Further linear algebra. Chapter II.
Polynomials.

Andrei Yafaev

1 Definitions.

In this chapter we consider a field \(k \). Recall that examples of fields include \(\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F}_p \), where \(p \) is prime.

A polynomial is an expression of the form

\[
f(x) = a_0 + a_1x + \cdots + a_dx^d = \sum a_nx^n, \quad a_0, \ldots, a_d \in k
\]

The elements \(a_i \)'s are called \textit{coefficients} of \(f \). If all \(a_i \)'s are zero, then \(f \) is called a \textit{zero} polynomial (notation: \(f = 0 \)).

If \(f \neq 0 \), then the \textit{degree} of \(f \) (notation \(\deg(f) \)) is by definition the largest integer \(n \geq 0 \) such that \(a_n \neq 0 \).

If \(f = 0 \), then, by convention, \(\deg(f) = -\infty \).

Addition and multiplication are defined as one expects: if \(f(x) = \sum a_nx^n \) and \(g(x) = \sum b_nx^n \) then we define

\[
(f + g)(x) = \sum (a_n + b_n)x^n,
\]

\[
(fg)(x) = \sum c_nx^n,
\]

where

\[
c_n = \sum_{i=0}^{n} a_ib_{n-i}.
\]

Notice that we always have:

\[
\deg(f \times g) = \deg(f) + \deg(g).
\]
we are using the convention that $-\infty + n = -\infty$). Notice also that

$$\deg(f + g) \leq \max\{\deg(f), \deg(g)\}$$

If $f = \sum a_n X^n \neq 0$ has degree d, the the coefficient a_d is called the leading coefficient of f. If f has leading coefficient 1 then f is called monic.

Two polynomials are equal if all their coefficients are equal.

Example 1.1 $f(x) = x^3 + x + 2$ has degree 3, and is monic.

The set of all polynomials with coefficients in k is denoted by $k[x]$.

The polynomials of the form $f(x) = a_0$ are called constant and a constant polynomial of the form $f(x) = a_0 \neq 0$ is called a unit in $k[x]$. In other words, units are precisely non-zero constant polynomials. Another way to put it: units are precisely polynomials of degree zero. Units are analogous to $\pm 1 \in \mathbb{Z}$. Notice that a unit is monic if it is just 1.

Given $f, g \in k[x]$, we say that g divides f is there exists a polynomial $h \in k[x]$ such that

$$f = gh$$

Clearly, a unit divides any polynomial. Also for any polynomial f, f divides f.

A non-zero polynomial is called irreducible is it is not a unit and whenever $f = gh$ with $g, h \in k[x]$, either g or h must be a unit. In other words, the only polynomials that divide f are units and f itself. Irreducible polynomials are analogues of prime numbers from Chapter I.

If f divides g i.e. $f = gh$, then

$$\deg(f) = \deg(g) + \deg(h) \leq \deg(g)$$

We prove the following:

Proposition 1.2 Let $f \in k[x]$. If $\deg(f) = 1$ then f is irreducible.

Proof. Suppose $f = gh$. Then $\deg(g) + \deg(h) = 1$. Therefore the degrees of g and h are 0 and 1, so one of them is a unit. \(\square\)

The property of being irreducible depends on the field k!

For example, the polynomial $f(x) = x$ is irreducible no matter what k is. If $k = \mathbb{R}$, then $f(x) = x^2 + 1$ is irreducible. However, if $k = \mathbb{C}$, then $x^2 + 1 = (x + i)(x - i)$ is reducible.
Similarly $x^2 - 2$ factorises in $\mathbb{R}[X]$ as $(x + \sqrt{2})(x - \sqrt{2})$, but is irreducible in $\mathbb{Q}[X]$ (since $\sqrt{2}$ is irrational).

We have the following theorem:

Theorem 1.3 (Fundamental Theorem of Algebra) Let $f \in \mathbb{C}[x]$ be a non-zero polynomial. Then f factorises as a product of linear factors (i.e. polynomials of degree one):

$$f(X) = c(x - \lambda_1) \cdots (x - \lambda_d)$$

where c is the leading coefficient of f.

The proof of this uses complex analysis and is omitted here.

The theorem means the in $\mathbb{C}[x]$ the irreducible polynomials are exactly the polynomials of degree 1, with no exceptions. In $\mathbb{R}[x]$ the description of the irreducible polynomials is a little more complicated (we’ll do it later). In $\mathbb{Q}[x]$ things are much more complicated and it can take some time to determine whether a polynomial is irreducible or not.

2 Euclid’s algorithm in $k[x]$.

The rings \mathbb{Z} and $k[x]$ are very similar. This is because in both rings we are able to divide with remainder in such a way that the remainder is smaller than the element we divided by. In \mathbb{Z} if we divide a by b we find:

$$a = qb + r, \quad 0 \leq r < b.$$

In $k[x]$, we have something identical:

Theorem 2.1 Euclidean division Given $f, g \in k[X]$ with $g \neq 0$ and $\deg(f) \geq \deg(g)$ there exist unique $q, r \in k[x]$ such that

$$f = qg + r \quad \text{and} \quad \deg(r) < \deg(b).$$

Proof. The proof is **IDENTICAL** to the one for integers.

Existence:
Choose q so that $\deg(f - qg)$ is minimal. Write

$$(f - qg)(x) = c_kx^k + \cdots + c_0,$$
$c_k \neq 0$.
If g has degree $m \leq k$ say
\[g(x) = b_mx^m + \cdots + b_0, \]
where $b_m \neq 0$. Let us subtract $c_kb_m^{-1}x^{k-m}g$ from $(f - qg)$ to give
\[q' = q + c_kb_m^{-1}x^{k-m}. \]
Then
\[f - q'g = f - qg - c_kb_m^{-1}x^{k-m}g = c_kx^k - c_kx^k + \text{terms of order at most } k - 1. \]
This contradicts the minimality of $\deg(f - qg)$. Hence we can choose q such that
$\deg(f - qg) < \deg(g)$ and then set $r = f - qg$.

Uniqueness:
Suppose we have $f = q_1g + r_1 = q_2g + r_2$. Then
\[g(q_1 - q_2) = r_2 - r_1. \]
So if $q_1 \neq q_2$ then $\deg(q_1 - q_2) \geq 0$ so $\deg(g(q_1 - q_2)) \geq \deg(g)$. But then
\[\deg(r_2 - r_1) \leq \max\{\deg(r_2), \deg(r_1)\} < \deg(g) \leq \deg(g(q_1 - q_2)) = \deg(r_2 - r_1), \]
a contradiction. So $q_1 = q_2$ and $r_1 = r_2$. \hfill \Box

The procedure for finding q and r is the following. Write:
\[f = a_0 + a_1x + \cdots + a_mx^m \]
where $a_m \neq 0$ and
\[g = b_0 + b_1x + \cdots + b_nx^n \]
with $b_n \neq 0$ and $m \geq n$.

We calculate
\[r_1 = f - \frac{a_m}{b_n}x^{m-n}g \]
if $\deg(r_1) < \deg(g)$ then we are done; if not, we continue until we found $\deg(r_i) < \deg(g)$.

For example: in $\mathbb{Q}[x]$:
\[f(x) = x^3 + x^2 - 3x - 3, \quad g(x) = x^2 + 3x + 2 \]
Then
\[f - xg = -2x^2 - 5x - 3 \]
\[(f - xg) + 2g = x + 1 \]

Hence
\[f = (x - 2)g + x + 1 \]

hence \(q = x - 2, r = x + 1 \).

Another example: still in \(\mathbb{Q}[x] \)
\[f(x) = 3x^4 + 2x^3 + x^2 - 4x + 1, \quad g(x) = x^2 + x + 1 \]

Then
\[f - 3x^2g = -x^3 - 2x^2 - 4x + 1 \]
\[(f - 3x^2g) + xg = -x^2 - 3x + 1 \]
\[(f - 3x^2g) + xg + g = -2x + 2 \]

Hence
\[f = (3x^2 - x - 1)g + (-2x + 2) \]

hence \(q = 3x^2 - x - 1, r = -2x + 2 \).

We now define the greatest common divisor of two polynomials:

Definition 2.1 Let \(f \) and \(g \) be two polynomials in \(k[x] \) with one of them non-zero. The greatest common divisor of \(f \) and \(g \) is the unique monic polynomial \(d = \gcd(f, g) \) with the following properties:

1. \(d \) divides \(f \) and \(g \)
2. \(c \) divides \(f \) and \(g \) implies \(c \) divides \(d \)

Why is it unique? Suppose we had two \(\gcd \)'s \(d_1 \) and \(d_2 \), then \(d_1 \) divides \(d_2 \) i.e. \(d_1 = hd_2 \). Similarly \(d_2 \) divides \(d_1 \): \(d_2 = kd_1 \). It follows that
\[\deg(h) + \deg(k) = 0 \]

therefore \(h, k \in k \setminus \{0\} \). As polynomials \(d_1 \) and \(d_2 \) are monic, we have \(h = k = 1 \) hence \(d_1 = d_2 \).

The greatest common divisor of \(f \) and \(g \) is also the unique monic polynomial \(d \) such that:
1. d divides f and g

2. if c divides f and g, then $\deg(c) \leq \deg(d)$

Let us see that this definition is equivalent to the previous one. Let $d_1 = \gcd(f, g)$ and d_2 the monic polynomial satisfying

1. d_2 divides f and g

2. if c divides f and g, then $\deg(c) \leq \deg(d_2)$

We need to show that $d_1 = d_2$.

As $d_1 | f$ and $d_1 | g$, we have

$$\deg(d_1) \leq \deg(d_2)$$

by definition of d_2.

Now, $d_2 | f$ and $d_2 | g$ hence $d_2 | d_1$ by definition of d_1. In particular $\deg(d_2) \leq \deg(d_1)$.

It follows that $\deg(d_2) = \deg(d_1)$ and $d_2 | d_1$.

Hence $d_1 = \alpha d_2$ with $\deg(\alpha) = 0$ i.e. α is a unit. As both d_1 and d_2 are monic, it follows that

$$d_1 = d_2$$

From Euclidean division, just like in the case of integers, we derive a Euclidean algorithm for calculating the gcd.

The Euclidean division gives $f = qg + r$, $\deg(r) < \deg(g)$; then

$$\gcd(f, g) = \deg(g, r)$$

To see this, just like in the case of integers, let $A := \gcd(f, g)$ and $B := \gcd(g, r)$. We have $f = qg + r$. As A divides f and g, A divides r. Therefore A divides g and r. As B is the greatest common divisor of g and r, $A | B$.

Similarly, B divides g and r, hence $B | f$. It follows that $B | A$.

The same argument we used to show that the gcd is unique now shows that $A = B$.

Running the algorithm backwards, we get the **Bézout’s identity**: there exist two polynomials h and k such that

$$\gcd(f, g) = hf + kg$$

Just like in the case of integers, it follows that

6
1. \(f \) and \(g \) are coprime iff there exist polynomials \(h \) and \(k \) such that
\[
hf + gk = 1
\]

2. If \(f \mid gh \) and \(f \) and \(g \) are coprime, then \(f \mid h \)

We say that \(f \) and \(g \) are coprime if \(\gcd(f, g) = 1 \) and, using Bézout’s identity, one sees that \(f \) and \(g \) are coprime if and only if there exist \((h, k)\), polynomials, such that
\[
1 = hf + kg
\]

Let’s do an example: Calculate gcd\((f, g)\) and find \(h, k \) such that \(\gcd(f, g) = h f + kg \) with \(f = x^4 + 1 \) and \(g = x^2 + x \).

We write: \(f - x^2 g = -x^3 + 1 \), then \(f - x^2 g + x g = x^2 + 1 \) and \(f - x^2 g + x g - g = 1 - x \) and we are finished.

We find:
\[
f = (x^2 - x + 1)g + 1 - x
\]

And then
\[
x^2 + x = (-x + 1)(-x - 2) + 2
\]

As 2 is invertible, we find that the gcd is one!

Now, we do it backwards:

\[
2 = g - (1 - x)(-x - 2) = \\
g + (1 - x)(x + 2) = \\
g + (x + 2)(f - (x^2 - x + 1)g) = \\
g[1 - (x + 2)(x^2 - x + 1)] + (x + 2)f = \\
g[-1 - x^3 - x^2 + x] + (x + 2)f
\]

hence \(h = (1/2)(x + 2) \) and \(k = (1/2)(-x^3 - x^2 + x - 1) \).

Now, suppose we considered the same example in \(\mathbb{F}_2[x] \). In \(\mathbb{F}_2[x] \),
\[
f = x^4 + 1 = x^4 - 1 = (x - 1)^4
\]

and
\[
g = x(x + 1) = x(x - 1)
\]

Clearly in \(\mathbb{F}_2[x] \), \(\gcd(f, g) = x - 1 \) and the Bézout’s identity is
\[
x - 1 = (x^2 - x + 1)g - f
\]
An element $a \in k$ is called a **root** of a polynomial $f \in k[x]$ if $f(a) = 0$.

We have the following consequence of the Euclidean division:

Theorem 2.2 (The Remainder Theorem) If $f \in k[x]$ and $a \in k$ then

$$f(a) = 0 \iff (x - a)|f.$$

Proof. If $(x - a)|f$ then there exists $g \in k[x]$ such that $f(x) = (x - a)g(x)$. Then $f(a) = (a - a)g(a) = 0g(a) = 0$.

Conversely by Euclidean division we have $q, r \in k[x]$ with $\deg(r) < \deg(x - a) = 1$ such that $f(x) = q(x)(x - a) + r(x)$. So $r(x) \in k$. Then

$$r(a) = f(a) - q(x)(a - a) = 0 + 0 = 0.$$

Hence $(x - a)|f$.

A consequence of this theorem is the following:

Lemma 2.3 A polynomial $f \in k[x]$ of degree 2 is reducible if and only if f has a root in k.

Proof. If f has a root a in k, then the above theorem shows that $(x - a)$ divides f and as $\deg(f) > 1$, f is reducible. Conversely, suppose that f is reducible i.e.

$$f = gh$$

where neither g nor h is a unit.

Therefore, we have $\deg(g) = \deg(h) = 1$ Dividing by the leading coefficient of g, we may assume that $g = x - a$ for some a in k, hence $f(a) = 0$, a is a root of f.

For example, $x^2 + 1$ in $\mathbb{R}[x]$ is of degree two and has no roots in \mathbb{R}, hence it is irreducible in $\mathbb{R}[x]$.

The polynomial $x^2 + 1$ is also irreducible in $\mathbb{F}_3[x]$: it suffices to check that 0, 1 and 2 are not roots in \mathbb{F}_3.

We have the following corollary of the fundamental theorem of algebra and euclidean division.

Proposition 2.4 No polynomial $f(x)$ in $\mathbb{R}[x]$ of degree > 2 is irreducible in $\mathbb{R}[x]$.

8
Proof. Let \(f \in \mathbb{R}[x] \) be a polynomial of degree > 2. By fundamental theorem \(f \) has a root in \(\mathbb{C} \), call it \(\alpha \). Then \(\overline{\alpha} \) (complex conjugate) is another root (because \(f \in \mathbb{R}[x] \)). Let

\[
p(x) = (x - \alpha)(x - \overline{\alpha}) = x^2 - (\alpha + \overline{\alpha})x + \alpha\overline{\alpha}
\]

The polynomial \(p \) is in \(\mathbb{R}[x] \) and is irreducible (if it was reducible it would have a real root).

Divide \(f \) by \(p \).

\[
f(x) = p(x)q(x) + r(x)
\]

with \(\deg(r) \leq 1 \). We can write \(r = sx + r \) with \(s, r \in \mathbb{R} \). But \(f(\alpha) = p(\alpha)q(\alpha) + r(\alpha) = 0 = r(\alpha) \). As \(\alpha \) not real we must have \(r = s = 0 \). This implies that \(p \) divides \(f \) but \(\deg(p) = 2 < \deg(f) \). It follows that \(f \) is not irreducible. \(\square \)

Notice that the proof above shows that any polynomial of degree three in \(\mathbb{R}[x] \) has a root in \(\mathbb{R} \). This is not true for polynomials of degree > 3. For example \(x^4 + 1 \) is not irreducible in \(\mathbb{R}[x] \):

\[
x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)
\]

However, the polynomial \(x^4 + 1 \) has no roots in \(\mathbb{R} \). The proposition above does not hold for \(\mathbb{Q}[x] \). For example, it can be shown that \(x^4 + 1 \) is irreducible in \(\mathbb{Q}[x] \). The reason why the proof does not work is that although \(\alpha + \overline{\alpha} \) and \(\alpha\overline{\alpha} \) are in \(\mathbb{R} \), they have no reason to be in \(\mathbb{Q} \).

Lemma 2.5 Suppose \(f \) in \(k[x] \) is irreducible. Then \(f|g_1 \cdots g_r \) implies \(f = g_i \) for some \(i \).

Proof. Copy the proof for integers. \(\square \)

Theorem 2.6 (Unique Factorisation Theorem) Let \(f \in k[x] \) be monic. Then there exist \(p_1, p_2, \ldots, p_n \in k[x] \) monic irreducibles such that

\[
f = p_1p_2\cdots p_n.
\]

If \(q_1, \ldots, q_s \) are monic and irreducible and \(f = q_1 \cdots q_s \) then \(r = s \) and (after reordering) \(p_1 = q_2, \ldots, p_r = q_r \).
Proof. (Existence): We prove the existence by induction on $\deg(f)$. If f is linear then it is irreducible and the result holds. So suppose the result holds for polynomials of smaller degree. Either f is irreducible and so the result holds or $f = gh$ for g, h non-constant polynomials of smaller degree. By our inductive hypothesis g and h can be factorized into irreducibles and hence so can f.

(Uniqueness): Factorization is obviously unique for linear polynomials (or even irreducible polynomials). For the inductive step, assume all polynomials of smaller degree than f have unique factorization. Let

$$f = g_1 \cdots g_s = h_1 \cdots h_t,$$

with g_i, h_j monic irreducible.

Now g_1 is irreducible and $g_1 | h_1 \cdots h_t$. By the Lemma, there is $1 \leq j \leq t$ such $g_1 | h_j$. This implies $g_1 = h_j$ since they are both monic irreducibles. After reordering, we can assume $j = 1$, so

$$g_2 \cdots g_s = h_2 \cdots h_t,$$

is a polynomial of smaller degree than f. By the inductive hypothesis, this has unique factorization. I.e. we can reorder things so that $s = t$ and

$$g_2 = h_2, \ldots, g_s = h_t.$$

\hfill \blacksquare

The fundamental theorem of algebra tells you exactly that any monic polynomial in $\mathbb{C}[x]$ is a product of irreducibles (recall that polynomials of degree one are irreducible).

A consequence of factorisation theorem and fundamental theorem of algebra is the following: any polynomial of odd degree has a root in \mathbb{R}. Indeed, in the decomposition we can have polynomials of degree one and two. Because the degree is odd, we have a factor of degree one, hence a root.

Another example: $x^2 + 2x + 1 = (x + 1)^2$ in $k[x]$.

Look at $x^2 + 1$. This is irreducible in $\mathbb{R}[x]$ but in $\mathbb{C}[x]$ it is reducible and decomposes as $(x + i)(x - i)$ and in $\mathbb{F}_2[x]$ it is also reducible: $x^2 + 1 = (x + 1)(x - 1) = (x + 1)^2$ in $\mathbb{F}_2[x]$. In $\mathbb{F}_5[x]$ we have $2^2 = 4 = -1$ hence $x^2 + 1 = (x + 2)(x - 2)$ (check: $(x - 2)(x + 2) = x^2 - 4 = x^2 + 5$).

In fact one can show that $x^2 + 1$ is reducible in $\mathbb{F}_p[x]$ is and only if $p \equiv 1 \mod 4$.

10
In $\mathbb{F}_p[x]$, the polynomial $x^p - x$ decomposes as product of polynomials of degree one.

Suppose you want to decompose $x^4 + 1$ in $\mathbb{R}[x]$. It is not irreducible puisque degree est > 2. Also, $x^4 + 1$ does not have a root in $\mathbb{R}[x]$ but it does in $\mathbb{C}[x]$. The idea is to decompose into factors of the form $(x - a)$ in $\mathbb{C}[x]$ and then group the conjugate factors.

This is in general how you decompose a polynomial into irreducibles in $\mathbb{R}[x]$!

So here, the roots are

$$a_1 = e^{i\pi/4}, a_2 = e^{3i\pi/4}, a_3 = e^{5i\pi/4}, a_4 = e^{7i\pi/4}.$$

Now note that $a_4 = \overline{a_1}$ and the polynomial $(x - a_1)(x - a_4)$ is irreducible over \mathbb{R}. The middle coefficient is $-(a_1 + a_2) = -2 \cos(\pi/4) = -\sqrt{2}$. Hence we find : $(x - a_1)(x - a_4) = x^2 - \sqrt{2}x + 1$.

Similarly $a_2 = \overline{a_3}$ and $(x - a_2)(x - a_3) = x^2 + \sqrt{2}x + 1$.

We get the decomposition into irreducibles over \mathbb{R} :

$$x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)$$

In $\mathbb{Q}[x]$ one can show that $x^4 + 1$ is irreducible.

In $\mathbb{F}_2[x]$ we can also decompose $x^4 + 1$ into irreducibles. Indeed :

$$x^4 + 1 = x^4 - 1 = (x^2 - 1)^2 = (x - 1)^4$$