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HANDOUT #4: INTRODUCTION TO HILBERT SPACE

Euclidean geometry on R2 or R3 or Rn uses more than the vector-space structure of Rn;
it also uses the notion of angle. Algebraically this arises by equipping Rn with an inner
product

(x, y) =
n

∑

i=1

xiyi . (4.1)

Note that the Euclidean (ℓ2) norm on R
n is then given by ‖x‖2 =

√

(x, x).
By abstracting the key properties of the particular inner product (4.1), we arrive at the

general definition of an inner product on a (finite-dimensional or infinite-dimensional) vector
space X. Here the cases of real and complex vector spaces have to be treated separately;
I shall start with the real case.

The first important property of the inner product (4.1) on Rn is that it is bilinear . Recall
that if X, Y, Z are vector spaces (over the same field F of scalars), then a map T : X×Y → Z

is called a bilinear map if it is linear in each variable separately whenever the other variable
is fixed, i.e.

T (α1x1 + α2x2, y) = α1T (x1, y) + α2T (x2, y) for all x1, x2 ∈ X, y ∈ Y and α1, α2 ∈ F

(4.2a)

T (x, β1y1 + β2y2) = β1T (x, y1) + β2T (x, y2) for all x ∈ X, y1, y2 ∈ Y and β1, β2 ∈ F

(4.2b)

If the target space Z is the field F of scalars (considered as a one-dimensional vector space),
then we say that T is a bilinear form.

A second important property of the inner product (4.1) on Rn is that it is symmetric, i.e.
(x, y) = (y, x). For a general bilinear map, this condition makes sense only if Y = X. The
definition is then: a bilinear map T : X × X → Z is called symmetric if T (x, y) = T (y, x)
for all x, y ∈ X.

The final important property of the inner product (4.1) on Rn is that it is positive-
definite. In general, a bilinear form T : X × X → F (where F = R or C) is called positive
(or positive-semidefinite) if T (x, x) ≥ 0 for all x ∈ X. It is called positive-definite if it
is positive and, in addition, T (x, x) = 0 only for x = 0.

Definition 4.1 An inner product on a real vector space X is a symmetric positive-definite
bilinear form on X. We usually write the inner product as (x, y) rather than T (x, y).1

An inner-product space (or Euclidean space or prehilbert space) over the field
of real numbers is the pair (X, ( · , · )) where X is a real vector space and ( · , · ) is an inner
product on X.

1Some authors use the notation 〈x, y〉 or 〈x|y〉.
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I stress, as always, that the inner-product space is the pair (X, ( · , · )). The same vector
space X can be equipped with many different inner products, and these give rise to different
inner-product spaces. However, we shall often refer informally to “the inner-product space
X” whenever it is understood from the context what the inner product is.

Things have to be modified to handle complex vector spaces, and we can see this already
in the finite-dimensional case — indeed, already in the one-dimensional case! To start with,
the bilinear form (4.1) is not positive on C

n, not even when n = 1, since the square of a
complex number need not be nonnegative (indeed, it need not even be real). Worse yet,
no bilinear form on a complex vector space can be positive, other than the identically-zero
form. To see this, it suffices to note that, by bilinearity, T (ix, ix) = −T (x, x). So bilinearity
is certainly not the property we want!

The hint is provided already in the case n = 1: the correct measure of the (squared)
length of a vector x ∈ C is not x2 but rather |x|2. And recall that |x|2 = xx where denotes
complex conjugate. So the standard inner product on Cn is given not by (4.1) but rather by

(x, y) =

n
∑

i=1

xiyi . (4.3)

Then we do have (x, x) ≥ 0 for all x ∈ Cn, and the Euclidean (ℓ2) norm on Cn is given by
‖x‖2 =

√

(x, x).
So what are the fundamental properties of (4.3)? It is not bilinear: rather, it is linear in

the first argument and antilinear in the second argument. More precisely, a map T : Y → Z

from one complex vector space Y to another complex vector space Z is called antilinear
(or conjugate-linear) if

T (α1y1 + α2y2) = α1T (y1) + α2T (y2) (4.4)

for all y1, y2 ∈ Y and α1, α2 ∈ C. If X, Y, Z are complex vector spaces, then a map T :X×Y →
Z is called a sesquilinear map2 if it is linear in the first argument and antilinear in the
second argument, i.e.

T (α1x1 + α2x2, y) = α1T (x1, y) + α2T (x2, y) for all x1, x2 ∈ X, y ∈ Y and α1, α2 ∈ C

(4.5a)

T (x, β1y1 + β2y2) = β1T (x, y1) + β2T (x, y2) for all x ∈ X, y1, y2 ∈ Y and β1, β2 ∈ C

(4.5b)

If the target space Z is C (considered as a one-dimensional vector space), then we say that
T is a sesquilinear form.

Consider now a sesquilinear form in the case Y = X, i.e. T : X × X → C. Such a map
cannot be symmetric (unless it is identically zero), because linearity in the first variable
clashes with antilinearity in the second. (Can you give a precise proof that symmetric
sesquilinear form must be identically zero?) Rather, the property we want is hermiticity : a
sesquilinear form T : X × X → C is called hermitian if T (x, y) = T (y, x) for all x, y ∈ X.

Finally, positive-semidefiniteness and positive-definiteness are defined as before.
We then have:

2From the Latin prefix “sesqui” meaning “one-and-a-half”.
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Definition 4.2 An inner product on a complex vector space X is a hermitian positive-
definite sesquilinear form on X. We usually write the inner product as (x, y) or 〈x, y〉 or
〈x|y〉 rather than T (x, y).

An inner-product space (or Euclidean space or prehilbert space) over the field
of complex numbers is the pair (X, ( · , · )) where X is a complex vector space and ( · , · ) is
an inner product on X.

Warning: I (following majority practice) have defined our sesquilinear forms (and hence
our inner products) to be linear in the first variable and antilinear in the second. However,
some authors (mostly mathematical physicists, especially those working in quantum mechan-
ics) define their sesquilinear forms and inner products to be antilinear in the first variable
and linear in the second. When reading a book or article, it is important to determine which
convention the author is using!

The basic theory of inner-product spaces and Hilbert spaces is fairly standard, and is
well covered in nearly all of the textbooks I have suggested. In particular, I will distribute
to you copies of Kreyszig, Sections 3.1–3.6 and 3.8, to which I have little to add.
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