MATHEMATICS 3103 (Functional Analysis)
YEAR 20122013, TERM 2

HANDOUT #6: THE HAHN-BANACH THEOREM AND DUALITY OF
BANACH SPACES

The Hahn—Banach theorem

Let X be a normed linear space. Three weeks ago we posed the question of whether there
are “enough” continuous linear functionals on X to separate the points of X. This week
we will prove that the answer is yes (this result is a kind of analogue, for continuous linear
functionals on a normed linear space X, of Urysohn’s lemma for general continuous functions
on an arbitrary metric space X). We will actually prove more: namely, we will prove an
extension theorem for continuous linear functionals defined on a proper linear subspace of X
(this result is a kind of analogue of the Tietze extension theorem for general continuous
functions defined on a proper closed subset of an arbitrary metric space X):

Theorem 6.1 (Hahn—Banach theorem for normed linear spaces)® Let X be a real or
complex normed linear space, let M C X be a linear subspace, and let £ € M* be a bounded
linear functional on M. Then there exists a linear functional ¢ € X* that extends € (i.e.
(1 M =) and satisfies ||]|x- = ||€]|as-.

As in the Tietze extension theorem, the important fact here is not just the existence of a
continuous extension, but the existence of a continuous extension that does not increase the
norm.

Note also that here (unlike in the Tietze extension theorem) the linear subspace M need
not be closed. That is because a bounded linear functional (unlike a general continuous
function) can always be automatically extended continuously from M to M (see Proposi-
tion 3.20); so it makes no difference whether M is closed or not.

For simplicity we will prove the Hahn—Banach theorem only in the real case. The complex
case is not really much more difficult, but it involves fiddly work that would divert us from
more important issues.

The proof of the Hahn-Banach theorem has two parts: First, we show that ¢ can be
extended (without increasing its norm) from M to a subspace one dimension larger: that
is, to any subspace M; = span{M,x;} = M + Rz, spanned by M and a vector x; € X \ M.
Secondly, we show that these one-dimensional extensions can be combined to provide an
extension from M to all of X.

Here is the first step:

!'The Hahn-Banach theorem was first proven in 1912 by the Austrian mathematician Eduard Helly
(1884-1943). It was rediscovered independently in the 1920s by the Austrian mathematician Hans Hahn
(1879-1934) and the Polish mathematician Stefan Banach (1892-1945).



Lemma 6.2 (one-dimensional extension, real case) Let X be a real normed linear space,
let M C X be a linear subspace, and let £ € M* be a bounded linear functional on M. Then,

for any vector x1 € X \ M, there exists a linear functional ¢, on My = span{M, x,} that
extends { (i.e. £y | M = () and satisfies |01 arx = [[€]| s+ -

PROOF. If ¢ = 0 the result is trivial, so we can assume without loss of generality that ||¢|| = 1
(why?) (this assumption is made only to simplify the formulae). Now every x € M; can be
uniquely represented in the form x = Az + y with A € R and y € M. To define ¢; as an
extension of ¢, it suffices to choose the value of ¢;(zy), call it ¢;: we then have

61(>\SL’1 —i—y) = >\Cl + €(y) . (61)
We want to choose ¢; so that |¢1(x)| < ||z|| for all z € M, i.e.
=Xz +yll < Aer + Ly) < [[Aza+yll (6.2)

for all A € R and y € M. This holds for A = 0 by hypothesis on ¢, and for A # 0 it can be
rewritten as y
e g o <o < |

o+ 4| = e/ (6.3)

for all A € R and y € M (you should check that this is correct both for A > 0 and for A < 0),
or equivalently

—zr 42| = (2) < e < o+ 2] — £(2) (6.4)
for all z € M. But for z1, z0 € M we have

Uz) —l(z1) = L za—21) < Jzo— 21| < o+ 20| + ||o1 + 2] (6.5)
by ||¢]] =1 and the triangle inequality, so that
—[Jz1 + 21| = U(z1) < [Jor + 2l — £(22) (6.6)

for all z1, 20 € M. It follows that

c. = sup [—||:c1+zl|| - E(zl)} (6.72)
z21EM
¢ = inf [||:C1+z2[| - g@)] (6.7b)

are finite and satisfy c_ < ¢ ; so we can choose any ¢; € [c_,c;]. O

OK, what next? If X is finite-dimensional — or more generally if M has finite codi-
mension in X, i.e. the quotient space X /M is finite-dimensional — then we simply need to
repeat the one-dimensional extension step a finite number of times, and we are done.

If X is separable — or more generally if the quotient space X/M is separable — then
a slight refinement of this argument works: We first extend ¢ from M to M using Proposi-
tion 3.20. Then we choose a total sequence of linearly independent vectors [z1], [z2], [x3], . .-
in X/M (see Problem 8(b) of Problem Set #3), and we then successively extend ¢ to a
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linear functional ¢,, defined on the space M,, = span{M, zy,...,z,} for each n. Since these
are successive extensions, we have ¢, | M, = {, whenever n’ < n. It follows that the
union of the ¢, defines a linear functional /,, on the linear subspace M., = |J M,,. But by

n=1
construction M, is dense in X, so by Proposition 3.20, /., can be extended (uniquely) to a

bounded linear functional £ on X (without changing its norm).

Alas, if X is nonseparable, no such simple inductive construction can work, and we need
to appeal to more powerful set-theoretic tools to show (nonconstructively) that the one-
dimensional extensions can be pieced together to reach the whole space X. The tool we
need is Zorn’s lemma.? (The technique of using Zorn’s lemma to make nonconstructive
existence proofs is sometimes called Zornication.) Here are the needed concepts:

Definition 6.3 Let S be a set. Then a partial order on S is a binary relation < on S
that satisfies

(a) a = a (reflexivity );
(b) a <band b= a imply a = b (antisymmetry); and
(¢c) a <band b= c imply a < ¢ (transitivity)

for all a,b,c € S. The pair (S,=) is called a partially ordered set (or poset). We
sometimes also refer to S alone as a partially ordered set if the relation < is understood
from the context.

Now let (S, <) be a partially ordered set. A subset T" C S is called totally ordered
(with respect to <) if for every pair a,b € T we have either a < b or b < a. A totally ordered
subset is also called a chain. An element u € S is said to be an upper bound for a subset
T CSifa=<wuforall aeT. (Note that the upper bound u need not belong to 7T itself.)
Finally, a maximal element of S is an element m € S such that m < z implies m = z. (A
maximal element need not exist; and if one exists, it need not be unique.)

Examples. 1. The usual order < on R is a total order. There is no maximal element.

2. The usual order < on R = RU{—o00, 40} is also a total order. Now there is a unique
maximal element +o0.

3. The usual partial order < on R" is defined by x < y if and only if z; < y; for 1 < i < n.
For n > 2 it is not a total order. There is no maximal element.

4. Consider the usual partial order < on R? restricted to the three-element subset S =
{(0,0), (0,1), (1,0)}. Then (0,1) and (1,0) are maximal elements.

5. The lexicographic order on R? is defined by x < y if and only if either x; < 3, or
else r1 = y; and x5 < yo. (Think of the ordering of words in a dictionary!) This is a total
order (why?). There is no maximal element.

6. Let A be an arbitrary set, and let P(A) be the set of all subsets of A. Then the
relation C of set inclusion is a partial order on P(A). (It is not a total order except in two
degenerate cases — can you see what they are?) There is a unique maximal element A.

2Zorn’s lemma was first proved by the Polish mathematician Kazimierz Kuratowski (1896-1980) in 1922.
It was rediscovered and applied by the German/American mathematician Max Zorn (1906-1993) in 1935.



7. Let V be a vector space, and let £(V') be the set of all linear subspaces of V. Then
the relation C of set inclusion is a partial order on £(V'). (It is not a total order except in

two degenerate cases — can you see what they are?) There is a unique maximal element V.
O

We then have:

Proposition 6.4 (Zorn’s lemma) Let (S, =) be a partially ordered set in which every to-
tally ordered subset has an upper bound. Then (S, =) contains at least one maximal element.

Zorn’s lemma is a result of set theory that can be proven using the axiom of choice. More
precisely, Zorn’s lemma is equivalent to the axiom of choice in Zermelo—Fraenkel (ZF) set
theory. Other important statements of set theory that are equivalent to the axiom of choice
in ZF set theory are the well-ordering theorem and the Hausdorff maximal principle. We
shall not enter into the details of these statements or the proof of their equivalence, which
belong to a course in set theory or mathematical logic; rather, we shall simply take Zorn’s
lemma as a set-theoretic result that we can use without worry.?

We are now ready to prove the Hahn—Banach theorem:

PROOF OF THE HAHN-BANACH THEOREM (REAL CASE). Let &£ denote the set of all
extensions of £ to linear subspaces of X (not necessarily to all of X) that satisfy the properties
claimed in the Hahn—-Banach theorem. More precisely, £ consists of all pairs (N, f) such that

(a) N is a linear subspace of X that contains M;
(b) fis a bounded linear functional on N;

(c) f = (; and

() [f Nl = 1€l a=-

Now equip £ with a partial order < by declaring that
(N,f/)X(N',f) < NCNand f'|N=f. (6.8)

In other words, (N, f) < (N, f') iff f’ is an extension of f. (It is easy to check that < is
indeed a partial order; you should do this.)

3A nice introduction to all these issues can be found in http://en.wikipedia.org/wiki/Axiom of_
Choice I can’t resist the following quote from American mathematician Jerry Bona (1945-):

“The Axiom of Choice is obviously true, the well-ordering principle obviously false, and who
can tell about Zorn’s lemma?”

As the Wikipedia article comments,

This is a joke: although the three are all mathematically equivalent, many mathematicians
find the axiom of choice to be intuitive, the well-ordering principle to be counterintuitive, and
Zorn’s lemma to be too complex for any intuition.



Now suppose that F is a totally ordered subset of £. I claim that F has an upper bound
in £ (in fact a least upper bound, though we do not need this fact), defined as follows: First

let
y = |J N. (6.9)
(N,f)eF

You should verify, using the fact that F is totally ordered, that Y is a linear subspace of X;
it is, in fact, the smallest linear subspace containing all the subspaces N where (N, f) € F.
Next define on Y a linear functional g as the union of all the linear functionals f with
(N, f) e F, ie.

g(y) = f(y) whenever (N, f) € F withy € N . (6.10)

You should verify, using again the total ordering of F, that g is well-defined in the sense
that f(y) = f'(y) whenever (N, f) € F and (N, f') € F with y € N and y € N’; and you
should verify, using once again the total ordering of F, that ¢ is indeed linear. Finally, you
should check that ||g|ly+ = [|¢||ar+. It follows that (Y, g) € £ and that (N, f) < (Y, g) for all
(N, f) € F. Hence (Y, g) is an upper bound for F (in fact the least upper bound, though
we do not need this fact).

So all the hypotheses of Zorn’s lemma are satisfied. We can therefore conclude that &
has a maximal element (NV,, f.). I now claim that N, = X; for if this were not the case, i.e. if
we had N, € X, then Lemma 6.2 would provide an extension (N,., fu) € € with N, C N,.

and (N, fi) = (N, fis), contradicting the maximality of (N, f.). The linear functional f,
is then the desired extension ¢. [J

There is actually much more to the Hahn-Banach theorem than the result quoted in
Theorem 6.1. Firstly, the norm || - || x used in Theorem 6.1 to bound ¢(z) can be replaced by
an arbitrary sublinear functional: see Problem 2 of Problem Set #6. Secondly, this more
general Hahn-—Banach theorem implies important results on the separation of convex sets
by bounded linear functionals: see Problem 3 of Problem Set #6. The term “Hahn-Banach
theorems” is sometimes used to refer to this whole circle of results — which have applications
in statistical physics, mathematical economics, numerical analysis (convex optimization) and
many other fields.

Some corollaries of the Hahn—Banach theorem

We now note some fairly easy corollaries of the Hahn—Banach theorem. Let us begin
with a result that I already announced a few weeks ago as Proposition 3.31:

Proposition 6.5 Let X be a normed linear space. Then for each nonzero xo € X, there
exists by € X* with ||lo]| = 1 such that lo(xo) = ||xo]|.

PROOF. On the one-dimensional subspace M = span(zy) = Rxg, define a linear functional
¢ by l(axg) = af|xg||. Clearly we have ||£||a« = 1 (why?). Now extend ¢ to all of X by the
Hahn-Banach theorem. [J



It follows in particular that for every nonzero xy € X there exists {; € X* such that
lo(z0) # 0. And it follows from this that X* separates points of X .4

As already discussed a few weeks ago (Proposition 3.32), this result has the important
consequence that the natural embedding of X into X** is an isometry (and hence in particular
injective).

Here is a useful generalization of Proposition 6.5:

Proposition 6.6 Let X be a normed linear space, let M C X be a proper closed linear
subspace, and let v € X \ M [so that in particular d(zo, M) > 0]. Then there exists { € X*
with ||0]] =1 such that £ | M =0 (i.e. M Cker?) and ((zq) = d(xo, M).

PROOF. Consider the linear subspace M; = span{M, xo} = M + Rxy. Every vector z € M,
can be uniquely represented in the form x = Axg+y with A € R and y € M. Define a linear
functional ¢; on M; by

(Ao +y) = N (6.11)

Then clearly ker /; = M and ¢, (z¢) = 1. Moreover, £;'[1] = zo + M (why?). It follows from

Proposition 3.30 that
1 1

Ol — _ . 6.12

3llas 0,20+ M) — d(xo, M) (6.12)
We can now invoke the Hahn—Banach theorem to extend ¢; to a linear functional £, on all of
X, with norm ||4,||x+ = 1/d(xo, M). Then ¢ = d(zo, M) ¢, is the required linear functional.
O

Do you see why Proposition 6.6 includes Proposition 6.5 as a special case? (What should M
be taken to be?)

Corollary 6.7 Let X be a normed linear space. Every proper closed linear subspace M C X
1s the intersection of the closed hyperplanes containing it.

Why does this follow immediately from Proposition 6.67

More on the duality of Banach spaces

We can use the Hahn—Banach theorem to deduce some interesting results concerning the
relations between a normed linear space X and its duals X*, X**, X** etc.

Here is one result concerning the separability of X and its dual space X*. We know that
" is separable but £> ~ (£)* is not, so the separability of a Banach space X does not imply
the separability of its dual. However, the converse is true:

Theorem 6.8 Let X be a normed linear space. If X* is separable, then so is X.

4Consider any pair x,y € X with x # y, apply Proposition 6.5 to £ = 2 — ¥, and use the linearity of /.



PROOF. The unit sphere of X* is separable (why?), so let {{,} be a countable dense set in
the unit sphere of X*. For each n there exists x,, € X with ||z,|| = 1 such that |, (z,)| > 3
(why?). Now let M be the closed linear span of {z,}. We claim that M = X if we can prove
this, it follows that {z,} is total in X and hence that X is separable. To prove that M = X
suppose otherwise; then M is a proper closed linear subspace of X, so by Proposition 6.6
there exists ¢ € X* with ||¢|| =1 and ¢ [ M = 0. (Note that we are really using much less
than Proposition 6.6 asserts.) We then have ¢(x,) = 0 for all n and hence

1
5 = Malza)l = la(zn) = an)| < (1 = Ll lzall = 116. = €] (6.13)

for all n. But this contradicts the hypothesis that {¢,} is dense in the unit sphere of X*.
O

Using the Hahn-Banach theorem we can also determine the duals of subspaces and
quotient spaces. We need the following concept:

Definition 6.9 Let X be a normed linear space, and let M C X be a subset. Then the
annihilator of M is the subset of X* defined by

M+ = {te X*: U(x)=0 forallz € M} . (6.14)
Note that M+ is always a closed linear subspace of X* (why?). Note also that
M+ = (M)+ = (span M)* = (span M)+ (6.15)

(why?).

Remark. The notation M~ for the annihilator apparently conflicts with the notation
M+ that we used previously to denote the orthogonal complement of a set in a Hilbert
space ‘H, since in our previous notation M= is a subset of H, not H*. But the conflict is
harmless, because we also showed that H* can be canonically identified with H, and under
this identification the two meanings of M+ do coincide. [

The following important result shows that subspaces and quotient spaces are in a very
specific sense “dual” to each other:

Theorem 6.10 Let X be a normed linear space, and let M C X be a linear subspace. Then:
(a) M* is isometrically isomorphic to X*/M~*.
(b) If M is closed, then (X/M)* is isometrically isomorphic to M*.

Furthermore, the isometric isomorphisms here are “natural”, as will be seen in the course of
the proof.

PRrROOF. (a) Given ¢ € M*, the Hahn-Banach theorem tells us that there exists an extension
( € X* satisfying ||¢||x+ = ||¢||sr-. Now consider the mapping ¢: M* — X*/M+* defined by

W) = 0+ M*. (6.16)
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This mapping is well-defined, because if Ve X*is any other extension of ¢, then we have
¢ — 0 € M+ (why?). Clearly ¢ is linear. Furthermore, ¢ is a bijection of M* onto X*/M*,
because the inverse of ¢ is given by restriction to M, namely

UM+ M) = h M (6.17)

(why is this independent of the choice of & in the coset? why is this :717?).
Since each element in ¢ + M* is an extension of ¢ (why?), we have

Ollar+ < inf [[0+gllx- = € + M*|
geM-L

On the other hand, since ||/|

x+ = ||€]|ar+ we have

Iellar = [[¥llx- > inf [0+ gllxe = [0+ M5 - (6.19)
geEM -+

These two inequalities, together with the fact that ¢ is a bijection, prove that ¢ is an isometric
isomorphism of M* onto X*/M*.

(b) Recall that the quotient map m: X — X /M is defined by w(z) = x + M. Now define
the mapping ¢: (X/M)* — X* by

L(l) = lom (6.20)
for ¢ € (X/M)*. Clearly ¢ is linear. Moreover, for z € M we have
L(l)(z) = lm(x)) = Lx+M) = (M) =0 (6.21)

since the coset M is the zero element of X/M. It follows that ¢ actually maps (X/M)* into
M*. Furthermore, for any h € M+ we can express ¢~!(h) € (X/M)* by

R (z+ M) = h(x) (6.22)

for x € X (why is this well-defined? why is it :=!?). So ¢ is a bijection of (X/M)* onto M*.
Now for every ¢ € (X/M)* and x € X we have

L) ()| = [l(x+ M) < [Jllxan-llz+ Ml xm < ([l amn- ol x (6.23)
and hence
el < Nl xany - (6.24)
On the other hand, for h € M+ and x € X we have
| (R) (@ + M) = |h(z)] < ||hllxello]lx (6.25)
and hence
| (R) (@ + M) < |||l 4+ M| x)m (6.26)
(why?) and hence
[ W) [y < Nl (6.27)

These two inequalities, together with the fact that ¢ is a bijection, prove that ¢ is an isometric
isomorphism of (X/M)* onto M+. [

Finally, let us prove:



Theorem 6.11 Let X be a Banach space. Then X is reflexive if and only if X* is reflexive.

It follows from this that X and its duals and preduals are either all reflexive or all nonre-
flexive.

In preparation for the proof, let us recall that the natural embedding of X into X** is
defined by x +— Z where
() = L(x) (6.28)

for ¢ € X*. We denote the image of this natural embedding by X ; it is a linear subspace
of X**. The natural embedding is an isometric isomorphism of X onto X. The space X is
called reflexive in case X is all of X**. R

We will similarly denote the natural embedding of X* into X*** by ¢+ ¢ where

Uy) = y(0) (6.29)

for y € X**. We denote the image of this natural embedding by )/(\*; the space X* is reflexive
in case X* is all of X™***.

PROOF OF THEOREM 6.11. Consider any L € X***. Since L is a bounded linear functional
on X™**, we can restrict it to the linear subspace X C X** which is isometric to X via the
natural embedding; this defines a linear functional ¢ € X* by

((z) = L(T) (6.30)
for v € X. But £(z) = Z({) by definition, so we have
L(z) = z(¢) (6.31)

for x € X. Suppose now that X is reflexive, so that X = X**: then every y € X** is of the
form 7 for some x € X, so we have

~

L(y) = y(t) = ((y) (6.32)

for all y € X**. But this shows that L = ?, so we can conclude that X* is all of X e,
that X* is reflexive. R

Conversely, suppose that X is not reflexive. Then X is a proper linear subspace of X**,
which is closed since by hypothesis X is complete. It then follows from Proposition 6.6 that
there exists a nonzero L € X** such that L [ X = 0. (Note that we are using much less
tAhan Proposition 6.6 asserts.) If X* were reflexive, then there would exist ¢ € X* such that

¢ = L. But then L | X = 0 says that for all z € X we have

~

0= L@E) = @) = 3(0) = (), (6.33)

or in other words ¢ = 0, hence L = 0, which is a contradiction. [J



