗ A⊗ A

m⊗A
²²

A⊗m // A⊗ A

m

²²
A⊗ A m

// A

(A.3)

1⊗ A
lA //

u⊗A %%JJJJJJJJJ A A⊗ 1
rAoo

A⊗uyyttttttttt

A⊗ A

m

OO (A.4)

Whenever M is a monoidal category, the opposite category (also called the
dual category)M◦, that is, the category with some objects asM but with reversed
arrows, is also a monoidal category. By definition the algebras in the dual category
M◦ are called coalgebras in M.
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Given A an algebra in a (strict) monoidal category M, a (left) A–module is
an object M ∈ M endowed with a morphism λM : A ⊗M → M such that the
following diagrams commute:

A⊗ A⊗M

m⊗M
²²

A⊗λN // A⊗M

λM

²²
A⊗M

λM

// M

1⊗M

lM ##HH
HH

HH
HH

H
u⊗M // A⊗M

λMzzvvvvvvvvv

M

A morphism of (left) A–modules is a morphism f : M → N in M such that the
following diagram commutes

A⊗M
A⊗f //

λM

²²

A⊗N

λN

²²
M

f
// N

A braiding c for a (strict) monoidal category M consists on isomorphisms cV,W :
V ⊗W → W ⊗ V for any pair of objects V, W ∈ M. satisfying the following
relations:

cU,V⊗W = (V ⊗ cU,V ) ◦ (cU,V ⊗W ),

cU⊗V,W = (cU,W ⊗ V ) ◦ (U ⊗ cV,W ).

ifM is a monoidal category endowed with a braiding c, we say that it is a braided
category. If c is a braiding for a monoidal category M, it is straightforward to
check that c−1, consisting on isomorphisms (c−1)U,V := c−1

U,V is also a braiding for
M. Also, any braiding satisfies a compatibility condition with respect to the unit
in the monoidal category, namely c1,V = cV,1 = V .

If U , V and W are objects in a (strict) braided category M, with braiding c,
then the following condition is satisfied:

(cV,W⊗U)◦(V ⊗cU,W )◦(cU,V⊗W ) = (W⊗cU,V )◦(cU,W⊗V )◦(U⊗cV,W ). (A.5)

The former condition, known as the braid equation, or the hexagon equation,
may be regarded as a categorical version of the infamous Yang–Baxter equation,
that originally appeared in the study of Statistical Mechanics. Solutions of the
yang–Baxter equation are in close relation with the so–called R–matrices, that in
turn lead to the concept of braided bialgebras defined by Richard Borcherds. For
further details on braided categories, the Yang–Baxter equation, and R–matrices,
we refer to [Kas95] and [Maj95].
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B. THE BRAIDING KNOTATION

When dealing with spaces that involve a number of tensor products, notation often
becomes obscure and complex. In order to overcome this difficulty, especially
when dealing with iterated products, we will use a graphical braiding notation in
which tangle diagrams represent morphisms in monoidal categories. For further
details on the origins and different uses of this braiding notation, we refer to [JS93]
[PR87], [RT90], [Maj91a], [Maj94] and [Kas95]. In order to fix ideas, the reader
may safely assume that we are working on the category of k-vector spaces with
k-linear maps.

In this notation, a map f : A → B is simply represented by
A

f

B

. The compo-

sition of morphisms can be written simply by placing the boxes corresponding to
each morphism along the same string, being the topmost box the corresponding
to the map that is applied in the first place, so if we have maps f : A → B and
g : B → C, their composition g ◦ f is represented by

A

g◦f

C

≡

A

f

g

C

Several strings placed aside will represent a tensor product of objects in our cate-
gory, and a tensor product of two maps, f ⊗ g : A⊗ B → C ⊗D will be written

as
A

f

C

B

g

D

.

With this notation, some well-known properties of morphisms on tensor prod-
ucts become very intuitive. For instance, the identity

f ⊗ g = (C ⊗ g) ◦ (f ⊗B) = (f ⊗D) ◦ (A⊗ g)
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is written in braiding notation as

A

f

C

B

g

D

≡

A

f

C

B

g

D

≡

A

f

C

B

g

D

meaning that we can fiddle up and down with any pieces of diagrams as long as
they are do not share common strands.

There are several special classes of morphisms that will receive a particular
treatment. Namely, the identity will be simply written as a straight line (without

any box on it), an algebra product will be denoted by
A A

A

. With this notation, the

associativity of the algebra product can be written as:
A A A

A

≡

A A A

A

and the fact that f : A → B is an algebra morphism may be drawn as
A A

f

B

≡

A A

f f

B

We will also adopt the convention of not writing the unit object (the base field for
vector spaces) whenever it appears as a factor (representing the fact that scalars
can be pushed in or out every factor). According to this convention, the unit map
of an algebra A is represented by AÃ'!&"%#$

A

, and the compatibility of the unit with the

product and with algebra morphisms are respectively written as
A

AÃ'!&"%#$

A

≡

A

A

≡

A

AÃ'!&"%#$

A

and
AÃ'!&"%#$

f

B

≡
BÃ'!&"%#$

B

This conventions may also be applied to module morphisms. If M is a left A–

module, we will denote by
A M

M

the module action. Note that, in spite of the
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fact that the drawing is the same, there is no risk of confusing the module action
with the algebra product, since the strings are labeled. Note that, for a morphism
f : M → N of left A–modules, the module morphism property is not written the
same way as the algebra morphism property, but as

A M

f

N

≡

A M

f

N

There are many other conventions used for dealing with coalgebras, Hopf algebras
and the so, but we shall not introduce them here. Any especial or nonstandard use
of this notation in our text will be conveniently introduced.



186 B. The braiding knotation



C. UNIVERSAL DIFFERENTIAL FORMS

C.1 First Order Universal Differential Calculus

Definition C.1.1. Let A be a unital algebra, E an (A,A)–bimodule, a derivation
in A with values in E is a linear map D : A → E that satisfies the Leibniz rule:

D(ab) = (Da)b + aDb ∀ a, b ∈ A.

Note that the Leibniz rule implies that D1 = 0, so any derivation kills all the
constants. We will denote by Der(A,E) the space of all derivations in A with
values in E.

There is a simple way to define derivations with values in a given bimodule
E; namely, for any element m ∈ E we can define de derivation

m](a) := ma− am,

which is called an inner derivation. A bimodule E will be said to be a symmetric
bimodule if all the inner derivations are trivial. We will denote by Der′(A,E) the
space of inner derivations in A with values in E.

Remark. If we consider the space Der(A, A) of derivations in A with values in
A, as the composition of two derivations is usually not a derivation, it does not
have structure of algebra. However, the commutator of two derivations is always
a derivation, so this space is indeed a Lie algebra.

Though we can study the spaces of derivations for any given bimodule, we
would like to find a distinguished one in which to do it. This bimodule should be
the solution to the universal problem of finding a derivation d : A → Ω1A such
that, for every bimodule derivation D : A → E, there exists a unique bimod-
ule morphism iD such that iD ◦ d = D, that is, making the following diagram
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commutative:
Ω1A

iD

²²Â
Â
Â
Â
Â
Â
Â

A

d
==zzzzzzzz

D ""DDDDDDDD

E

If we are able to find such a bimodule and such a derivation, then we can define a
linear map

HomA(Ω1A,E) −→ Der(A,E)

φ 7−→ φ ◦ d

and the universal property above would guarantee that this mapping is a linear
isomorphism. As a consequence, such a universal derivation, provided that it
exists, is unique up to isomorphism.

Let us then consider the map

d : A −→ A⊗ A

a 7−→ 1⊗ a− a⊗ 1

it is straightforward checking that d is a derivation in A. Now consider Ω1A the
submodule of A generated by elements of the form adb. we can check that

Ω1A = Ker {µA : A⊗ A −→ A} ,

being µA the multiplication in A. Indeed, if we have
∑

j aj ⊗ bj ∈ Ker µA, then
we have that

∑
j ajbj = 0, and so we can write

∑
j

aj ⊗ bj =
∑

j

aj(1⊗ bj − bj ⊗ 1) =
∑

j

ajdbj.

The converse inclusion is immediate to check.
The space Ω1A can be endowed with left and right module structures over A

as follows:

c(adb) := cadb

(adb)c := ad(bc)− abdc
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Our construction yields what can be called a first-order differential calculus
for A. It is worth noticing that the bimodule Ω1A does not have to be symmetric,
even if A is commutative. The bimodule Ω1A is called the module of universal
1–forms over A. If we have another derivation D : A → E, it is easy to check
that the map iD : Ω1A → E given by iD(

∑
j a ⊗ b) :=

∑
j ajDbj is a bimodule

homomorphism, and it satisfies the equality iD ◦ d = D.

C.2 Kähler Differentials

The construction of the module of universal 1–forms looks more complicated in
the commutative case than in the general one, since there it makes sense not to
distinguish between adb and (db)a. So, in the commutative case we are facing
another problem, namely, to find a derivation d : A → Ω1

abA such that given
any derivation D : A → E in A with values in a module E (note that in the
commutative case we do not have to bother about bimodules) there exists a unique
module morphism ψD : Ω1

abA → E such that ψD ◦ d = D. In this case, and
since for a commutative algebra A the space Der(A,E) has a natural A–module
structure, the isomorphism HomA(Ω1

abA,E) → Der(A,E) will be a module map.
As any module on an abelian algebra is trivially a symmetric bimodule, it

stands to reason that Ω1
abA will be a quotient of Ω1A. Indeed, we have that Ω1

abA =
Ω1A/(Ω1A)2, where (Ω1A)2 is taken as a product in the algebra A ⊗ A. The
differential is defined to be

da := (1⊗ a− a⊗ 1) mod (Ω1A)2

The elements in Ω1
abA are usually called the Kähler differentials. An equiva-

lent description of the Kähler differentials module can be given as

Ω1
abA = Ω1A

/{∑
j

(aj dbj − dbj aj) : aj, bj ∈ A

}
.

This last presentation makes also sense for noncommutative algebras, but it
does no longer equals to Ω1

abA = Ω1A/(Ω1A)2.

C.3 The differential graded algebra of universal forms

Definition C.3.1. A differential graded algebra (R, δ) is an associative (graded)
algebra R =

⊕
i≥0 Ri such that RiRj ⊆ Ri+j , together with a differential δ :

R → R of degree 1 (i.e. δ(Ri) ⊆ Ri+1) satisfying the following conditions:
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• δ2 = 0,

• δ(ωη) = (−1)deg ωωδη for homogeneous ω.

Our aim is to build, for a given algebra A, a graded differential algebra Ω•A =⊕
ΩnA such that Ω0A = A, Ω1A is the module of universal 1–forms formerly de-

fined, and endowed with a differential d that extends the derivation d : A → Ω1A.
Moreover, if (R, d) is another differential graded algebra, any algebra morphism
from A to R0 should lift in a unique way to an algebra morphism ψ : Ω•A → R of
degree 0 and intertwinning the differentials d and δ, that is, making the diagrams

ΩnA
ψn //

d
²²

Rn

δ
²²

Ωn+1A
ψn+1 // Rn+1

commutative for all n ∈ N. Also, the algebra product in A together with the
differential d should determine the product in Ω•A.

Let’s consider A := A/k the quotient of the algebra A by its base field k,
and write a for the image of a ∈ A in A. Note that A ⊗ A ∼= Ω1A under the
identification a0 ⊗ a1 7→ a0da1 (which is well defined, as d1 = 0). If we get
c ∈ A, then c(a0 ⊗ a1) 7→ ca0da1, whilst

(a0 ⊗ a1)c = a0 ⊗ a1c− a0a1 ⊗ c 7→ a0d(a1c)− a0a1dc = a0(da1)c,

so the above correspondence is indeed a bimodule isomorphism. Note also the
decomposition of A–bimodules given by A⊗ A = Ω1A⊕ (A⊗ 1).

Let’s then put Ω2A := Ω1A⊗A Ω1A ∼= (A⊗ A)⊗A (A⊗ A) ∼= A⊗ A⊗ A,
and, for the general case,

ΩnA := Ω1A⊗A

(n)· · · ⊗A Ω1A ∼= A⊗ A
⊗n

.

The differential d is given by the shift

a0 ⊗ a1 · · · ⊗ an 7−→ 1⊗ a0 ⊗ a1 · · · ⊗ an,

for which, as d1 = 0, we immediately get that d2 = 0. We shall henceforth adopt
the identification a0 ⊗ a1 · · · ⊗ an = a0da1 · · · dan. By consecutive applications
of the Leibniz’s rule, we can easily define an A–bimodule structure on Ω•A:

b(a0da1 · · · dan) := ba0da1 · · · dan,
(a0da1 · · · dan)b := (−1)na0a1da2 · · · dandb+

+
∑n−1

i=0 (−1)n−ia0da1 · · · d(aiai+1) · · · dandb+
+a0da1 · · · d(anb)
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Lastly, we can inductively define:

(a0da1 · · · dan)(b0db1 · · · dbm) := ((a0da1 · · · dan)b0)db1 · · · dbm

and with this product Ω•A becomes a graded differential algebra that satisfies the
universal property stated above. We will call this algebra the universal differential
graded algebra over A. Some useful formulas involving the elements of this
algebra are:

d(a0da1 · · · dan) = da0da1 · · · dan,

a0[d, a1] · · · [d, an] = a0da1 · · · dan
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D. THE NONCOMMUTATIVE PLANES OF CONNES AND
DUBOIS–VIOLETTE

The original definition of noncommutative 4–planes (and 3–spheres) arises in
[CDV02], following some ideas of [CL01], from some K–theoretic equations,
inspired by the properties of the Bott projector on the cohomology of classical
spheres. We do not need this interpretation here, so we adopt directly the equiva-
lent definition given by means of generators and relations. Any reader interested
in full details on the construction, properties and classification of noncommutative
planes and spheres should look at [CDV02], [CDV03], [CDV]. Our study will be
centered on the noncommutative planes associated to critical points of the scaling
foliation, following the lines of [CDV02], as the definition of the noncommutative
plane in these points is easily generalized to higher dimensional frameworks.

Let us then consider θ ∈ Mn(R) an antisymmetric matrix, θ = (θµν), θνµ =
−θµν , and let Calg(R2n

θ ) be the associative algebra generated by 2n elements
{zµ, z̄µ}µ=1,...,n with relations

zµzν = λµνzνzµ

z̄µz̄ν = λµν z̄ν z̄µ

z̄µzν = λνµzν z̄µ



 ∀µ, ν = 1, . . . , n, being λµν := eiθµν . (D.1)

Note that λνµ = (λµν)−1 = λµν for µ 6= ν, and λµµ = 1 by antisymmetry.
We can now endow the algebra Calg(R2n

θ ) with the unique involution of C–
algebras x 7→ x∗ such that (zµ)∗ = z̄µ. This involution gives a structure of ∗–
algebra on Calg(R2n

θ ). As a ∗–algebra, Calg(R2n
θ ) is a deformation of the commu-

tative algebra Calg(R2n) of complex polynomial functions on R2n, and it reduces
to it when we take θ = 0. The algebra Calg(R2n

θ ) will be then referred to as the (al-
gebra of complex polynomial functions on the) noncommutative 2n–plane R2n

θ .
In fact, former relations define a deformationCn

θ ofCn, so we can identify the non-
commutative complex n–plane Cn

θ with R2n
θ by writing Calg(Cn

θ ) := Calg(R2n
θ ).

We define Ωalg(R2n
θ ), the algebra of algebraic differential forms on the non-
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commutative plane R2n
θ , to be the complex unital associative graded algebra

Ωalg(R2n
θ ) :=

⊕

p∈N
Ωp

alg(R
2n
θ )

generated by 2n elements zµ, z̄µ of degree 0, with relations:

zµzν = λµνzνzµ

z̄µz̄ν = λµν z̄ν z̄µ

z̄µzν = λνµzν z̄µ



 ∀µ, ν = 1, . . . , n, being λµν := eiθµν ,

and by 2n elements dzµ, dz̄µ of degree 1, with relations:

dzµdzν + λµνdzνdzµ = 0,
dz̄µdz̄ν + λµνdz̄νdz̄µ = 0,
dz̄µdzν + λνµdzνdz̄µ = 0,

zµdzν = λµνdzνzµ,
z̄µdz̄ν = λµνdz̄ν z̄µ,
z̄µdzν = λνµdzν z̄µ,
zµdz̄ν = λνµdz̄νzµ,




∀ µ, ν = 1, . . . , n.

(D.2)
In this setting, there exists a unique differential d of Ωalg(R2n

θ ) (that is, an
antiderivation of degree 1 such that d2 = 0) which extends the mapping zµ 7→ dzµ,
z̄µ 7→ dz̄µ. Indeed, such a differential is obtained by extending the definition on
the generators according to the Leibniz rule. With this differential, Ωalg(R2n

θ )
becomes a graded differential algebra. It is also possible to extend the mapping
zµ 7→ z̄µ, dzµ 7→ dz̄µ =: (dzµ) to the whole algebra Ωalg(R2n

θ ) as an antilinear
involution ω 7→ ω such that ωω′ = (−1)pqω′ω for any ω ∈ Ωp

alg(R2n
θ ), ω′ ∈

Ωq
alg(R2n

θ ). For this extension we have that dω = dω.
Our interest in these algebras arises from the fact that the noncommutative

4–plane can easily be realized as a twisted tensor product of two commutative al-
gebras (namely as a twisted product of two copies of C[x, x̄], which is nothing but
the algebra of polynomial functions on the complex plane), hence looking like the
algebra representing a sort of noncommutative cartesian product of two commu-
tative spaces. Our original interest in iterated twisted tensor products came when
we asked ourselves about the possibility of looking at the 2n–noncommutative
plane as a certain product of commutative algebras.
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