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e Let G be a (finite) graph e.g.
e Letq be a positive integer (1.4, 2, 3,...)
e A properqg-coloringof GG is an assignment of “colors”

1,2,...,qtothe vertices of;y such thatidjacenwertices
always receivelifferentcolors
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Some applications of graph coloring

Vertices Colors
Map coloring countries colors
Radio assignment  radio stations channels
Class scheduling classes time slots

Sudoku boxes of numbers
9% 9 grid 1,....9

Edges
share a border
Interfere
share a studen
same row,

same column,
same3 x 3 square
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o Let P;(q) = # properg-colorings ofG
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The chromatic polynomial

o Let P;(q) = # properg-colorings ofG
g—2 choices
- / <>\
g choices g—1 choices
g—2 choices

= for this graph/;(¢q) = q(q — 1)(¢ — 2)°

e Note that hereP;(q) is apolynomialin g
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George Birkhoff
(1884-1944)
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The chromatic polynomial

This is a general fact (which | will prove later):

Theorem (Birkhoff 1912): For every grapl-,
Pa(q) 1s the restriction to positive integers
of a polynomial in ¢ (called thechromatic
polynomialof GG).

George Birkhoff
(1884-1944)

SinceP;(q) is apolynomialin ¢, it makes sense to evaluate it at
an arbitraryrealor evencomplexnumberg — not just an integer.

(Such an evaluation has mombinatorial meaning

In particular, we can ask about the real or comp

. but who cares?

Batsof Fp.
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was to use methods of real or comphaxalysisto prove:

Conjecture . For everyplanargraph(, the valueg = 4 isnot a
root of the chromatic polynomia¥, i.e. P;(4) # 0.
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Everyplanargraph can be (properly) colored with four colors.
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The chromatic polynomial

Birkhoff’s motivation in introducing the chromatic polynuoal
was to use methods of real or comphaxalysisto prove:

Conjecture— Theorem (Appel and Haken 1976):
For everyplanargraphG, Ps(4) # 0.

That is:
Every planargraph can be (properly) colored G,
with four colors. Kenneth Appel (1932-)
Wolfgang Haken
(1928-)

Alas, the proof issombinatorial and makes no reference to the
chromatic polynomial.

But the real or complex roots df; are still of interest ...
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The Potts model

But first, ageneralization.. in which we counall colorings,
proper or not, but give themeights. ..

e LetG = (V, E) be a (finite) graph
e Letg be a positive integer

e Letv = {v.}.cg be a collection of real or complex numbers
associated to thedgesf G

e Count each coloring with eeightiW =[] W, where
e=1j€l

)
1 If ¢ Is colored differently frony
Wij = 4

1ty If 7 is colored the same gs
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The Potts model

o Note that if we take);; = —1 for all edgesj, then the
weight becomes

W 1 if the coloring is proper
0 if the coloring is improper

so this includes, as a special case, the counting of proper
colorings.
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The Potts model

o Note that if we take);; = —1 for all edgesj, then the
weight becomes

W 1 if the coloring is proper
0 if the coloring is improper

so this includes, as a special case, the counting of proper
colorings.
e Now define thdPotts-model partition function

Z5%(q,v) = Y W(o)

colorings o

e Note in particular thaZ>°"(q, —1) = P (q)
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The Potts model in statistical physics

e Potts (1952) introduced this as a model in
statistical physics:

Eachatomin acrystal latticecan be in any
one ofg states.

l
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The Potts model in statistical physics

e Potts (1952) introduced this as a model in
statistical physics:

Eachatomin acrystal latticecan be in any

Renfrey Pott
one ofq states. enfrey Poits

(1925-2005)

e ¢ =2 Ising (1925) model oferromagnetism

Ising model (number of publications)
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Fortuin—Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph
Z5°% (¢, v) is the restriction to positive integegsof a
polynomialin ¢ (andv):

Zgotts q,v Z q k(A) Hve
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Pieter Kasteleyn Cornelius Fortuin
(1924-1996)
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Fortuin—Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph
Z5°% (¢, v) is the restriction to positive integegsof a
polynomialin ¢ (andv):

ZPotts q,v Z q k(A) Hve

ACE ecA
wherek(A) is the number o€onnected componenisthe

subgraph(V, A)

Pieter Kasteleyn Cornelius Fortuin
(1924-1996)

Corollary (Birkhoff 1912): P (q) = Z:°"(q, —1) is a polynomial.
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Proof of the Fortuin—Kasteleyn representation

Proor. Write
ZEUIEED S | [ e ]
o: V—{1,2,....,q} e=ijek
1 ifa=0

whered(o;, 0,) is the Kronecker delta(a, b) = {O fab
a
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The multivariate Tutte polynomial

e This motivates studying the polynomial

Za(g,v) = > "W ] ] ve

ACFE ecA

Bill Tutte
(1917-2002)

which is called thenultivariate Tutte polynomiadf G

e |t includes the chromatic polynomial as a special case:
PG(Q) — ZG(Q) _1)

e Note thatZ;(q, v) is multiaffinein v,
l.e. of degree 1n eachv, separately.
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Complexroots of the chromatic polynomial — why?

e SincePs;(q) andZs(q, v) arepolynomialsin ¢ andv,
we can study theireal or complex roots. .
... thoughg = 2 + 37 colors has no combinatorial meaning!

e Surprisingly, thecomplexroots play an important role in
physics. .. though physical quantities are alwagsl numbers.

e This bizarre idea goes back to a 1952 paper of Yang and Le:

Chen-Ning Yang Tsung-Dao Lee
(1922-) (1926-)

and Is connected with the physicsfase transitions.
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The physics of phase transitions

e Most things in Nature vargmoothly

e But some changes aedrupt e.g. water boiling or freezing.
e These abrupt changes are caltgdhse transitions

e Mathematically, a phase transition occurs whenever some
physical quantity (e.g. density) variesnanalyticallyas a
function of some control parameter (e.g. temperature).

(“nonanalytic” = in sense of complex analysis)

—pn. 14/



The physics of phase transitions

The classic example of a phase transitiofeisomagnetism

—p. 15/~



The physics of phase transitions

The classic example of a phase transitiofeisomagnetism

Place a sample of iron in axternal magnetic field
and measure itsiagnetization\/:

—p. 15/~



The physics of phase transitions

The classic example of a phase transitiofeisomagnetism

Place a sample of iron in axternal magnetic field
and measure itsiagnetization\/:

M

—

—p. 15/~



The physics of phase transitions

The classic example of a phase transitiofeisomagnetism

Place a sample of iron in axternal magnetic field
and measure itsiagnetization\/:

M

—

7

The discontinuity ab, = 0 is aphase transition.
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The mathematics of phase transitions

How can such a phase transition occur in the Ising or Pottseinod
on a finite grapiz?

ANSWER:It can't!!

The partition functionZ(q, v) is apolynomialin ¢ andyv,
and all physical quantities will betios of polynomials.
That Is asanalyticas one can possibly get!

MORAL: Phase transitionseveroccur in a physical system
with finitely manydegrees of freedom.
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The mathematics of phase transitions

For a real(finite!) sample of iron on@actuallygets

6 B
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The mathematics of phase transitions

For a real(finite!) sample of iron on@actuallygets

6 B

—— h

-

But for all practical purposethatisa phase transition!

M
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The mathematics of phase transitions

So it makes sense to first study phase transitions in an
idealizedsystem where the discontinuity igraie discontinuity:

namely, the Ising or Potts model on &xfinite graph,
such as the square latti#e:

o—
o—
—
o—
o—
o—
o—
o—
o—

S W W W W "'
T
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The infinite-volume limit

But Z;(q, v) makes no sender aninfinite graphG (e.g.Z?).

Instead we need to considesaquencd G, } of finite graphs
converging taG (e.g. larger and larger squareszn)
— the so-callednfinite-volume limit.

It then turns out thalim Z (g, v) does not exist,

n—oo

1
but f(¢,v) = lim
n—oo |(7,,|

(Physicists callf thefree energy per unit volumg

log Za, (q,v) does.
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A fact from real analysis

How do phase transitions occur in tmdinite-volume limit?
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A fact from real analysis

How do phase transitions occur in tmdinite-volume limit?

FACT: If (f,) is apointwiseconvergent sequence i&al-analytic
functions of arealvariable, then the limiting function
need not be analytie- indeed, need not even lbentinuous.

EXAMPLE: f,(z) = tanh(nx)

f(x)
@
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...and a contrasting fact from complex analysis

BUT ... If (f,) is a pointwise convergent sequence
of complex-analytidunctions of acomplexvariable
(in a domainD C C), then under very mild conditions

the limiting functionf is analytic
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BUT ... If (f,) is a pointwise convergent sequence
of complex-analytidunctions of acomplexvariable

(in a domainD C C), then under very mild conditions
the limiting functionf is analytic

But real-analyticfunctionsf,, are restrictions otomplex-analytic
functions defined in a complex neighborhobg of the real axis.
What is going on here?

ANSWER:The domaing),, may not be uniform im.
Singularitiesmay creep in from the complex plane and
pinch the real axiasn — oc.

EXAMPLE: f,(x) = tanh(nx) haspolesatx = i; i
n
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Application to phase transitions

1

Apply the above tgf,, (¢, v) = Ten
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Za. Is apolynomial so itslogarithmis analyticexcept
where/, = 0. Atthese pointsf,, has asingularity.
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Application to phase transitions

1
Gl

Apply the above tof,, (g, v) log Zg. (q,V).

Za. Is apolynomial so itslogarithmis analyticexcept
where/, = 0. Atthese pointsf,, has asingularity.

The Yang—Lee approach to phase transitions:

e Promote one or more physical quantities (e.g. temperature)
to complexvariables.

e Investigate theomplex zero®f the partition function/, .

e Thereal limit points(asn — oo) of thosecomplexzeros
are the possible points phase transitions
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The Lee—Yang theorem for the Ising model

Therefore ... If adomai C C is free of zeroguniformly in
the volume(=,,), then the intersection @b with the real axis is
free of phase transitions.
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free of phase transitions.

Example:Lee—Yang theorem for the ferromagnetic Ising model

Consider a ferromagnetic Ising model withmplexmagnetic
field . Then thezerosof Z, (h) lie only on the imaginary axis

Conclusion:The only possible phase-transition pointis- 0.
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The Lee—Yang theorem for the Ising model

Therefore ... If adomai C C is free of zeroguniformly in
the volume(=,,), then the intersection @b with the real axis is
free of phase transitions.

Example:Lee—Yang theorem for the ferromagnetic Ising model

Consider a ferromagnetic Ising model withmplexmagnetic
field . Then thezerosof Z, (h) lie only on the imaginary axis

Conclusion:The only possible phase-transition pointis- 0.

P.S. The Lee—Yang theorem is actually a beautiful theorematab
zeros ofmultiaffine polynomialsn several complex variables.
The result quoted above is a mere corollary.
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Phase transitions, summarized ...

Evenphysicistscare aboutomplexzeros of the partition function!
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Phase transitions, summarized ...

Evenphysicistscare aboutomplexzeros of the partition function!

This motivates studying theomplex rootf the chromatic
polynomial Ps(q).

But first ... some facts about tmealroots ...
to motivate some conjectures about tlwenplexroots.
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Realroots of the chromatic polynomial

e Pu(q) # 0whenever; < 0
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(The coefficients of°;(q) = > ar¢” alternate in sign)

n

k=1
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(The coefficients of°;(q) = > ar¢” alternate in sign)
k=1

e ForplanarG, Ps;(q) > 0 whenever; > 5
(Birkhoff + Lewis 1946)
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Realroots of the chromatic polynomial

e Pu(q) # 0whenevery < 0

(The coefficients of°;(q) = > ar¢” alternate in sign)

n
k=1

e ForplanarG, Ps;(q) > 0 whenever; > 5
(Birkhoff + Lewis 1946)

e Birkhoff-Lewis conjecture:
ForplanarG, Ps;(q) > 0 whenever > 4

—p. 25/-



Complexroots of the chromatic polynomial

e RecallP;(q) # 0 whenever; < 0
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e Recall P;(q) # 0 whenever; < 0
e |s this the tip of the iceberg of laee—Yang-type theore?h
e Conjecture (Farrell 1980):FP;(q) # 0 whenevelReq < 0
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Chromatic roots of cubic graphs on16 vertices

4060graphs = 4060 x 16 = 64960 roots

Im(q)
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Chromatic roots of cubic graphs on16 vertices

4060graphs = 4060 x 16 = 64960 roots

Im(q)

g~ 0.09 + 1.857
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Chromatic roots of cubic graphs on18 vertices

41301graphs = 41301 x 18 = 743418 roots

Im(q)
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Chromatic roots of cubic graphs on18 vertices

41301graphs = 41301 x 18 = 743418 roots

Im(q)
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g~ —0.05+1.80i
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Chromatic roots of cubic graphs on20 vertices

510489graphs = 510489 x 20 = 10209780 roots

Im(q)
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Re(q)
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Chromatic roots of cubic graphs on20 vertices

510489graphs = 510489 x 20 = 10209780 roots

Im(q)
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o

g~ —0.14+1.74i

Re(q)
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Complexroots of the chromatic polynomial (2nd try)

e Recall P;(q) # 0 whenever; < 0
e |s this the tip of the iceberg of leee—Yang-type theoreh

o GCeonjecture—{Farrell 1980)P-{¢)+ B wheneveiRes—4
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Complexroots of the chromatic polynomial (2nd try)

e Recall P;(q) # 0 whenever; < 0

e |s this the tip of the iceberg of laee—Yang-type theore?h

o Conjeciure—{Farrell1980):P-{¢)~0-wheneveiReq<-H

e But maybe there isomecomplex neighborhood of the
negative real axis that is free of roots?

Im(a)

zero-free for all G?

ReQ)
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Complexroots of the chromatic polynomial [more ...]

e Recall P;(q) # 0 whenever > 5
(and maybe even > 4)
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Complexroots of the chromatic polynomial [more ...]

e Recall P;(q) # 0 whenever > 5
(and maybe even > 4)

e |sthisthe tip of the iceberg of hee—Yang-type theoreh

e Conjecture: Pg(q) # 0 wheneveReq > 4
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Chromatic roots of 6 x n triangular lattices

Zeros tri lattice Lx = 6P
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Chromatic roots of 6 x n triangular lattices

Zeros tri lattice Lx = 6P
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Complexroots of the chromatic polynomial [2nd try]

e RecallP;(q) # 0 whenever > 5 (and maybe even > 4)

e |sthisthe tip of the iceberg of aee—Yang-type theoreth
e Conjecture: [y} / Owhenever-— -~
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Complexroots of the chromatic polynomial [2nd try]

e RecallP;(q) # 0 whenever > 5 (and maybe even > 4)

e |sthisthe tip of the iceberg of aee—Yang-type theoreth

o Conjesture—P{q)+0-wheneveiReq—4

e But maybe there isomecomplex neighborhood af > 5
(or g > 4) that is free of roots?
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Complexroots of the chromatic polynomial [2nd try]

e RecallP;(q) # 0 whenever > 5 (and maybe even > 4)

e |sthisthe tip of the iceberg of aee—Yang-type theoreth

o Conjesture—P{q)+0-wheneveiReq—4

e But maybe there isomecomplex neighborhood af > 5
(or g > 4) that is free of roots?

Im(a)

zero-free for planaiG?
zero-free for allG?

Re(@)

N
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The truth about complex chromatic roots
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But not just a little wrong . ...

—pn. 34/



The truth about complex chromatic roots

But not just a little wrong . ...
These conjectures aes wrong as they can possibly be!

—pn. 34/



The truth about complex chromatic roots

But not just a little wrong . ...
These conjectures aas wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family pfanargraphs
whose chromatic roots aensan the whole complex plane
except perhaps the disg— 1| < 1.
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The truth about complex chromatic roots

But not just a little wrong . ...
These conjectures aas wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family pfanargraphs
whose chromatic roots aensan the whole complex plane
except perhaps the disg— 1| < 1.

Im(q)

Re(g)
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Generalized theta graphs

The graphs in the Theorem ageneralized theta grapless»)
consisting ofp chains in parallebetween a pair of endvertices,
each chain consisting efedges in series:
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Generalized theta graphs

The graphs in the Theorem ageneralized theta grapless»)
consisting ofp chains in parallebetween a pair of endvertices,
each chain consisting efedges in series:

e.0.03%) —
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The Intuition behind the proof

The Potts model obeyseries and parallel laws
(generalizing those daflectrical circuity:
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U1

Veff :
Parallel: O = o— With veg = v1 + V2 + V102

(%)
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The intuition behind the proof

The Potts model obeyseries and parallel laws
(generalizing those daflectrical circuity.

U1
Veft ]
Parallel: = o— With v.g = v1 + vy + V109
(%)

Hencel + veg = (1 + v1)(1 + vg), i.e. 1 + v multiplies
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The Potts model obeyseries and parallel laws
(generalizing those daflectrical circuity.

U1
Veft ]
Parallel: = o— With v.g = v1 + vy + V109
(%)

Hencel + veg = (1 + v1)(1 + vg), i.e. 1 + v multiplies

_ V1 V9 Veff : V1U2
Series: e ° e = o—o With Veff =
q + V1 1 U2
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The intuition behind the proof

The Potts model obeyseries and parallel laws
(generalizing those daflectrical circuity.

U1
Veft ]
Parallel: = o— With v.g = v1 + vy + V109
(%)

Hencel + veg = (1 + v1)(1 + vg), i.e. 1 + v multiplies

_ V1 V9 Veff : V1U2
Series: e ° e — o o With Veff =
q + V1 1 U2
Ueff U1 U2 : .
Hence——— = i.e. multiplies

q + Vet q+v q+ vy q—+v
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The Intuition behind the proof

e Consider anyq, v) satisfying <1

o q+v
(and irrational angle)
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(and irrational angle)

e Put a large number of these edges igeries.
—> g WIth small magnitudendarbitrary phase.
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The intuition behind the proof

e Consider anyq, v) satisfying <1

o q+v
(and irrational angle)

e Put a large number of these edges igeries.
—> g WIth small magnitudendarbitrary phase.

e Then put a large numberof these chains iparallel.
— u.g goinganywhere we liken the complex plane.

e |n particular, we can make.; = —¢, which gives aeroof
ZG(Q? V)' QED
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The intuition behind the proof

<1

e Consider anyq, v) satisfyin
¥q, v) satisfying PR

(and irrational angle)

e Put a large number of these edges igeries.
—> g WIth small magnitudendarbitrary phase.

e Then put a large numberof these chains iparallel.
— u.g goinganywhere we liken the complex plane.

e |n particular, we can make.; = —¢, which gives aeroof
ZG(Q? V)' QED

e For thechromatic polynomia(v = —1), | < 1 means

q-+v
g — 1| > 1. This is where the chromatic roots atense

—pn. 37/~



What next?

e Soplanaritydoes not much constrain the chromatic roots.
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What next?

e Soplanaritydoes not much constrain the chromatic roots.

e But other graph-theoretic parameters can:
(maximum degree, maxmaxflow, ...)

e What determines where the chromatic roots of a graph go
In the complex plane?

e We know very little at present.

e The study of chromatic roots is still a very young field.
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