Between combinatorics and analysis

 (with a little help from statistical physics)Alan Sokal

UCL Inaugural Lecture

10 March 2010

Colorings of graphs

- Let G be a (finite) graph

Colorings of graphs

- Let G be a (finite) graph
e.g.

Colorings of graphs

- Let G be a (finite) graph
e.g.
- Let q be a positive integer (i.e. $1,2,3, \ldots$)

Colorings of graphs

- Let G be a (finite) graph
e.g.
- Let q be a positive integer (i.e. $1,2,3, \ldots$)
- A proper q-coloring of G is an assignment of "colors" $1,2, \ldots, q$ to the vertices of G such that adjacent vertices always receive different colors

Colorings of graphs

- Let G be a (finite) graph
e.g.
- Let q be a positive integer (i.e. $1,2,3, \ldots$)
- A proper q-coloring of G is an assignment of "colors" $1,2, \ldots, q$ to the vertices of G such that adjacent vertices always receive different colors

Some applications of graph coloring

Vertices
Colors
Edges

Some applications of graph coloring

Vertices
 Colors
 Edges

Map coloring countries

Some applications of graph coloring

Vertices
 Colors
 Edges

Map coloring
countries colors

Some applications of graph coloring

Vertices Colors Edges

Map coloring countries
colors
share a border

Some applications of graph coloring

Vertices Colors Edges

Map coloring countries colors share a border

Radio assignment radio stations

Some applications of graph coloring

Map coloring

Radio assignment radio stations channels

Vertices

Edges
share a border
countries colors

Some applications of graph coloring

Vertices

Map coloring

Radio assignment
radio stations countries

Colors
colors
channels interfere

Edges
share a border

Some applications of graph coloring

Vertices

Map coloring

Radio assignment
radio stations
countries
Colors
colors
channels interfere

Class scheduling classes
Edges
share a border

Some applications of graph coloring

Vertices Colors Edges

Map coloring countries colors share a border

Radio assignment radio stations channels interfere

Class scheduling classes time slots

Some applications of graph coloring

Vertices

Map coloring
countries
colors

Radio assignment radio stations channels interfere

Class scheduling classes time slots share a student

Some applications of graph coloring

Vertices

Map coloring
countries
colors

Radio assignment radio stations
channels
interfere

Class scheduling classes time slots share a student

Sudoku $\begin{gathered}\text { boxes of } \\ 9 \times 9 \text { grid }\end{gathered}$

Some applications of graph coloring

Vertices Colors Edges

Map coloring

Radio assignment

Class scheduling classes time slots share a student

Sudoku	boxes of	numbers
	9×9 grid	$1, \ldots, 9$

Some applications of graph coloring

Vertices Colors Edges

Map coloring countries
 colors
 share a border

Radio assignmen
$\begin{array}{cccc}\text { Class scheduling } & \text { classes } & \text { time slots } & \text { share a student } \\ \text { Sudoku } & \begin{array}{c}\text { boxes of } \\ 9 \times 9 \text { grid }\end{array} & \text { numbers } & \text { same row, } \\ & & & \text { same column, } \\ & & & \text { same } 3 \times 3 \text { square }\end{array}$

The chromatic polynomial

- Let $P_{G}(q)=\#$ proper q-colorings of G

The chromatic polynomial

- Let $P_{G}(q)=\#$ proper q-colorings of G
e.g.

The chromatic polynomial

- Let $P_{G}(q)=\#$ proper q-colorings of G

The chromatic polynomial

- Let $P_{G}(q)=\#$ proper q-colorings of G

The chromatic polynomial

- Let $P_{G}(q)=\#$ proper q-colorings of G

The chromatic polynomial

- Let $P_{G}(q)=\#$ proper q-colorings of G

\Longrightarrow for this graph $P_{G}(q)=q(q-1)(q-2)^{2}$

The chromatic polynomial

- Let $P_{G}(q)=\#$ proper q-colorings of G

\Longrightarrow for this graph $P_{G}(q)=q(q-1)(q-2)^{2}$
- Note that here $P_{G}(q)$ is a polynomial in q

The chromatic polynomial

This is a general fact (which I will prove later):
Theorem (Birkhoff 1912): For every graph G, $P_{G}(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884-1944)

The chromatic polynomial

This is a general fact (which I will prove later):
Theorem (Birkhoff 1912): For every graph G, $P_{G}(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884-1944)

Since $P_{G}(q)$ is a polynomial in q, it makes sense to evaluate it at an arbitrary real or even complex number q - not just an integer.

The chromatic polynomial

This is a general fact (which I will prove later):
Theorem (Birkhoff 1912): For every graph G, $P_{G}(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884-1944)

Since $P_{G}(q)$ is a polynomial in q, it makes sense to evaluate it at an arbitrary real or even complex number q - not just an integer. (Such an evaluation has no combinatorial meaning, but who cares?)

The chromatic polynomial

This is a general fact (which I will prove later):
Theorem (Birkhoff 1912): For every graph G, $P_{G}(q)$ is the restriction to positive integers q of a polynomial in q (called the chromatic polynomial of G).

George Birkhoff (1884-1944)

Since $P_{G}(q)$ is a polynomial in q, it makes sense to evaluate it at an arbitrary real or even complex number q - not just an integer. (Such an evaluation has no combinatorial meaning, but who cares?) In particular, we can ask about the real or complex roots of P_{G}.

The chromatic polynomial

Birkhoff's motivation in introducing the chromatic polynomial was to use methods of real or complex analysis to prove:

The chromatic polynomial

Birkhoff's motivation in introducing the chromatic polynomial was to use methods of real or complex analysis to prove:

Conjecture: For every planar graph G, the value $q=4$ is not a root of the chromatic polynomial P_{G}, i.e. $P_{G}(4) \neq 0$.

The chromatic polynomial

Birkhoff's motivation in introducing the chromatic polynomial was to use methods of real or complex analysis to prove:

Conjecture: For every planar graph G, the value $q=4$ is not a root of the chromatic polynomial P_{G}, i.e. $P_{G}(4) \neq 0$.

Or in simpler language:
Every planar graph can be (properly) colored with four colors.

The chromatic polynomial

Birkhoff's motivation in introducing the chromatic polynomial was to use methods of real or complex analysis to prove:

Conjeeture Theorem (Appel and Haken 1976): For every planar graph $G, P_{G}(4) \neq 0$.

That is:
Every planar graph can be (properly) colored with four colors.

Kenneth Appel (1932-)
Wolfgang Haken (1928-)

The chromatic polynomial

Birkhoff's motivation in introducing the chromatic polynomial was to use methods of real or complex analysis to prove:

Conjeeture Theorem (Appel and Haken 1976):
For every planar graph $G, P_{G}(4) \neq 0$.
That is:
Every planar graph can be (properly) colored with four colors.

Kenneth Appel (1932-)
Wolfgang Haken (1928-)

Alas, the proof is combinatorial, and makes no reference to the chromatic polynomial.

The chromatic polynomial

Birkhoff's motivation in introducing the chromatic polynomial was to use methods of real or complex analysis to prove:

Conjeeture Theorem (Appel and Haken 1976):
For every planar graph $G, P_{G}(4) \neq 0$.
That is:
Every planar graph can be (properly) colored with four colors.

Kenneth Appel (1932-)
Wolfgang Haken (1928-)

Alas, the proof is combinatorial, and makes no reference to the chromatic polynomial.

But the real or complex roots of P_{G} are still of interest \ldots

The Potts model

But first, a generalization ...

The Potts model

But first, a generalization ... in which we count all colorings, proper or not, but give them weights ...

The Potts model

But first, a generalization ... in which we count all colorings, proper or not, but give them weights ...

- Let $G=(V, E)$ be a (finite) graph

The Potts model

But first, a generalization ... in which we count all colorings, proper or not, but give them weights ...

- Let $G=(V, E)$ be a (finite) graph
- Let q be a positive integer

The Potts model

But first, a generalization ... in which we count all colorings, proper or not, but give them weights ...

- Let $G=(V, E)$ be a (finite) graph
- Let q be a positive integer
- Let $\mathbf{v}=\left\{v_{e}\right\}_{e \in E}$ be a collection of real or complex numbers associated to the edges of G

The Potts model

But first, a generalization ... in which we count all colorings, proper or not, but give them weights ...

- Let $G=(V, E)$ be a (finite) graph
- Let q be a positive integer
- Let $\mathbf{v}=\left\{v_{e}\right\}_{e \in E}$ be a collection of real or complex numbers associated to the edges of G
- Count each coloring with a weight $W=\prod_{e=i j \in E} W_{i j}$ where

The Potts model

But first, a generalization ... in which we count all colorings, proper or not, but give them weights ...

- Let $G=(V, E)$ be a (finite) graph
- Let q be a positive integer
- Let $\mathbf{v}=\left\{v_{e}\right\}_{e \in E}$ be a collection of real or complex numbers associated to the edges of G
- Count each coloring with a weight $W=\prod_{e=i j \in E} W_{i j}$ where

$$
W_{i j}= \begin{cases}1 & \text { if } i \text { is colored differently from } j \\ 1+v_{i j} & \text { if } i \text { is colored the same as } j\end{cases}
$$

The Potts model

- Note that if we take $v_{i j}=-1$ for all edges $i j$, then the weight becomes

$$
W= \begin{cases}1 & \text { if the coloring is proper } \\ 0 & \text { if the coloring is improper }\end{cases}
$$

so this includes, as a special case, the counting of proper colorings.

The Potts model

- Note that if we take $v_{i j}=-1$ for all edges $i j$, then the weight becomes

$$
W= \begin{cases}1 & \text { if the coloring is proper } \\ 0 & \text { if the coloring is improper }\end{cases}
$$

so this includes, as a special case, the counting of proper colorings.

- Now define the Potts-model partition function

$$
Z_{G}^{\text {Potts }}(q, \mathbf{v})=\sum_{\text {colorings } \sigma} W(\sigma)
$$

The Potts model

- Note that if we take $v_{i j}=-1$ for all edges $i j$, then the weight becomes

$$
W= \begin{cases}1 & \text { if the coloring is proper } \\ 0 & \text { if the coloring is improper }\end{cases}
$$

so this includes, as a special case, the counting of proper colorings.

- Now define the Potts-model partition function

$$
Z_{G}^{\mathrm{Potts}}(q, \mathbf{v})=\sum_{\text {colorings } \sigma} W(\sigma)
$$

- Note in particular that $Z_{G}^{\text {Potts }}(q,-1)=P_{G}(q)$

The Potts model in statistical physics

- Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of q states.

The Potts model in statistical physics

- Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of q states.

Renfrey Potts
(1925-2005)

- $q=2$: Ising (1925) model of ferromagnetism

Ernst Ising
(1900-1998)

The Potts model in statistical physics

- Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of q states.

Renfrey Potts
(1925-2005)

- $q=2$: Ising (1925) model of ferromagnetism

Ernst Ising
(1900-1998)

Wilhelm Lenz
(1888-1957)

The Potts model in statistical physics

- Potts (1952) introduced this as a model in statistical physics:

Each atom in a crystal lattice can be in any one of q states.

Renfrey Potts (1925-2005)

- $q=2$: Ising (1925) model of ferromagnetism

Ising model (number of publications)

Fortuin-Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph G, $Z_{G}^{\text {Potts }}(q, \mathbf{v})$ is the restriction to positive integers q of a polynomial in q (and \mathbf{v}):

$$
Z_{G}^{\mathrm{Potts}}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

where $k(A)$ is the number of connected components in the subgraph (V, A)

Fortuin-Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph G, $Z_{G}^{\text {Potts }}(q, \mathbf{v})$ is the restriction to positive integers q of a polynomial in q (and \mathbf{v}):

$$
Z_{G}^{\mathrm{Potts}}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

where $k(A)$ is the number of connected components in the subgraph (V, A)

Pieter Kasteleyn (1924-1996)

Cornelius Fortuin

Fortuin-Kasteleyn representation of the Potts model

Theorem (Fortuin + Kasteleyn 1969): For every graph G, $Z_{G}^{\text {Potts }}(q, \mathbf{v})$ is the restriction to positive integers q of a polynomial in q (and \mathbf{v}):

$$
Z_{G}^{\mathrm{Potts}}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

where $k(A)$ is the number of connected components in the subgraph (V, A)

Pieter Kasteleyn (1924-1996)

Corollary (Birkhoff 1912): $P_{G}(q)=Z_{G}^{\text {Potts }}(q,-1)$ is a polynomial.

Proof of the Fortuin-Kasteleyn representation

Proof. Write

$$
Z_{G}^{\text {Potts }}(q, \mathbf{v})=\sum_{\sigma: V \rightarrow\{1,2, \ldots, q\}} \prod_{e=i j \in E}\left[1+v_{e} \delta\left(\sigma_{i}, \sigma_{j}\right)\right]
$$

where $\delta\left(\sigma_{i}, \sigma_{j}\right)$ is the Kronecker delta $\delta(a, b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if } a \neq b\end{cases}$

Proof of the Fortuin-Kasteleyn representation

Proof. Write

$$
Z_{G}^{\mathrm{Potts}}(q, \mathbf{v})=\sum_{\sigma: V \rightarrow\{1,2, \ldots, q\}} \prod_{e=i j \in E}\left[1+v_{e} \delta\left(\sigma_{i}, \sigma_{j}\right)\right]
$$

where $\delta\left(\sigma_{i}, \sigma_{j}\right)$ is the Kronecker delta $\delta(a, b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if } a \neq b\end{cases}$

Expand out the product over $e \in E$, and let $A \subseteq E$ be the set of edges for which the term $v_{e} \delta\left(\sigma_{i}, \sigma_{j}\right)$ is taken.

Proof of the Fortuin-Kasteleyn representation

Proof. Write

$$
Z_{G}^{\mathrm{Potts}}(q, \mathbf{v})=\sum_{\sigma: V \rightarrow\{1,2, \ldots, q\}} \prod_{e=i j \in E}\left[1+v_{e} \delta\left(\sigma_{i}, \sigma_{j}\right)\right]
$$

where $\delta\left(\sigma_{i}, \sigma_{j}\right)$ is the Kronecker delta $\delta(a, b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if } a \neq b\end{cases}$

Expand out the product over $e \in E$, and let $A \subseteq E$ be the set of edges for which the term $v_{e} \delta\left(\sigma_{i}, \sigma_{j}\right)$ is taken.

Perform the sum over colorings σ compatible with these constraints: in each component of the subgraph (V, A) the color σ_{i} must be constant, and there are no other constraints. Therefore,

Proof of the Fortuin-Kasteleyn representation

Proof. Write

$$
Z_{G}^{\text {Potts }}(q, \mathbf{v})=\sum_{\sigma: V \rightarrow\{1,2, \ldots, q\}} \prod_{e=i j \in E}\left[1+v_{e} \delta\left(\sigma_{i}, \sigma_{j}\right)\right]
$$

where $\delta\left(\sigma_{i}, \sigma_{j}\right)$ is the Kronecker delta $\delta(a, b)= \begin{cases}1 & \text { if } a=b \\ 0 & \text { if } a \neq b\end{cases}$

Expand out the product over $e \in E$, and let $A \subseteq E$ be the set of edges for which the term $v_{e} \delta\left(\sigma_{i}, \sigma_{j}\right)$ is taken.

Perform the sum over colorings σ compatible with these constraints: in each component of the subgraph (V, A) the color σ_{i} must be constant, and there are no other constraints. Therefore,

$$
Z_{G}^{\mathrm{Potts}}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

The multivariate Tutte polynomial

- This motivates studying the polynomial

$$
Z_{G}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

The multivariate Tutte polynomial

- This motivates studying the polynomial

$$
Z_{G}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

which is called the multivariate Tutte polynomial of G

The multivariate Tutte polynomial

- This motivates studying the polynomial

$$
Z_{G}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

Bill Tutte
(1917-2002)
which is called the multivariate Tutte polynomial of G

- It includes the chromatic polynomial as a special case: $P_{G}(q)=Z_{G}(q,-1)$

The multivariate Tutte polynomial

- This motivates studying the polynomial

$$
Z_{G}(q, \mathbf{v})=\sum_{A \subseteq E} q^{k(A)} \prod_{e \in A} v_{e}
$$

which is called the multivariate Tutte polynomial of G

- It includes the chromatic polynomial as a special case: $P_{G}(q)=Z_{G}(q,-1)$
- Note that $Z_{G}(q, \mathbf{v})$ is multiaffine in \mathbf{v},
i.e. of degree 1 in each v_{e} separately.

Complex roots of the chromatic polynomial — why?

- Since $P_{G}(q)$ and $Z_{G}(q, \mathbf{v})$ are polynomials in q and \mathbf{v}, we can study their real or complex roots ...

Complex roots of the chromatic polynomial — why?

- Since $P_{G}(q)$ and $Z_{G}(q, \mathbf{v})$ are polynomials in q and \mathbf{v}, we can study their real or complex roots ...
... though $q=2+3 i$ colors has no combinatorial meaning!

Complex roots of the chromatic polynomial — why?

- Since $P_{G}(q)$ and $Z_{G}(q, \mathbf{v})$ are polynomials in q and \mathbf{v}, we can study their real or complex roots ...
\ldots though $q=2+3 i$ colors has no combinatorial meaning!
- Surprisingly, the complex roots play an important role in physics...

Complex roots of the chromatic polynomial — why?

- Since $P_{G}(q)$ and $Z_{G}(q, \mathbf{v})$ are polynomials in q and \mathbf{v}, we can study their real or complex roots ...
\ldots though $q=2+3 i$ colors has no combinatorial meaning!
- Surprisingly, the complex roots play an important role in physics ... though physical quantities are always real numbers.

Complex roots of the chromatic polynomial — why?

- Since $P_{G}(q)$ and $Z_{G}(q, \mathbf{v})$ are polynomials in q and \mathbf{v}, we can study their real or complex roots ...
\ldots though $q=2+3 i$ colors has no combinatorial meaning!
- Surprisingly, the complex roots play an important role in physics ... though physical quantities are always real numbers.
- This bizarre idea goes back to a 1952 paper of Yang and Lee

Chen-Ning Yang (1922-)

Complex roots of the chromatic polynomial — why?

- Since $P_{G}(q)$ and $Z_{G}(q, \mathbf{v})$ are polynomials in q and \mathbf{v}, we can study their real or complex roots ...
... though $q=2+3 i$ colors has no combinatorial meaning!
- Surprisingly, the complex roots play an important role in physics ... though physical quantities are always real numbers.
- This bizarre idea goes back to a 1952 paper of Yang and Lee

Chen-Ning Yang (1922-)

and is connected with the physics of phase transitions.

The physics of phase transitions

- Most things in Nature vary smoothly.

The physics of phase transitions

- Most things in Nature vary smoothly.
- But some changes are abrupt, e.g. water boiling or freezing.

The physics of phase transitions

- Most things in Nature vary smoothly.
- But some changes are abrupt, e.g. water boiling or freezing.
- These abrupt changes are called phase transitions.

The physics of phase transitions

- Most things in Nature vary smoothly.
- But some changes are abrupt, e.g. water boiling or freezing.
- These abrupt changes are called phase transitions.
- Mathematically, a phase transition occurs whenever some physical quantity (e.g. density) varies nonanalytically as a function of some control parameter (e.g. temperature).
("nonanalytic" $=$ in sense of complex analysis)

The physics of phase transitions

The classic example of a phase transition is ferromagnetism.

The physics of phase transitions

The classic example of a phase transition is ferromagnetism.

Place a sample of iron in an external magnetic field h and measure its magnetization M :

The physics of phase transitions

The classic example of a phase transition is ferromagnetism.

Place a sample of iron in an external magnetic field h and measure its magnetization M :

The physics of phase transitions

The classic example of a phase transition is ferromagnetism.

Place a sample of iron in an external magnetic field h and measure its magnetization M :

The discontinuity at $h=0$ is a phase transition.

The mathematics of phase transitions

How can such a phase transition occur in the Ising or Potts model on a finite graph G ?

The mathematics of phase transitions

How can such a phase transition occur in the Ising or Potts model on a finite graph G ?

ANSWER: It can't!!

The mathematics of phase transitions

How can such a phase transition occur in the Ising or Potts model on a finite graph G ?

ANSWER: It can't!!
The partition function $Z_{G}(q, \mathbf{v})$ is a polynomial in q and \mathbf{v}, and all physical quantities will be ratios of polynomials. That is as analytic as one can possibly get!

The mathematics of phase transitions

How can such a phase transition occur in the Ising or Potts model on a finite graph G ?

ANSWER: It can't!!
The partition function $Z_{G}(q, \mathbf{v})$ is a polynomial in q and \mathbf{v}, and all physical quantities will be ratios of polynomials. That is as analytic as one can possibly get!

MORAL: Phase transitions never occur in a physical system with finitely many degrees of freedom.

The mathematics of phase transitions

For a real (finite!) sample of iron one actually gets

The mathematics of phase transitions

For a real (finite!) sample of iron one actually gets

But for all practical purposes that is a phase transition!

The mathematics of phase transitions

So it makes sense to first study phase transitions in an idealized system where the discontinuity is a true discontinuity:
namely, the Ising or Potts model on an infinite graph, such as the square lattice \mathbb{Z}^{2} :

The infinite-volume limit

But $Z_{G}(q, \mathbf{v})$ makes no sense for an infinite graph G (e.g. $\left.\mathbb{Z}^{2}\right)$.

The infinite-volume limit

But $Z_{G}(q, \mathbf{v})$ makes no sense for an infinite graph $G\left(e . g . \mathbb{Z}^{2}\right)$.

Instead we need to consider a sequence $\left\{G_{n}\right\}$ of finite graphs converging to G (e.g. larger and larger squares in \mathbb{Z}^{2})

- the so-called infinite-volume limit.

The infinite-volume limit

But $Z_{G}(q, \mathbf{v})$ makes no sense for an infinite graph $G\left(e . g . \mathbb{Z}^{2}\right)$.

Instead we need to consider a sequence $\left\{G_{n}\right\}$ of finite graphs converging to G (e.g. larger and larger squares in \mathbb{Z}^{2})

- the so-called infinite-volume limit.

It then turns out that $\lim _{n \rightarrow \infty} Z_{G_{n}}(q, \mathbf{v})$ does not exist,
but $f(q, \mathbf{v})=\lim _{n \rightarrow \infty} \frac{1}{\left|G_{n}\right|} \log Z_{G_{n}}(q, \mathbf{v})$ does.
(Physicists call f the free energy per unit volume.)

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?
FACT: If $\left(f_{n}\right)$ is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic - indeed, need not even be continuous.

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?
FACT: If $\left(f_{n}\right)$ is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic - indeed, need not even be continuous.

EXAMPLE: $f_{n}(x)=\tanh (n x)$

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?
FACT: If $\left(f_{n}\right)$ is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic - indeed, need not even be continuous.

EXAMPLE: $f_{n}(x)=\tanh (n x)$

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?
FACT: If $\left(f_{n}\right)$ is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic - indeed, need not even be continuous.

EXAMPLE: $f_{n}(x)=\tanh (n x)$

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?
FACT: If $\left(f_{n}\right)$ is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic - indeed, need not even be continuous.

EXAMPLE: $f_{n}(x)=\tanh (n x)$

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?
FACT: If $\left(f_{n}\right)$ is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic - indeed, need not even be continuous.

EXAMPLE: $f_{n}(x)=\tanh (n x)$

A fact from real analysis

How do phase transitions occur in the infinite-volume limit?
FACT: If $\left(f_{n}\right)$ is a pointwise convergent sequence of real-analytic functions of a real variable, then the limiting function f need not be analytic - indeed, need not even be continuous.

EXAMPLE: $f_{n}(x)=\tanh (n x)$

... and a contrasting fact from complex analysis

BUT ... If $\left(f_{n}\right)$ is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.
... and a contrasting fact from complex analysis

BUT ... If $\left(f_{n}\right)$ is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.

But real-analytic functions f_{n} are restrictions of complex-analytic functions defined in a complex neighborhood D_{n} of the real axis. What is going on here?

... and a contrasting fact from complex analysis

BUT ... If $\left(f_{n}\right)$ is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.

But real-analytic functions f_{n} are restrictions of complex-analytic functions defined in a complex neighborhood D_{n} of the real axis. What is going on here?

ANSWER: The domains D_{n} may not be uniform in n. Singularities may creep in from the complex plane and pinch the real axis as $n \rightarrow \infty$.

... and a contrasting fact from complex analysis

BUT ... If $\left(f_{n}\right)$ is a pointwise convergent sequence of complex-analytic functions of a complex variable (in a domain $D \subset \mathbb{C}$), then under very mild conditions the limiting function f is analytic.

But real-analytic functions f_{n} are restrictions of complex-analytic functions defined in a complex neighborhood D_{n} of the real axis. What is going on here?

ANSWER: The domains D_{n} may not be uniform in n. Singularities may creep in from the complex plane and pinch the real axis as $n \rightarrow \infty$.

EXAMPLE: $f_{n}(x)=\tanh (n x)$ has poles at $x= \pm \frac{\pi}{2 n} i$.

Application to phase transitions

Apply the above to $f_{n}(q, \mathbf{v})=\frac{1}{\left|G_{n}\right|} \log Z_{G_{n}}(q, \mathbf{v})$.

Application to phase transitions

Apply the above to $f_{n}(q, \mathbf{v})=\frac{1}{\left|G_{n}\right|} \log Z_{G_{n}}(q, \mathbf{v})$.
$Z_{G_{n}}$ is a polynomial; so its logarithm is analytic except where $Z_{G_{n}}=0$. At these points f_{n} has a singularity.

Application to phase transitions

Apply the above to $f_{n}(q, \mathbf{v})=\frac{1}{\left|G_{n}\right|} \log Z_{G_{n}}(q, \mathbf{v})$.
$Z_{G_{n}}$ is a polynomial; so its logarithm is analytic except where $Z_{G_{n}}=0$. At these points f_{n} has a singularity.

The Yang-Lee approach to phase transitions:

Application to phase transitions

Apply the above to $f_{n}(q, \mathbf{v})=\frac{1}{\left|G_{n}\right|} \log Z_{G_{n}}(q, \mathbf{v})$.
$Z_{G_{n}}$ is a polynomial; so its logarithm is analytic except where $Z_{G_{n}}=0$. At these points f_{n} has a singularity.

The Yang-Lee approach to phase transitions:

- Promote one or more physical quantities (e.g. temperature) to complex variables.

Application to phase transitions

Apply the above to $f_{n}(q, \mathbf{v})=\frac{1}{\left|G_{n}\right|} \log Z_{G_{n}}(q, \mathbf{v})$.
$Z_{G_{n}}$ is a polynomial; so its logarithm is analytic except where $Z_{G_{n}}=0$. At these points f_{n} has a singularity.

The Yang-Lee approach to phase transitions:

- Promote one or more physical quantities (e.g. temperature) to complex variables.
- Investigate the complex zeros of the partition function $Z_{G_{n}}$.

Application to phase transitions

Apply the above to $f_{n}(q, \mathbf{v})=\frac{1}{\left|G_{n}\right|} \log Z_{G_{n}}(q, \mathbf{v})$.
$Z_{G_{n}}$ is a polynomial; so its logarithm is analytic except where $Z_{G_{n}}=0$. At these points f_{n} has a singularity.

The Yang-Lee approach to phase transitions:

- Promote one or more physical quantities (e.g. temperature) to complex variables.
- Investigate the complex zeros of the partition function $Z_{G_{n}}$.
- The real limit points (as $n \rightarrow \infty$) of those complex zeros are the possible points of phase transitions.

The Lee-Yang theorem for the Ising model

Therefore ... If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_{n}), then the intersection of D with the real axis is free of phase transitions.

The Lee-Yang theorem for the Ising model

Therefore ... If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_{n}), then the intersection of D with the real axis is free of phase transitions.

Example: Lee-Yang theorem for the ferromagnetic Ising model.

The Lee-Yang theorem for the Ising model

Therefore \ldots If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_{n}), then the intersection of D with the real axis is free of phase transitions.

Example: Lee-Yang theorem for the ferromagnetic Ising model.
Consider a ferromagnetic Ising model with complex magnetic field h. Then the zeros of $Z_{G_{n}}(h)$ lie only on the imaginary axis.

Conclusion: The only possible phase-transition point is $h=0$.

The Lee-Yang theorem for the Ising model

Therefore \ldots If a domain $D \subset \mathbb{C}$ is free of zeros (uniformly in the volume G_{n}), then the intersection of D with the real axis is free of phase transitions.

Example: Lee-Yang theorem for the ferromagnetic Ising model.
Consider a ferromagnetic Ising model with complex magnetic field h. Then the zeros of $Z_{G_{n}}(h)$ lie only on the imaginary axis.

Conclusion: The only possible phase-transition point is $h=0$.
P.S. The Lee-Yang theorem is actually a beautiful theorem about zeros of multiaffine polynomials in several complex variables. The result quoted above is a mere corollary.

Phase transitions, summarized ...

Even physicists care about complex zeros of the partition function!

Phase transitions, summarized ...

Even physicists care about complex zeros of the partition function!

This motivates studying the complex roots of the chromatic polynomial $P_{G}(q)$.

Phase transitions, summarized ...

Even physicists care about complex zeros of the partition function!

This motivates studying the complex roots of the chromatic polynomial $P_{G}(q)$.

But first ... some facts about the real roots ... to motivate some conjectures about the complex roots.

Real roots of the chromatic polynomial

- $P_{G}(q) \neq 0$ whenever $q<0$

Real roots of the chromatic polynomial

- $P_{G}(q) \neq 0$ whenever $q<0$
(The coefficients of $P_{G}(q)=\sum_{k=1}^{n} a_{k} q^{k}$ alternate in sign)

Real roots of the chromatic polynomial

- $P_{G}(q) \neq 0$ whenever $q<0$
(The coefficients of $P_{G}(q)=\sum_{k=1}^{n} a_{k} q^{k}$ alternate in sign)
- For planar $G, P_{G}(q)>0$ whenever $q \geq 5$
(Birkhoff + Lewis 1946)

Real roots of the chromatic polynomial

- $P_{G}(q) \neq 0$ whenever $q<0$
(The coefficients of $P_{G}(q)=\sum_{k=1}^{n} a_{k} q^{k}$ alternate in sign)
- For planar $G, P_{G}(q)>0$ whenever $q \geq 5$ (Birkhoff + Lewis 1946)
- Birkhoff-Lewis conjecture:

For planar $G, P_{G}(q)>0$ whenever $q \geq 4$

Complex roots of the chromatic polynomial

- Recall $P_{G}(q) \neq 0$ whenever $q<0$

Complex roots of the chromatic polynomial

- Recall $P_{G}(q) \neq 0$ whenever $q<0$
- Is this the tip of the iceberg of a Lee-Yang-type theorem?

Complex roots of the chromatic polynomial

- Recall $P_{G}(q) \neq 0$ whenever $q<0$
- Is this the tip of the iceberg of a Lee-Yang-type theorem?
- Conjecture (Farrell 1980): $P_{G}(q) \neq 0$ whenever $\operatorname{Re} q<0$

Chromatic roots of cubic graphs on 16 vertices

4060 graphs $\Longrightarrow 4060 \times 16=64960$ roots

Chromatic roots of cubic graphs on 16 vertices

Chromatic roots of cubic graphs on 18 vertices

41301 graphs $\Longrightarrow 41301 \times 18=743418$ roots

Chromatic roots of cubic graphs on 18 vertices

Chromatic roots of cubic graphs on 20 vertices

510489 graphs $\Longrightarrow 510489 \times 20=10209780$ roots

Chromatic roots of cubic graphs on 20 vertices

510489 graphs $\Longrightarrow 510489 \times 20=10209780$ roots

Complex roots of the chromatic polynomial (2nd try)

- Recall $P_{G}(q) \neq 0$ whenever $q<0$
- Is this the tip of the iceberg of a Lee-Yang-type theorem?
- Gonjecture (Farrell 1980): $P_{G}(q) \neq 0$ whenever $\operatorname{Req}<\theta$

Complex roots of the chromatic polynomial (2nd try)

- Recall $P_{G}(q) \neq 0$ whenever $q<0$
- Is this the tip of the iceberg of a Lee-Yang-type theorem?
- Gonjecture (Farrell 1980): $P_{G}(q) \neq 0$ whenever $R q<0$
- But maybe there is some complex neighborhood of the negative real axis that is free of roots?

Complex roots of the chromatic polynomial [more ...]

- Recall $P_{G}(q) \neq 0$ whenever $q \geq 5$
(and maybe even $q \geq 4$)

Complex roots of the chromatic polynomial [more ...]

- Recall $P_{G}(q) \neq 0$ whenever $q \geq 5$
(and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee-Yang-type theorem?

Complex roots of the chromatic polynomial [more ...]

- Recall $P_{G}(q) \neq 0$ whenever $q \geq 5$
(and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee-Yang-type theorem?
- Conjecture: $P_{G}(q) \neq 0$ whenever $\operatorname{Re} q>4$

Chromatic roots of $6 \times n$ triangular lattices

Chromatic roots of $6 \times n$ triangular lattices

Complex roots of the chromatic polynomial [2nd try]

- Recall $P_{G}(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee-Yang-type theorem?
- Conjecture: $P_{G}(q) \neq 0$ whenever $\operatorname{Req} q>4$

Complex roots of the chromatic polynomial [2nd try]

- Recall $P_{G}(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee-Yang-type theorem?
- Conjecture: $P_{G}(q) \neq 0$ whenever $\operatorname{Req} q-4$
- But maybe there is some complex neighborhood of $q>5$ (or $q>4$) that is free of roots?

Complex roots of the chromatic polynomial [2nd try]

- Recall $P_{G}(q) \neq 0$ whenever $q \geq 5$ (and maybe even $q \geq 4$)
- Is this the tip of the iceberg of a Lee-Yang-type theorem?
- Conjecture: $P_{G}(q) \neq 0$ whenever $\operatorname{Req} q-4$
- But maybe there is some complex neighborhood of $q>5$ (or $q>4$) that is free of roots?

The truth about complex chromatic roots

These conjectures are WRONG!!!!!

The truth about complex chromatic roots

These conjectures are WRONG!!!!!
But not just a little wrong...

The truth about complex chromatic roots

These conjectures are WRONG!!!!!
But not just a little wrong...
These conjectures are as wrong as they can possibly be!

The truth about complex chromatic roots

These conjectures are WRONG!!!!!
But not just a little wrong...
These conjectures are as wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family of planar graphs whose chromatic roots are dense in the whole complex plane except perhaps the disc $|q-1|<1$.

The truth about complex chromatic roots

These conjectures are WRONG!!!!!
But not just a little wrong...
These conjectures are as wrong as they can possibly be!

Theorem (A.D.S. 2004): There exists a family of planar graphs whose chromatic roots are dense in the whole complex plane except perhaps the disc $|q-1|<1$.

Generalized theta graphs

The graphs in the Theorem are generalized theta graphs $\Theta^{(s, p)}$ consisting of p chains in parallel between a pair of endvertices, each chain consisting of s edges in series:

Generalized theta graphs

The graphs in the Theorem are generalized theta graphs $\Theta^{(s, p)}$ consisting of p chains in parallel between a pair of endvertices, each chain consisting of s edges in series:

The intuition behind the proof

The Potts model obeys series and parallel laws (generalizing those of electrical circuits):

The intuition behind the proof

The Potts model obeys series and parallel laws (generalizing those of electrical circuits):

The intuition behind the proof

The Potts model obeys series and parallel laws
(generalizing those of electrical circuits):

Parallel: $\overbrace{v_{2}}^{v_{1}}=\stackrel{v_{\text {eff }}}{\longrightarrow}$ with $v_{\text {eff }}=v_{1}+v_{2}+v_{1} v_{2}$
Hence $1+v_{\text {eff }}=\left(1+v_{1}\right)\left(1+v_{2}\right)$, i.e. $1+v$ multiplies

The intuition behind the proof

The Potts model obeys series and parallel laws
(generalizing those of electrical circuits):

Parallel: $\overbrace{v_{2}}^{v_{1}}=\stackrel{v_{\text {eff }}}{\longrightarrow}$ with $v_{\text {eff }}=v_{1}+v_{2}+v_{1} v_{2}$
Hence $1+v_{\text {eff }}=\left(1+v_{1}\right)\left(1+v_{2}\right)$, i.e. $1+v$ multiplies

Series: $\stackrel{v_{1}}{\bullet} v_{2}=\stackrel{v_{\text {eff }}}{\bullet}$ with $v_{\text {eff }}=\frac{v_{1} v_{2}}{q+v_{1}+v_{2}}$

The intuition behind the proof

The Potts model obeys series and parallel laws
(generalizing those of electrical circuits):

Parallel: $\overbrace{v_{2}}^{v_{1}}=\stackrel{v_{\text {eff }}}{\longrightarrow}$ with $v_{\text {eff }}=v_{1}+v_{2}+v_{1} v_{2}$
Hence $1+v_{\text {eff }}=\left(1+v_{1}\right)\left(1+v_{2}\right)$, i.e. $1+v$ multiplies

Series: $\stackrel{v_{1}}{\bullet} v_{2}=\stackrel{v_{\text {eff }}}{\bullet}$ with $v_{\text {eff }}=\frac{v_{1} v_{2}}{q+v_{1}+v_{2}}$
Hence $\frac{v_{\text {eff }}}{q+v_{\text {eff }}}=\frac{v_{1}}{q+v_{1}} \frac{v_{2}}{q+v_{2}}$, i.e. $\frac{v}{q+v}$ multiplies

The intuition behind the proof

- Consider any (q, v) satisfying $\left|\frac{v}{q+v}\right|<1$ (and irrational angle)

The intuition behind the proof

- Consider any (q, v) satisfying $\left|\frac{v}{q+v}\right|<1$ (and irrational angle)
- Put a large number s of these edges in series. $\Longrightarrow v_{\text {eff }}$ with small magnitude and arbitrary phase.

The intuition behind the proof

- Consider any (q, v) satisfying $\left|\frac{v}{q+v}\right|<1$ (and irrational angle)
- Put a large number s of these edges in series. $\Longrightarrow v_{\text {eff }}$ with small magnitude and arbitrary phase.
- Then put a large number p of these chains in parallel. $\Longrightarrow v_{\text {eff }}$ going anywhere we like in the complex plane.

The intuition behind the proof

- Consider any (q, v) satisfying $\left|\frac{v}{q+v}\right|<1$ (and irrational angle)
- Put a large number s of these edges in series.
$\Longrightarrow v_{\text {eff }}$ with small magnitude and arbitrary phase.
- Then put a large number p of these chains in parallel. $\Longrightarrow v_{\text {eff }}$ going anywhere we like in the complex plane.
- In particular, we can make $v_{\text {eff }}=-q$, which gives a zero of $Z_{G}(q, \mathbf{v})$. QED

The intuition behind the proof

- Consider any (q, v) satisfying $\left|\frac{v}{q+v}\right|<1$ (and irrational angle)
- Put a large number s of these edges in series.
$\Longrightarrow v_{\text {eff }}$ with small magnitude and arbitrary phase.
- Then put a large number p of these chains in parallel.
$\Longrightarrow v_{\text {eff }}$ going anywhere we like in the complex plane.
- In particular, we can make $v_{\text {eff }}=-q$, which gives a zero of $Z_{G}(q, \mathbf{v})$. QED
- For the chromatic polynomial $(v=-1),\left|\frac{v}{q+v}\right|<1$ means $|q-1|>1$. This is where the chromatic roots are dense.

What next?

- So planarity does not much constrain the chromatic roots.

What next?

- So planarity does not much constrain the chromatic roots.
- But other graph-theoretic parameters can: (maximum degree, maxmaxflow, ...)

What next?

- So planarity does not much constrain the chromatic roots.
- But other graph-theoretic parameters can: (maximum degree, maxmaxflow, ...)
- What determines where the chromatic roots of a graph go in the complex plane?

What next?

- So planarity does not much constrain the chromatic roots.
- But other graph-theoretic parameters can: (maximum degree, maxmaxflow, ...)
- What determines where the chromatic roots of a graph go in the complex plane?
- We know very little at present.
- The study of chromatic roots is still a very young field.

Thanks to my collaborators

$$
\begin{gathered}
\text { Bill Jackson (Queen Mary) } \\
\text { Jesper Jacobsen (ENS-Paris) } \\
\text { Aldo Procacci (UFMG, Brazil) } \\
\text { Gordon Royle (Univ. of Western Australia) } \\
\text { Jesús Salas (Madrid) } \\
\text { Alex Scott (Oxford) } \\
\vdots
\end{gathered}
$$

