Between combinatorics and analysis (with a little help from statistical physics)

Alan Sokal

UCL Inaugural Lecture

10 March 2010

• Let G be a (finite) graph

• Let G be a (finite) graph

• Let q be a positive integer (i.e. 1, 2, 3, ...)

• Let q be a positive integer (i.e. 1, 2, 3, ...)

A proper q-coloring of G is an assignment of "colors"
1, 2, ..., q to the vertices of G such that adjacent vertices always receive different colors

A proper q-coloring of G is an assignment of "colors"
1, 2, ..., q to the vertices of G such that adjacent vertices always receive different colors

e.g.

Vertices Colors Edges

Map coloring countries

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations		

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations	channels	

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations	channels	interfere

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations	channels	interfere
Class scheduling	classes		

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations	channels	interfere
Class scheduling	classes	time slots	

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations	channels	interfere
Class scheduling	classes	time slots	share a student

Vertices	Colors	Edges
countries	colors	share a border
radio stations	channels	interfere
classes	time slots	share a student
boxes of 9×9 grid		
	Vertices countries radio stations classes boxes of 9×9 grid	VerticesColorscountriescolorsradio stationschannelsclassestime slotsboxes of 9×9 gridy

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations	channels	interfere
Class scheduling	classes	time slots	share a student
Sudoku	boxes of 9×9 grid	numbers $1, \ldots, 9$	

	Vertices	Colors	Edges
Map coloring	countries	colors	share a border
Radio assignment	radio stations	channels	interfere
Class scheduling	classes	time slots	share a student
Sudoku	boxes of 9×9 grid	numbers $1, \ldots, 9$	same row, same column, same 3×3 square

e.g.

• Let $P_G(q) = \#$ proper q-colorings of G

 \implies for this graph $P_G(q) = q(q-1)(q-2)^2$

• Let $P_G(q) = \#$ proper q-colorings of G

 \implies for this graph $P_G(q) = q(q-1)(q-2)^2$

• Note that here $P_G(q)$ is a polynomial in q

Theorem (Birkhoff 1912): For every graph G, $P_G(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884–1944)

Theorem (Birkhoff 1912): For every graph G, $P_G(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884–1944)

Since $P_G(q)$ is a polynomial in q, it makes sense to evaluate it at an arbitrary real or even complex number q — not just an integer.

Theorem (Birkhoff 1912): For every graph G, $P_G(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884–1944)

Since $P_G(q)$ is a polynomial in q, it makes sense to evaluate it at an arbitrary real or even complex number q — not just an integer. (Such an evaluation has no *combinatorial* meaning, but who cares?)

Theorem (Birkhoff 1912): For every graph G, $P_G(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884–1944)

Since $P_G(q)$ is a polynomial in q, it makes sense to evaluate it at an arbitrary real or even complex number q — not just an integer. (Such an evaluation has no *combinatorial* meaning, but who cares?)

In particular, we can ask about the real or complex roots of P_G .

Conjecture: For every planar graph G, the value q = 4 is *not* a root of the chromatic polynomial P_G , i.e. $P_G(4) \neq 0$.

Conjecture: For every planar graph G, the value q = 4 is *not* a root of the chromatic polynomial P_G , i.e. $P_G(4) \neq 0$.

Or in simpler language:

Every planar graph can be (properly) colored with four colors.

Conjecture Theorem (Appel and Haken 1976): For every planar graph G, $P_G(4) \neq 0$.

That is:

Every planar graph can be (properly) colored with four colors.

Kenneth Appel (1932–) Wolfgang Haken (1928–)

Conjecture Theorem (Appel and Haken 1976): For every planar graph G, $P_G(4) \neq 0$.

That is:

Every planar graph can be (properly) colored with four colors.

Kenneth Appel (1932–) Wolfgang Haken (1928–)

Alas, the proof is combinatorial, and makes no reference to the chromatic polynomial.

Conjecture Theorem (Appel and Haken 1976): For every planar graph G, $P_G(4) \neq 0$.

That is:

Every planar graph can be (properly) colored with four colors.

Kenneth Appel (1932–) Wolfgang Haken (1928–)

Alas, the proof is combinatorial, and makes no reference to the chromatic polynomial.

But the real or complex roots of P_G are still of interest ...
But first, a generalization ...

• Let G = (V, E) be a (finite) graph

- Let G = (V, E) be a (finite) graph
- Let q be a positive integer

- Let G = (V, E) be a (finite) graph
- Let q be a positive integer
- Let v = {v_e}_{e∈E} be a collection of real or complex numbers associated to the edges of G

- Let G = (V, E) be a (finite) graph
- Let q be a positive integer
- Let v = {v_e}_{e∈E} be a collection of real or complex numbers associated to the edges of G
- Count each coloring with a weight $W = \prod_{e=ij\in E} W_{ij}$ where

- Let G = (V, E) be a (finite) graph
- Let q be a positive integer
- Let v = {v_e}_{e∈E} be a collection of real or complex numbers associated to the edges of G
- Count each coloring with a weight $W = \prod_{e=ij\in E} W_{ij}$ where

 $W_{ij} = \begin{cases} 1 & \text{if } i \text{ is colored differently from } j \\ 1 + v_{ij} & \text{if } i \text{ is colored the same as } j \end{cases}$

• Note that if we take $v_{ij} = -1$ for all edges ij, then the weight becomes

$$W = \begin{cases} 1 & \text{if the coloring is proper} \\ 0 & \text{if the coloring is improper} \end{cases}$$

so this includes, as a special case, the counting of proper colorings.

• Note that if we take $v_{ij} = -1$ for all edges ij, then the weight becomes

$$W = \begin{cases} 1 & \text{if the coloring is proper} \\ 0 & \text{if the coloring is improper} \end{cases}$$

so this includes, as a special case, the counting of proper colorings.

• Now define the Potts-model partition function

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{\text{colorings } \sigma} W(\sigma)$$

• Note that if we take $v_{ij} = -1$ for all edges ij, then the weight becomes

$$W = \begin{cases} 1 & \text{if the coloring is proper} \\ 0 & \text{if the coloring is improper} \end{cases}$$

so this includes, as a special case, the counting of proper colorings.

• Now define the Potts-model partition function

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{\text{colorings } \sigma} W(\sigma)$$

• Note in particular that $Z_G^{\text{Potts}}(q, -1) = P_G(q)$

• Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of *q* states.

Renfrey Potts (1925–2005)

• Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of q states.

Renfrey Potts (1925–2005)

• q = 2: Ising (1925) model of ferromagnetism

Ernst Ising (1900–1998)

• Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of q states.

Renfrey Potts (1925–2005)

• q = 2: Ising (1925) model of ferromagnetism

Ernst Ising V (1900–1998) (

Wilhelm Lenz (1888–1957)

• Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of *q* states.

Renfrey Potts (1925–2005)

• q = 2: Ising (1925) model of ferromagnetism

Ernst Ising (1900–1998)

Wilhelm Lenz (1888–1957)

Fortuin–Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph G, $Z_G^{\text{Potts}}(q, \mathbf{v})$ is the restriction to positive integers q of a polynomial in q (and \mathbf{v}):

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

where k(A) is the number of connected components in the subgraph (V, A)

Fortuin–Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph G, $Z_G^{\text{Potts}}(q, \mathbf{v})$ is the restriction to positive integers q of a polynomial in q (and \mathbf{v}):

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

where k(A) is the number of connected components in the subgraph (V, A)

Pieter Kasteleyn (1924–1996)

Cornelius Fortuin

Fortuin–Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph G, $Z_G^{\text{Potts}}(q, \mathbf{v})$ is the restriction to positive integers q of a polynomial in q (and \mathbf{v}):

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

where k(A) is the number of connected components in the subgraph (V, A)

Pieter Kasteleyn (1924–1996)

Cornelius Fortuin

Corollary (Birkhoff 1912): $P_G(q) = Z_G^{\text{Potts}}(q, -1)$ is a polynomial.

PROOF. Write

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left[1 + v_e \delta(\sigma_i, \sigma_j) \right]$$
where $\delta(\sigma_i, \sigma_j)$ is the Kronecker delta $\delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$

PROOF. Write

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left[1 + v_e \delta(\sigma_i, \sigma_j) \right]$$
where $\delta(\sigma_i, \sigma_j)$ is the Kronecker delta $\delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$

Expand out the product over $e \in E$, and let $A \subseteq E$ be the set of edges for which the term $v_e \delta(\sigma_i, \sigma_j)$ is taken.

PROOF. Write $Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left[1 + v_e \delta(\sigma_i, \sigma_j) \right]$ where $\delta(\sigma_i, \sigma_j)$ is the Kronecker delta $\delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$

Expand out the product over $e \in E$, and let $A \subseteq E$ be the set of edges for which the term $v_e \delta(\sigma_i, \sigma_j)$ is taken.

Perform the sum over colorings σ compatible with these constraints: in each component of the subgraph (V, A) the color σ_i must be constant, and there are no other constraints. Therefore,

PROOF. Write

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{\sigma: V \to \{1, 2, \dots, q\}} \prod_{e=ij \in E} \left[1 + v_e \delta(\sigma_i, \sigma_j) \right]$$
where $\delta(\sigma_i, \sigma_j)$ is the Kronecker delta $\delta(a, b) = \begin{cases} 1 & \text{if } a = b \\ 0 & \text{if } a \neq b \end{cases}$

Expand out the product over $e \in E$, and let $A \subseteq E$ be the set of edges for which the term $v_e \delta(\sigma_i, \sigma_j)$ is taken.

Perform the sum over colorings σ compatible with these constraints: in each component of the subgraph (V, A) the color σ_i must be constant, and there are no other constraints. Therefore,

$$Z_G^{\text{Potts}}(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

• This motivates studying the polynomial

$$Z_G(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

• This motivates studying the polynomial

$$Z_G(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

Bill Tutte (1917–2002)

which is called the multivariate Tutte polynomial of G

• This motivates studying the polynomial

$$Z_G(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

Bill Tutte (1917–2002)

which is called the multivariate Tutte polynomial of G

• It includes the chromatic polynomial as a special case: $P_G(q) = Z_G(q, -1)$

• This motivates studying the polynomial

$$Z_G(q, \mathbf{v}) = \sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_e$$

Bill Tutte (1917–2002)

which is called the multivariate Tutte polynomial of G

- It includes the chromatic polynomial as a special case: $P_G(q) = Z_G(q, -1)$
- Note that Z_G(q, v) is multiaffine in v,
 i.e. of degree 1 in each v_e separately.

• Since $P_G(q)$ and $Z_G(q, \mathbf{v})$ are polynomials in q and \mathbf{v} , we can study their real or complex roots ...

• Since $P_G(q)$ and $Z_G(q, \mathbf{v})$ are polynomials in q and \mathbf{v} , we can study their real or complex roots ...

... though q = 2 + 3i colors has no combinatorial meaning!

• Since $P_G(q)$ and $Z_G(q, \mathbf{v})$ are polynomials in q and \mathbf{v} , we can study their real or complex roots ...

... though q = 2 + 3i colors has no combinatorial meaning!

• Surprisingly, the complex roots play an important role in physics ...

• Since $P_G(q)$ and $Z_G(q, \mathbf{v})$ are polynomials in q and \mathbf{v} , we can study their real or complex roots ...

... though q = 2 + 3i colors has no combinatorial meaning!

• Surprisingly, the complex roots play an important role in physics ... though physical quantities are always real numbers.

- Since $P_G(q)$ and $Z_G(q, \mathbf{v})$ are polynomials in q and \mathbf{v} , we can study their real or complex roots ...
 - ... though q = 2 + 3i colors has no combinatorial meaning!
- Surprisingly, the complex roots play an important role in physics ... though physical quantities are always real numbers.
- This bizarre idea goes back to a 1952 paper of Yang and Lee

Chen-Ning Yang (1922–)

Tsung-Dao Lee (1926–)

- Since $P_G(q)$ and $Z_G(q, \mathbf{v})$ are polynomials in q and \mathbf{v} , we can study their real or complex roots ...
 - ... though q = 2 + 3i colors has no combinatorial meaning!
- Surprisingly, the complex roots play an important role in physics ... though physical quantities are always real numbers.
- This bizarre idea goes back to a 1952 paper of Yang and Lee

Chen-Ning Yang (1922–)

Tsung-Dao Lee (1926–)

and is connected with the physics of phase transitions.

• Most things in Nature vary smoothly.

- Most things in Nature vary smoothly.
- But some changes are abrupt, e.g. water boiling or freezing.

- Most things in Nature vary smoothly.
- But some changes are abrupt, e.g. water boiling or freezing.
- These abrupt changes are called phase transitions.

- Most things in Nature vary smoothly.
- But some changes are abrupt, e.g. water boiling or freezing.
- These abrupt changes are called phase transitions.
- Mathematically, a phase transition occurs whenever some physical quantity (e.g. density) varies nonanalytically as a function of some control parameter (e.g. temperature).

("nonanalytic" = in sense of complex analysis)

The classic example of a phase transition is ferromagnetism.
The physics of phase transitions

The classic example of a phase transition is ferromagnetism.

Place a sample of iron in an external magnetic field h and measure its magnetization M:

The physics of phase transitions

The classic example of a phase transition is ferromagnetism.

Place a sample of iron in an external magnetic field h and measure its magnetization M:

The physics of phase transitions

The classic example of a phase transition is ferromagnetism.

Place a sample of iron in an external magnetic field h and measure its magnetization M:

The discontinuity at h = 0 is a phase transition.

How can such a phase transition occur in the Ising or Potts model on a finite graph G?

How can such a phase transition occur in the Ising or Potts model on a finite graph G?

ANSWER: It can't!!

How can such a phase transition occur in the Ising or Potts model on a finite graph G?

ANSWER: It can't!!

The partition function $Z_G(q, \mathbf{v})$ is a polynomial in q and \mathbf{v} , and all physical quantities will be ratios of polynomials. That is as analytic as one can possibly get! How can such a phase transition occur in the Ising or Potts model on a finite graph G?

ANSWER: It can't!!

The partition function $Z_G(q, \mathbf{v})$ is a polynomial in q and \mathbf{v} , and all physical quantities will be ratios of polynomials. That is as analytic as one can possibly get!

MORAL: Phase transitions never occur in a physical system with finitely many degrees of freedom.

For a real (finite!) sample of iron one actually gets

For a real (finite!) sample of iron one actually gets

But for all practical purposes that is a phase transition!

So it makes sense to first study phase transitions in an idealized system where the discontinuity is a true discontinuity:

namely, the Ising or Potts model on an infinite graph, such as the square lattice \mathbb{Z}^2 :

The infinite-volume limit

But $Z_G(q, \mathbf{v})$ makes no sense for an infinite graph G (e.g. \mathbb{Z}^2).

But $Z_G(q, \mathbf{v})$ makes no sense for an infinite graph G (e.g. \mathbb{Z}^2).

Instead we need to consider a sequence $\{G_n\}$ of finite graphs converging to G (e.g. larger and larger squares in \mathbb{Z}^2) — the so-called infinite-volume limit. But $Z_G(q, \mathbf{v})$ makes no sense for an infinite graph G (e.g. \mathbb{Z}^2).

Instead we need to consider a sequence $\{G_n\}$ of finite graphs converging to G (e.g. larger and larger squares in \mathbb{Z}^2) — the so-called infinite-volume limit.

It then turns out that $\lim_{n \to \infty} Z_{G_n}(q, \mathbf{v})$ does not exist, but $f(q, \mathbf{v}) = \lim_{n \to \infty} \frac{1}{|G_n|} \log Z_{G_n}(q, \mathbf{v})$ does.

(Physicists call *f* the free energy per unit volume.)

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?

FACT: If (f_n) is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic — indeed, need not even be continuous.

FACT: If (f_n) is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic — indeed, need not even be continuous.

FACT: If (f_n) is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic — indeed, need not even be continuous.

FACT: If (f_n) is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic — indeed, need not even be continuous.

FACT: If (f_n) is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic — indeed, need not even be continuous.

FACT: If (f_n) is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic — indeed, need not even be continuous.

FACT: If (f_n) is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic — indeed, need not even be continuous.

BUT ... If (f_n) is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.

BUT ... If (f_n) is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.

But real-analytic functions f_n are restrictions of complex-analytic functions defined in a complex neighborhood D_n of the real axis. What is going on here?

BUT ... If (f_n) is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.

But real-analytic functions f_n are restrictions of complex-analytic functions defined in a complex neighborhood D_n of the real axis. What is going on here?

ANSWER: The domains D_n may not be uniform in n. Singularities may creep in from the complex plane and pinch the real axis as $n \to \infty$.

BUT ... If (f_n) is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.

But real-analytic functions f_n are restrictions of complex-analytic functions defined in a complex neighborhood D_n of the real axis. What is going on here?

ANSWER: The domains D_n may not be uniform in n. Singularities may creep in from the complex plane and pinch the real axis as $n \to \infty$.

EXAMPLE:
$$f_n(x) = \tanh(nx)$$
 has poles at $x = \pm \frac{\pi}{2n}i$.

Apply the above to
$$f_n(q, \mathbf{v}) = \frac{1}{|G_n|} \log Z_{G_n}(q, \mathbf{v}).$$

Apply the above to
$$f_n(q, \mathbf{v}) = \frac{1}{|G_n|} \log Z_{G_n}(q, \mathbf{v}).$$

 Z_{G_n} is a polynomial; so its logarithm is analytic except where $Z_{G_n} = 0$. At these points f_n has a singularity.

Apply the above to
$$f_n(q, \mathbf{v}) = \frac{1}{|G_n|} \log Z_{G_n}(q, \mathbf{v}).$$

 Z_{G_n} is a polynomial; so its logarithm is analytic except where $Z_{G_n} = 0$. At these points f_n has a singularity.

The Yang–Lee approach to phase transitions:

Apply the above to
$$f_n(q, \mathbf{v}) = \frac{1}{|G_n|} \log Z_{G_n}(q, \mathbf{v}).$$

 Z_{G_n} is a polynomial; so its logarithm is analytic except where $Z_{G_n} = 0$. At these points f_n has a singularity.

The Yang–Lee approach to phase transitions:

• Promote one or more physical quantities (e.g. temperature) to complex variables.

Apply the above to
$$f_n(q, \mathbf{v}) = \frac{1}{|G_n|} \log Z_{G_n}(q, \mathbf{v}).$$

 Z_{G_n} is a polynomial; so its logarithm is analytic except where $Z_{G_n} = 0$. At these points f_n has a singularity.

The Yang–Lee approach to phase transitions:

- Promote one or more physical quantities (e.g. temperature) to complex variables.
- Investigate the complex zeros of the partition function Z_{G_n} .

Apply the above to
$$f_n(q, \mathbf{v}) = \frac{1}{|G_n|} \log Z_{G_n}(q, \mathbf{v}).$$

 Z_{G_n} is a polynomial; so its logarithm is analytic except where $Z_{G_n} = 0$. At these points f_n has a singularity.

The Yang–Lee approach to phase transitions:

- Promote one or more physical quantities (e.g. temperature) to complex variables.
- Investigate the complex zeros of the partition function Z_{G_n} .
- The real limit points (as $n \to \infty$) of those complex zeros are the possible points of phase transitions.

The Lee–Yang theorem for the Ising model

Therefore ... If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_n), then the intersection of D with the real axis is free of phase transitions.

The Lee–Yang theorem for the Ising model

Therefore ... If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_n), then the intersection of D with the real axis is free of phase transitions.

Example: Lee–Yang theorem for the ferromagnetic Ising model.

Therefore ... If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_n), then the intersection of D with the real axis is free of phase transitions.

Example: Lee–Yang theorem for the ferromagnetic Ising model.

Consider a ferromagnetic Ising model with complex magnetic field h. Then the zeros of $Z_{G_n}(h)$ lie only on the imaginary axis.

Conclusion: The only possible phase-transition point is h = 0.

Therefore ... If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_n), then the intersection of D with the real axis is free of phase transitions.

Example: Lee–Yang theorem for the ferromagnetic Ising model.

Consider a ferromagnetic Ising model with complex magnetic field h. Then the zeros of $Z_{G_n}(h)$ lie only on the imaginary axis.

Conclusion: The only possible phase-transition point is h = 0.

P.S. The Lee–Yang theorem is actually a beautiful theorem about zeros of multiaffine polynomials in several complex variables. The result quoted above is a mere corollary.

Phase transitions, summarized ...

Even physicists care about complex zeros of the partition function!
Even physicists care about complex zeros of the partition function!

This motivates studying the complex roots of the chromatic polynomial $P_G(q)$.

Even physicists care about complex zeros of the partition function!

This motivates studying the complex roots of the chromatic polynomial $P_G(q)$.

But first ... some facts about the real roots ... to motivate some conjectures about the complex roots.

• $P_G(q) \neq 0$ whenever q < 0

• $P_G(q) \neq 0$ whenever q < 0(The coefficients of $P_G(q) = \sum_{k=1}^n a_k q^k$ alternate in sign)

- $P_G(q) \neq 0$ whenever q < 0(The coefficients of $P_G(q) = \sum_{k=1}^n a_k q^k$ alternate in sign)
- For planar G, $P_G(q) > 0$ whenever $q \ge 5$ (Birkhoff + Lewis 1946)

- $P_G(q) \neq 0$ whenever q < 0(The coefficients of $P_G(q) = \sum_{k=1}^n a_k q^k$ alternate in sign)
- For planar G, $P_G(q) > 0$ whenever $q \ge 5$ (Birkhoff + Lewis 1946)
- Birkhoff–Lewis conjecture:

For planar G, $P_G(q) > 0$ whenever $q \ge 4$

Complex roots of the chromatic polynomial

• Recall $P_G(q) \neq 0$ whenever q < 0

Complex roots of the chromatic polynomial

- Recall $P_G(q) \neq 0$ whenever q < 0
- Is this the tip of the iceberg of a Lee–Yang-type theorem?

Complex roots of the chromatic polynomial

- Recall $P_G(q) \neq 0$ whenever q < 0
- Is this the tip of the iceberg of a Lee–Yang-type theorem?
- Conjecture (Farrell 1980): $P_G(q) \neq 0$ whenever $\operatorname{Re} q < 0$

Chromatic roots of cubic graphs on 16 vertices

Chromatic roots of cubic graphs on 16 vertices

Chromatic roots of cubic graphs on 18 vertices

Chromatic roots of cubic graphs on 18 vertices

Chromatic roots of cubic graphs on 20 vertices

Chromatic roots of cubic graphs on 20 vertices

Complex roots of the chromatic polynomial (2nd try)

- Recall $P_G(q) \neq 0$ whenever q < 0
- Is this the tip of the iceberg of a Lee–Yang-type theorem?
- Conjecture (Farrell 1980): $P_G(q) \neq 0$ whenever Re q < 0

Complex roots of the chromatic polynomial (2nd try)

- Recall $P_G(q) \neq 0$ whenever q < 0
- Is this the tip of the iceberg of a Lee–Yang-type theorem?
- Conjecture (Farrell 1980): $P_G(q) \neq 0$ whenever Re q < 0
- But maybe there is some complex neighborhood of the negative real axis that is free of roots?

Complex roots of the chromatic polynomial [more ...]

• Recall $P_G(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)

Complex roots of the chromatic polynomial [more ...]

- Recall $P_G(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee–Yang-type theorem?

Complex roots of the chromatic polynomial [more ...]

- Recall $P_G(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee–Yang-type theorem?
- Conjecture: $P_G(q) \neq 0$ whenever $\operatorname{Re} q > 4$

Chromatic roots of $6 \times n$ **triangular lattices**

Chromatic roots of $6 \times n$ **triangular lattices**

Complex roots of the chromatic polynomial [2nd try]

- Recall $P_G(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee–Yang-type theorem?
- Conjecture: $P_G(q) \neq 0$ whenever $\operatorname{Re} q > 4$

Complex roots of the chromatic polynomial [2nd try]

- Recall $P_G(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee–Yang-type theorem?
- Conjecture: $P_G(q) \neq 0$ whenever $\operatorname{Re} q > 4$
- But maybe there is some complex neighborhood of q > 5
 (or q > 4) that is free of roots?

Complex roots of the chromatic polynomial [2nd try]

- Recall $P_G(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee–Yang-type theorem?
- Conjecture: $P_G(q) \neq 0$ whenever $\operatorname{Re} q > 4$
- But maybe there is some complex neighborhood of q > 5
 (or q > 4) that is free of roots?

The truth about complex chromatic roots

These conjectures are WRONG!!!!!

The truth about complex chromatic roots

These conjectures are WRONG!!!!! But not just a little wrong ...

The truth about complex chromatic roots

These conjectures are **WRONG**!!!!!

But not just a little wrong ...

These conjectures are as wrong as they can possibly be!

These conjectures are **WRONG**!!!!!

But not just a little wrong ...

These conjectures are as wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family of planar graphs whose chromatic roots are dense in the whole complex plane except perhaps the disc |q - 1| < 1.

These conjectures are **WRONG**!!!!!

But not just a little wrong ...

These conjectures are as wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family of planar graphs whose chromatic roots are dense in the whole complex plane except perhaps the disc |q - 1| < 1.

The graphs in the Theorem are generalized theta graphs $\Theta^{(s,p)}$ consisting of *p* chains in parallel between a pair of endvertices, each chain consisting of *s* edges in series:

The graphs in the Theorem are generalized theta graphs $\Theta^{(s,p)}$ consisting of *p* chains in parallel between a pair of endvertices, each chain consisting of *s* edges in series:

The Potts model obeys series and parallel laws (generalizing those of electrical circuits):

• Consider any (q, v) satisfying $\left| \frac{v}{q+v} \right| < 1$ (and irrational angle)

- Consider any (q, v) satisfying $\left| \frac{v}{q+v} \right| < 1$ (and irrational angle)
- Put a large number *s* of these edges in series.
 - $\implies v_{\text{eff}}$ with small magnitude and arbitrary phase.

- Consider any (q, v) satisfying $\left| \frac{v}{q+v} \right| < 1$ (and irrational angle)
- Put a large number s of these edges in series. $\implies v_{\text{eff}}$ with small magnitude and arbitrary phase.
- Then put a large number p of these chains in parallel.

 $\implies v_{\rm eff}$ going anywhere we like in the complex plane.

- Consider any (q, v) satisfying $\left| \frac{v}{q+v} \right| < 1$ (and irrational angle)
- Put a large number s of these edges in series. $\implies v_{\text{eff}}$ with small magnitude and arbitrary phase.
- Then put a large number p of these chains in parallel. $\implies v_{\text{eff}}$ going anywhere we like in the complex plane.
- In particular, we can make $v_{\text{eff}} = -q$, which gives a zero of $Z_G(q, \mathbf{v})$. QED

- Consider any (q, v) satisfying $\left| \frac{v}{q+v} \right| < 1$ (and irrational angle)
- Put a large number s of these edges in series. $\implies v_{\text{eff}}$ with small magnitude and arbitrary phase.
- Then put a large number p of these chains in parallel. $\implies v_{\text{eff}}$ going anywhere we like in the complex plane.
- In particular, we can make $v_{\text{eff}} = -q$, which gives a zero of $Z_G(q, \mathbf{v})$. QED
- For the chromatic polynomial (v = -1), $\left|\frac{v}{q+v}\right| < 1$ means |q-1| > 1. This is where the chromatic roots are dense.

• So planarity does not much constrain the chromatic roots.

- So planarity does not much constrain the chromatic roots.
- But other graph-theoretic parameters can: (maximum degree, maxmaxflow, ...)

- So planarity does not much constrain the chromatic roots.
- But other graph-theoretic parameters can: (maximum degree, maxmaxflow, ...)
- What determines where the chromatic roots of a graph go in the complex plane?

- So planarity does not much constrain the chromatic roots.
- But other graph-theoretic parameters can: (maximum degree, maxmaxflow, ...)
- What determines where the chromatic roots of a graph go in the complex plane?
- We know very little at present.
- The study of chromatic roots is still a very young field.

Thanks to my collaborators

Bill Jackson (Queen Mary) Jesper Jacobsen (ENS–Paris) Aldo Procacci (UFMG, Brazil) Gordon Royle (Univ. of Western Australia) Jesús Salas (Madrid) Alex Scott (Oxford)

