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• A properq-coloringof G is an assignment of “colors”
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Some applications of graph coloring

Vertices Colors Edges
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Some applications of graph coloring

Vertices Colors Edges

Map coloring countries colors share a border

Radio assignment radio stations channels interfere

Class scheduling classes time slots share a student

Sudoku boxes of numbers same row,
9×9 grid 1, . . . , 9 same column,

same3×3 square
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The chromatic polynomial

• Let PG(q) = # properq-colorings ofG
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q−1 choices
6

q−2 choices

� q−2 choices

=⇒ for this graphPG(q) = q(q − 1)(q − 2)2

• Note that herePG(q) is apolynomialin q
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The chromatic polynomial

This is a general fact (which I will prove later):

Theorem (Birkhoff 1912): For every graphG,

PG(q) is the restriction to positive integersq

of a polynomial in q (called thechromatic

polynomialof G).
George Birkhoff

(1884–1944)
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This is a general fact (which I will prove later):

Theorem (Birkhoff 1912): For every graphG,

PG(q) is the restriction to positive integersq

of a polynomial in q (called thechromatic

polynomialof G).
George Birkhoff

(1884–1944)

SincePG(q) is apolynomialin q, it makes sense to evaluate it at

an arbitraryrealor evencomplexnumberq — not just an integer.

(Such an evaluation has nocombinatorial meaning, but who cares?)

In particular, we can ask about the real or complexrootsof PG.
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Birkhoff’s motivation in introducing the chromatic polynomial

was to use methods of real or complexanalysisto prove:

Conjecture(((((( Theorem (Appel and Haken 1976):

For everyplanargraphG, PG(4) 6= 0.

That is:

Everyplanargraph can be (properly) colored

with four colors. Kenneth Appel (1932– )

Wolfgang Haken

(1928– )

Alas, the proof iscombinatorial, and makes no reference to the

chromatic polynomial.

But the real or complex roots ofPG are still of interest . . .
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But first, ageneralization. . . in which we countall colorings,

proper or not, but give themweights. . .

• Let G = (V,E) be a (finite) graph

• Let q be a positive integer

• Let v = {ve}e∈E be a collection of real or complex numbers

associated to theedgesof G

• Count each coloring with aweightW =
∏

e=ij∈E

Wij where

Wij =







1 if i is colored differently fromj

1 + vij if i is colored the same asj
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The Potts model

• Note that if we takevij = −1 for all edgesij, then the

weight becomes

W =







1 if the coloring is proper

0 if the coloring is improper

so this includes, as a special case, the counting of proper

colorings.
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• Note that if we takevij = −1 for all edgesij, then the

weight becomes

W =







1 if the coloring is proper

0 if the coloring is improper

so this includes, as a special case, the counting of proper

colorings.

• Now define thePotts-model partition function

ZPotts
G (q,v) =

∑

colorings σ

W (σ)

• Note in particular thatZPotts
G (q,−1) = PG(q)
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The Potts model in statistical physics

• Potts (1952) introduced this as a model in

statistical physics:

Eachatomin acrystal latticecan be in any

one ofq states. Renfrey Potts

(1925–2005)
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Fortuin–Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graphG,

ZPotts
G (q,v) is the restriction to positive integersq of a

polynomialin q (andv):

ZPotts
G (q,v) =

∑

A⊆E

qk(A)
∏

e∈A

ve

wherek(A) is the number ofconnected componentsin the

subgraph(V,A)
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Fortuin–Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graphG,

ZPotts
G (q,v) is the restriction to positive integersq of a

polynomialin q (andv):

ZPotts
G (q,v) =

∑

A⊆E

qk(A)
∏

e∈A

ve

wherek(A) is the number ofconnected componentsin the

subgraph(V,A)

Pieter Kasteleyn

(1924–1996)

Cornelius Fortuin

Corollary (Birkhoff 1912):PG(q) = ZPotts
G (q,−1) is a polynomial.
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Proof of the Fortuin–Kasteleyn representation

PROOF. Write

ZPotts
G (q,v) =

∑

σ : V →{1,2,...,q}

∏

e=ij∈E

[

1 + veδ(σi, σj)

]

whereδ(σi, σj) is the Kronecker deltaδ(a, b) =

{

1 if a = b

0 if a 6= b
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The multivariate Tutte polynomial

• This motivates studying the polynomial

ZG(q,v) =
∑

A⊆E

qk(A)
∏

e∈A

ve

which is called themultivariate Tutte polynomialof G

Bill Tutte

(1917–2002)

• It includes the chromatic polynomial as a special case:

PG(q) = ZG(q,−1)

• Note thatZG(q,v) is multiaffinein v,

i.e. ofdegree 1in eachve separately.
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Complex roots of the chromatic polynomial — why?

• SincePG(q) andZG(q,v) arepolynomialsin q andv,

we can study theirreal or complex roots. . .

. . . thoughq = 2 + 3i colors has no combinatorial meaning!

• Surprisingly, thecomplexroots play an important role in

physics. . . though physical quantities are alwaysrealnumbers.

• This bizarre idea goes back to a 1952 paper of Yang and Lee

Chen-Ning Yang

(1922– )
Tsung-Dao Lee

(1926– )

and is connected with the physics ofphase transitions.
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The physics of phase transitions

• Most things in Nature varysmoothly.

• But some changes areabrupt, e.g. water boiling or freezing.

• These abrupt changes are calledphase transitions.

• Mathematically, a phase transition occurs whenever some

physical quantity (e.g. density) variesnonanalyticallyas a

function of some control parameter (e.g. temperature).

(“nonanalytic” = in sense of complex analysis)
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The physics of phase transitions

The classic example of a phase transition isferromagnetism.

Place a sample of iron in anexternal magnetic fieldh

and measure itsmagnetizationM :

h

M

The discontinuity ath = 0 is aphase transition.
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The mathematics of phase transitions

How can such a phase transition occur in the Ising or Potts model

on a finite graphG?

ANSWER:It can’t!!

The partition functionZG(q,v) is apolynomialin q andv,

and all physical quantities will beratios of polynomials.

That is asanalyticas one can possibly get!

MORAL: Phase transitionsneveroccur in a physical system

with finitely manydegrees of freedom.
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The mathematics of phase transitions

For a real(finite!) sample of iron oneactuallygets

10-26 gauss!!
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The mathematics of phase transitions

For a real(finite!) sample of iron oneactuallygets

10-26 gauss!!

h

M

But for all practical purposesthat is a phase transition!
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The mathematics of phase transitions

So it makes sense to first study phase transitions in an

idealizedsystem where the discontinuity is atruediscontinuity:

namely, the Ising or Potts model on aninfinite graph,

such as the square latticeZ
2:

. . . . . .

...

...

r r r r r r r r r r r

r r r r r r r r r r r

r r r r r r r r r r r

r r r r r r r r r r r

r r r r r r r r r r r

r r r r r r r r r r r
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The infinite-volume limit

But ZG(q,v) makes no sensefor aninfinite graphG (e.g.Z2).
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Instead we need to consider asequence{Gn} of finite graphs

converging toG (e.g. larger and larger squares inZ
2)

— the so-calledinfinite-volume limit.
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The infinite-volume limit

But ZG(q,v) makes no sensefor aninfinite graphG (e.g.Z2).

Instead we need to consider asequence{Gn} of finite graphs

converging toG (e.g. larger and larger squares inZ
2)

— the so-calledinfinite-volume limit.

It then turns out thatlim
n→∞

ZGn
(q,v) does not exist,

butf(q,v) = lim
n→∞

1

|Gn|
log ZGn

(q,v) does.

(Physicists callf thefree energy per unit volume.)
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. . . and a contrasting fact from complex analysis

BUT . . . If (fn) is a pointwise convergent sequence
of complex-analyticfunctions of acomplexvariable
(in a domainD ⊂ C), then under very mild conditions
the limiting functionf is analytic.
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. . . and a contrasting fact from complex analysis

BUT . . . If (fn) is a pointwise convergent sequence
of complex-analyticfunctions of acomplexvariable
(in a domainD ⊂ C), then under very mild conditions
the limiting functionf is analytic.

But real-analyticfunctionsfn are restrictions ofcomplex-analytic
functions defined in a complex neighborhoodDn of the real axis.
What is going on here?

ANSWER:The domainsDn may not be uniform inn.
Singularitiesmay creep in from the complex plane and
pinch the real axisasn → ∞.

EXAMPLE: fn(x) = tanh(nx) haspolesatx = ±
π

2n
i.
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Application to phase transitions

Apply the above tofn(q,v) =
1

|Gn|
log ZGn

(q,v).
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Application to phase transitions

Apply the above tofn(q,v) =
1

|Gn|
log ZGn

(q,v).

ZGn
is apolynomial; so itslogarithmis analyticexcept

whereZGn
= 0. At these pointsfn has asingularity.

The Yang–Lee approach to phase transitions:

• Promote one or more physical quantities (e.g. temperature)
to complexvariables.

• Investigate thecomplex zerosof the partition functionZGn
.

• Thereal limit points(asn → ∞) of thosecomplexzeros
are the possible points ofphase transitions.
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The Lee–Yang theorem for the Ising model

Therefore . . . If a domainD ⊂ C is free of zeros(uniformly in

the volumeGn), then the intersection ofD with the real axis is

free of phase transitions.
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The Lee–Yang theorem for the Ising model

Therefore . . . If a domainD ⊂ C is free of zeros(uniformly in

the volumeGn), then the intersection ofD with the real axis is

free of phase transitions.

Example:Lee–Yang theorem for the ferromagnetic Ising model.

Consider a ferromagnetic Ising model withcomplexmagnetic

field h. Then thezerosof ZGn
(h) lie only on the imaginary axis.

Conclusion:The only possible phase-transition point ish = 0.

P.S. The Lee–Yang theorem is actually a beautiful theorem about

zeros ofmultiaffine polynomialsin several complex variables.

The result quoted above is a mere corollary.
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Phase transitions, summarized . . .

Evenphysicistscare aboutcomplexzeros of the partition function!
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Phase transitions, summarized . . .

Evenphysicistscare aboutcomplexzeros of the partition function!

This motivates studying thecomplex rootsof the chromatic

polynomialPG(q).

But first . . . some facts about therealroots . . .

to motivate some conjectures about thecomplexroots.
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Real roots of the chromatic polynomial

• PG(q) 6= 0 wheneverq < 0
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Real roots of the chromatic polynomial

• PG(q) 6= 0 wheneverq < 0

(The coefficients ofPG(q) =
n
∑

k=1

akq
k alternate in sign)

• For planarG, PG(q) > 0 wheneverq ≥ 5

(Birkhoff + Lewis 1946)

• Birkhoff–Lewis conjecture:

For planarG, PG(q) > 0 wheneverq ≥ 4
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Complex roots of the chromatic polynomial

• RecallPG(q) 6= 0 wheneverq < 0
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Chromatic roots of cubic graphs on16 vertices

4060graphs=⇒ 4060 × 16 = 64960 roots

Re(q)

Im(q)

−1 1 2 30

−2

−1

1

2

– p. 27/39



Chromatic roots of cubic graphs on16 vertices

4060graphs=⇒ 4060 × 16 = 64960 roots

Re(q)

Im(q)

−1 1 2 30

−2

−1

1

2

q ≈ 0.09 + 1.85 i
��������:
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Chromatic roots of cubic graphs on18 vertices

41301graphs=⇒ 41301 × 18 = 743418 roots

Re(q)

Im(q)

−1 1 2 30
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1
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Chromatic roots of cubic graphs on18 vertices

41301graphs=⇒ 41301 × 18 = 743418 roots

Re(q)

Im(q)

−1 1 2 30

−2

−1

1

2

q ≈ −0.05 + 1.80 i

OOPS!!!!!

�������:
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Chromatic roots of cubic graphs on20 vertices

510489graphs=⇒ 510489 × 20 = 10209780 roots

Re(q)

Im(q)

−1 1 2 30

−2

−1

1

2
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Chromatic roots of cubic graphs on20 vertices

510489graphs=⇒ 510489 × 20 = 10209780 roots

Re(q)

Im(q)

−1 1 2 30

−2

−1

1

2

q ≈ −0.14 + 1.74 i
�������:
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Complex roots of the chromatic polynomial (2nd try)

• RecallPG(q) 6= 0 wheneverq < 0

• Is this the tip of the iceberg of aLee–Yang-type theorem?

• Conjecture (Farrell 1980):PG(q) 6= 0 wheneverReq < 0

H L

H L
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Complex roots of the chromatic polynomial (2nd try)

• RecallPG(q) 6= 0 wheneverq < 0

• Is this the tip of the iceberg of aLee–Yang-type theorem?

• Conjecture (Farrell 1980):PG(q) 6= 0 wheneverReq < 0

• But maybe there issomecomplex neighborhood of the

negative real axis that is free of roots?

zero-free for allG?

ReHqL

ImHqL
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Complex roots of the chromatic polynomial [more . . . ]

• RecallPG(q) 6= 0 wheneverq ≥ 5

(and maybe evenq ≥ 4)
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Chromatic roots of 6 × n triangular lattices
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Chromatic roots of 6 × n triangular lattices

Req ≈ 4.28386
�����)
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zero-free for planarG?
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The truth about complex chromatic roots

These conjectures areWRONG!!!!!
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But not just a little wrong . . .

These conjectures areas wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family ofplanargraphs
whose chromatic roots aredensein the whole complex plane
except perhaps the disc|q − 1| < 1.
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The truth about complex chromatic roots

These conjectures areWRONG!!!!!

But not just a little wrong . . .

These conjectures areas wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family ofplanargraphs
whose chromatic roots aredensein the whole complex plane
except perhaps the disc|q − 1| < 1.

zero-free for allG?

zero-free for planarG?

1 2 4 5
ReHqL

ImHqL
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Generalized theta graphs

The graphs in the Theorem aregeneralized theta graphsΘ(s,p)

consisting ofp chains in parallelbetween a pair of endvertices,

each chain consisting ofs edges in series:
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Generalized theta graphs

The graphs in the Theorem aregeneralized theta graphsΘ(s,p)

consisting ofp chains in parallelbetween a pair of endvertices,

each chain consisting ofs edges in series:

e.g.Θ(3,5) =

•

•

•

•

•

•

•

•

•

•

• •
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The intuition behind the proof

The Potts model obeysseries and parallel laws

(generalizing those ofelectrical circuits):

b b b b
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The intuition behind the proof

The Potts model obeysseries and parallel laws

(generalizing those ofelectrical circuits):

Parallel: b b

v1

v2

= b b

veff
with veff = v1 + v2 + v1v2

Hence1 + veff = (1 + v1)(1 + v2), i.e.1 + v multiplies

Series: b b b

v1 v2
= b b

veff with veff =
v1v2

q + v1 + v2

Hence
veff

q + veff
=

v1

q + v1

v2

q + v2
, i.e.

v

q + v
multiplies
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The intuition behind the proof

• Consider any(q, v) satisfying

∣

∣

∣

∣

v

q + v

∣

∣

∣

∣

< 1

(and irrational angle)

– p. 37/39



The intuition behind the proof

• Consider any(q, v) satisfying

∣

∣

∣

∣

v

q + v

∣

∣

∣

∣

< 1

(and irrational angle)

• Put a large numbers of these edges inseries.
=⇒ veff with small magnitudeandarbitrary phase.

– p. 37/39



The intuition behind the proof

• Consider any(q, v) satisfying

∣

∣

∣

∣

v

q + v

∣

∣

∣

∣

< 1

(and irrational angle)

• Put a large numbers of these edges inseries.
=⇒ veff with small magnitudeandarbitrary phase.

• Then put a large numberp of these chains inparallel.
=⇒ veff goinganywhere we likein the complex plane.

– p. 37/39



The intuition behind the proof

• Consider any(q, v) satisfying

∣

∣

∣

∣

v

q + v

∣

∣

∣

∣

< 1

(and irrational angle)

• Put a large numbers of these edges inseries.
=⇒ veff with small magnitudeandarbitrary phase.

• Then put a large numberp of these chains inparallel.
=⇒ veff goinganywhere we likein the complex plane.

• In particular, we can makeveff = −q, which gives azeroof

ZG(q,v). QED

– p. 37/39
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• Consider any(q, v) satisfying

∣

∣

∣

∣

v

q + v

∣

∣

∣

∣

< 1

(and irrational angle)

• Put a large numbers of these edges inseries.
=⇒ veff with small magnitudeandarbitrary phase.

• Then put a large numberp of these chains inparallel.
=⇒ veff goinganywhere we likein the complex plane.

• In particular, we can makeveff = −q, which gives azeroof

ZG(q,v). QED

• For thechromatic polynomial(v = −1),

∣

∣

∣

∣

v

q + v

∣

∣

∣

∣

< 1 means

|q − 1| > 1. This is where the chromatic roots aredense.
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What next?

• Soplanaritydoes not much constrain the chromatic roots.
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What next?

• Soplanaritydoes not much constrain the chromatic roots.

• But other graph-theoretic parameters can:

(maximum degree, maxmaxflow, . . . )

• What determines where the chromatic roots of a graph go

in the complex plane?

• We know very little at present.

• The study of chromatic roots is still a very young field.
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