MATHEMATICS 3103 (Functional Analysis)
YEAR 20122013, TERM 2

HANDOUT #3: INTRODUCTION TO NORMED LINEAR SPACES

Already in Handout #1 I gave the definition of a normed linear space:

Definition 3.1 Let X be a vector space over the field R of real numbers (or the field C of
complex numbers). Then a norm on X is a function that assigns to each vector x € X a
real number ||z||, satisfying the following four conditions:

(1) ||z|| > 0 for all x € X (nonnegativity);

(ii) ||z|| = 0 if and only if v = 0 (nondegeneracy );
(iii) || Ax|| = || ||z]| for allz € X and all A € R (or C) (homogeneity );
() ||z +yl < ||zl + |ly|| for all z,y € X (triangle inequality ).

The pair (X, || - ||) consisting of a vector space X together with a norm || - || on it is called
a normed linear space.

[ stress once again that the normed linear space is the pair (X, || - ||). The same vector
space X can be equipped with many different norms, and these give rise to different normed
linear spaces. However, we shall often refer informally to “the normed linear space X"
whenever it is understood from the context what the norm is.

We saw last week that completeness is a very nice property for a metric space to have,
and that every metric space can be embedded as a dense subset of a complete metric space
(called its completion); indeed, if one is given an incomplete metric space, then it is advisable
to first form its completion and henceforth work there.

Now, the process of forming the completion — by taking equivalence classes of Cauchy
sequences — can be applied equally well to a normed linear space (which, after all, is a special
case of a metric space), and this process respects the vector-space structure. Therefore, the
completion of a normed linear space is again a normed linear space (or more precisely, can
be given in an obvious way the structure of a normed linear space). And if one is given an
incomplete normed linear space, it is advisable to first form its completion and henceforth
work there.

A complete normed linear space is called a Banach space.! Most of the important
spaces in functional analysis are Banach spaces.? Indeed, much of this course concerns the
properties of Banach spaces.

'Polish mathematician Stefan Banach (1892-1945) was one of the leading contributors to functional
analysis in the 1920s and 1930s. His book Théorie des Opérations Linéaires (1932) was extremely influential
in consolidating the main ideas of functional analysis.

2But not all: some important areas of analysis, such as the theory of distributions (which plays a central
role in the modern theory of partial differential equations), require the study of non-normable topological
vector spaces.



Before beginning in earnest the general study of Banach spaces, I would like to clean
up two issues that we have left pending concerning our favorite example spaces: namely, to
prove the completeness of the spaces C(X) of bounded continuous functions, and to define
the sequence spaces 7 for 1 < p < oo.

Completeness of spaces C(X) of bounded continuous functions

In Handout #1 I defined the space C(X) of bounded continuous real-valued functions
for a subset X of the real line. But now that we have defined continuity of maps from one
metric space to another, we can see that the same definition holds when X is an arbitrary
metric space. That is, we denote by C(X) the linear space of bounded continuous real-valued
functions on X, and we equip it with the sup norm

[fllec = sup[f(x)
zeX

. (3.1)

Recall, also, that if A is any set, then B(A) denotes the space of bounded real-valued
functions on A, equipped with the sup norm. In Problem 1 of Problem Set #2, you proved
that B(A) is complete, i.e. is a Banach space.

Now, if X is any metric space, then C(X) is clearly a linear subspace of B(X), and of
course the norm is the same. So to prove that C(X) is complete, it suffices to prove that C(X)
is closed in B(X) (why?). Since convergence in B(X) [i.e. in the sup norm] is another name
for uniform convergence of functions, what we need to prove is that the limit of a uniformly
convergent sequence of bounded continuous functions on a metric space X is continuous. In
your real analysis course you saw a proof of this fact when X is an interval of the real line
(or a subset of R™); the proof in the general case is identical:

Proposition 3.2 Let X be any metric space. Then the limit of a uniformly convergent
sequence of bounded real-valued continuous functions on X is continuous.

Corollary 3.3 Let X be any metric space. Then the space C(X) is complete, i.e. is a Banach
space.

PROOF OF PROPOSITION 3.2. Let (f,) be a uniformly convergent sequence of bounded
real-valued continuous functions on X, and let f be the limit function; we want to prove
that f is continuous. By hypothesis we have lim,, . || f» — f|lcc = 0. In other words, for any
€ > 0 there exists an integer ng such that || f,, — |l < €/3 for all n > ng. (You will see later
why I chose €/3 here.) Now consider any point zy € X. By continuity of f,, at xy, we can
find 6 > 0 such that d(z, z¢) < § implies |f, () — fn,(z0)| < €/3. But we then have

[f(@) = flzo)| < [ (@) = fao(@)] + |fno(x) = fro(0)| + [ fng (20) — f(z0)| (3.22)
< €/3+¢€/3+¢€¢/3 (3.2b)
= € (3.2¢)

where the first and third summands are bounded by || fn, — flleoc < €/3 (why?) and the
second summand is bounded by €/3 as we just saw. [
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This proof is often called the “e/3 proof” (for obvious reasons) or the “down-over-and-up”
proof (you will see why if you draw a picture).

You should give an example to show that a pointwise-convergent sequence of bounded
real-valued continuous functions need not be continuous, even if the metric space X is
compact (e.g. X = [0, 1]) and even if the convergence is monotone (i.e. the sequence increases
or decreases to its limit for each x € X).

Definition and completeness of the sequence spaces /# for 1 < p < oo

Let us begin by defining the ¢* norm on R™ (or C"); we will then define the ¢? space of
infinite sequences.

Example 1. R"” with the /¥ norm. Let p be any positive real number. Then, for any
n-tuple x = (21, xs, ..., x,) of real (or complex) numbers, we define

n 1/p
@], = (ZWV’) : (3.3)

It is easy to see that this is a norm on R"™ (or C") when p = 1; and in Handout #1 we
proved it also for p = 2 using the Cauchy—Schwarz inequality. Now we will do it for all p in
the interval (1,00) by using Holder’s inequality, which generalizes the Cauchy—Schwarz
inequality (and reduces to it when p = 2). The proof will use the following sequence of
inequalities:

Lemma 3.4 (Arithmetic-geometric mean inequality) Let z,y > 0 and 0 < A < 1.

Then
Pyt < e+ (1- Ny . (3.4)
1 1
Corollary 3.5 (Young’s inequality) Letp € (1,00), and define g € (1,00) by — + — = 1.
p q
Then, for any real numbers o, 3 > 0, we have
p q
wg< @y (3.5)
p q

1 1
The relation — + — = 1 will come up over and over again in discussing the /7 spaces. We

p g
refer to ¢ as the conjugate index to p.

1 1
Proposition 3.6 (Hoélder’s inequality) Consider once again p,q € (1, 00) satisfying — + — = 1.

p g
Then, for any x = (x1,Ta,...,2,) and y = (Y1,Y2, - - -, Yn) in R™ (or C"), we have

n n 1/17 n 1/‘1
S ol < (zw) (zw) , 50
i=1 i=1 i=1

or in other words

Dl < llly llyllg - (3.7)
i=1



Note that when p = ¢ = 2 this is the Cauchy—Schwarz inequality. Note also that (3.7) also
holds when p = 1 and ¢ = oo (or the reverse) when we interpret || - || as the sup norm.?

Proposition 3.7 (Minkowski’s inequality) Let1 < p < oo. Then, for anyx = (1,3, . ..

and y = (Y1, Y2, - - -, Yn) 1 R™ (or C™), we have
/p

D lzi+ il < Dl
i1 i=1

/p /p

n 1
+ D lwl ) (3.8)
=1

or in other words
Iz +yll, < llzllp + [yl - (3.9)

This is the needed triangle inequality for R™ (or C™) with the ¢Z norm.

PROOF OF ARITHMETIC-GEOMETRIC MEAN INEQUALITY. Since the exponential function

is convex (why?), we have

2y = exp[Mogz + (1—-X)logy] < Nexpllogz] + (1—N)exp[logy] = Az + (1—-N)y.
(3.10)

]

PROOF OF YOUNG’S INEQUALITY. Just put A =1/p, z = of and y = 57 in the arithmetic-
geometric mean inequality. [

PROOF OF HOLDER’S INEQUALITY. The result is trivial if z = 0 or y = 0 or both, so let
x,y be nonzero vectors in R" or C". For each index i (1 <14 < n), put
|
[E4[

into the inequality of Corollary 3.5 and then sum over i. We get

;\%yﬁ 1 1
o S _ _|_ _
Izl llylls — g

= = 3.11
5= Tl (3.11)

= 1. (3.12)

3A quirk of history: Hélder’s inequality was first found by the English mathematician Leonard James
Rogers (1862-1933) in 1888, and then discovered independently by the German mathematician Otto Holder
(1859-1937) one year later. Alas, the term “Holder’s inequality” is by now so well established that it would
be very hard to change the name.

Rogers also discovered, in 1894, the famous Rogers—Ramanujan identities, which were rediscovered inde-
pendently by the Indian mathematical genius Srinivasa Ramanujan (1887-1920) somewhere around 1913.
As Hardy writes in his book on Ramanujan:

The formulae have a very curious history. They were first found in 1894 by Rogers, a math-
ematician of great talent but comparatively little reputation, now remembered mainly from
Ramanujan’s rediscovery of his work. Rogers was a fine analyst, whose gifts were, on a smaller
scale, not unlike Ramanujan’s; but no one paid much attention to anything he did ...

[G.H. Hardy, Ramanujan: Twelve Lectures on Subjects Suggested by his Life and Work (1940), p. 91]
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(You should check the algebra here!) [

PROOF OF MINKOWSKI’'S INEQUALITY. It is trivial when p = 1, so consider 1 < p < oo.
We have

n

S fa il < 3 bl b w4 Sl o (3.13)
i=1 i=1 i=1
Now use Holder’s inequality to bound each of the two sums on the right: we have

n n 1/p n 1/q
Z |lzi| |z +wiP™t < <Z |xi\p> <Z |z; + yi\(p_l)q) (3.14a)
i=1 =1 =1
n 1/p n 1/q
= <Z |a:i|”> <Z |z; + in”> (3.14b)
=1 =1

since (p — 1)q = p, and similarly

n n l/p n 1/‘1
Sl et < (zw) (zmw) | @15)
=1 =1

1=1

We therefore have

n n 1/(]
Yol ul < (2l + Nyl (Z\fcﬁyi\p) : (3.16)
=1 =1

n 1/q
If z +y # 0 we can divide both sides by <Z |25 + v to obtain the desired inequality

i=1
(since 1 —1/q = 1/p); and if x + y = 0 the desired inequality is trivial. O

Remarks. 1. You should show, by example, that || - ||, is not a norm when 0 < p < 1,
i.e. the triangle inequality fails.
2. Note that
i [, = oo o (3.7

(why?). This justifies our notation ||z||o, for the max norm. O

Example 2. The sequence space . For any sequence x = (z1,xs,...) of real (or
complex) numbers and any real number p € [1,00), we define

o 1/p
@], = (ZWV’) : (3.18)

Of course, ||z||, defined in this way might be 400! We define ¢ to be the set of sequences
for which ||z||, < co. We must now verify that

b}



(a) ¢? is a linear space, i.e. z,y € /P imply = + y € ¢P; and
(b) || - ||, is a norm on 7.

As always, the only nontrivial thing to be verified in (b) is the triangle inequality ||z +y||, <
lz|l, + ||yllp; and this will also demonstrate (a).

Proposition 3.8 (Minkowski’s inequality for infinite sequences) Let 1 < p < oc.
Then, for any x = (x1,xa,...) and y = (Y1, Y2, . ..) in P, we have x +y € (* and

00 1/p 0o 1/p 0o 1/p
(zwym) . (zw) ' (zw) | (3.19)
=1 =1 =1

or in other words
lz+yll, < llzllp + [yl - (3.20)

PRrROOF. From the finite-dimensional Minkowski’s inequality we have for every n

n 1/p n 1/p n 1/p
(Z |z + yi|p) < <Z |95i|p> + <Z |yi|p> (3.21a)

i=1 i=1
s 1/p o 1/p
< (Swr) o (Twr) o e
i=1 i=1

which is < oo since by hypothesis z,y € . We can now take n — oo to conclude that
S o2y |z + yiP < oo and that (3.19) holds. O

So we have shown that /* is a normed linear space for each p € [1,00). The next step
is to show that ¢F is complete, hence is a Banach space. The proof is given in Kreyszig,
Section 1.5 (handout) and is essentially the same for general p € [1,00) as it is for p = 1.

Elementary properties of normed linear spaces

Let (X, || - ||) be a normed linear space. The following properties are easy consequences
of the triangle inequality, and you should supply the proofs:

Lemma 3.9 Let (X, || - ||) be any normed linear space. Then:
(a) For any z,y € X, we have
el = gl < Nz =il (3:22)

In particular, the norm is a continuous function on X (in fact, a Lipschitz-continuous
function of Lipschitz constant 1).



(b) For any z,y € X and 0 < XA <1, we have
Az + (1 =Nyl < Mzl + (1 =Ny, (3.23)

1.e. the norm is a convex function on X. In particular, open and closed balls are convex
sets in X, i.e. z,y € B(wo, ) imply Az + (1 — Ny € B(xo,7) for all 0 < XA <1, and
likewise for B(zg,T).

(c) The vector-space operations are jointly continuous: i.e. if x, — x and y, — vy, then
Tp+ Yo — x+y; and if x, — x and A\, — A, then \,x, — A\x.

Subspaces and quotient spaces

Whenever one introduces a new mathematical structure, it is natural to seek operations
that construct new examples of that structure out of old ones. In linear algebra we are
familiar with two elementary ways of getting new vector spaces out of old ones: namely,
linear subspaces and quotient spaces. Here we want to investigate how these constructions
work in the context of a normed linear space.

Subspaces are easy: Let (X, || - ||) be any normed linear space, and let M be any linear
subspace of X. Then the restriction of || - || to M is obviously a norm on M, let us call it
| - [|ar- So (M, ]| - ||ar) is a normed linear space; it is called the normed linear subspace
of X corresponding to the linear subspace M.

Usually we will just refer to “the subspace M of X” rather than the more pedantic “the
subspace (M, || - ||a) of (X, || - ||)” — the norm being understood from the context.

We then have the following fundamental result:

Proposition 3.10 Let X be a Banach space (i.e. a complete normed linear space) and let
M be a closed linear subspace of X. Then M is a Banach space (i.e. is complete).

PRrOOF. This is an immediate consequence of the elementary fact that a closed subspace of
a complete metric space is complete. (The fact that M is a linear subspace of X is irrelevant
to the proof that M is complete.) [

We also have the following easy fact:

Proposition 3.11 Let X be a normed linear space, and let M be a linear subspace of X.
Then the closure M s also a linear subspace of X.

This is an easy consequence of the joint continuity of algebraic operations [Lemma 3.9(c)],
and you should supply the details of the proof yourself.

The second, and slightly more complicated, construction is that of a quotient space. Let
us first recall how quotient spaces are constructed in linear algebra. Let X be any vector
space and let M be any linear subspace of X. Then the quotient space X /M is defined to
be the linear space of cosets

2] = o+ M = {x+y:ye€ M} (3.24)
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under the algebraic operations
2]+ [y = @+M)+y+M) = (x4+y)+M = [z+y]  for [z],[y] € X/M (3.25)
and
ANzl = Mz +M) = e+ M = [\2]  for[zg] € X/Mand \eR (or C).  (3.26)

The coset [0] is the zero vector of X/M and is simply denoted 0. It is routine to verify that
all the axioms of a vector space are satisfied.
Now let us equip the quotient space with a norm. A little thought shows that the right
definition is
= d(0 M) = inf = inf . 3.27
Ielllxar = dOo+M) = inf gl = inf [z +m] (3.27)
We call || - ||x/m the quotient norm on the space X/M that is induced by the norm || - ||
on X. Of course, we still need to verify that this s a norm; and one slight subtlety arises in
this verification:

Proposition 3.12 || - ||x/a s a norm on X/M if and only if M is a closed linear subspace
of X.
PROOF. It is routine to verify properties (i), (iii) and (iv) of the norm || - || x/a, and I leave

it as an exercise for you (in particular, you should make sure you know how to prove the
triangle inequality). The property that can go wrong is the nondegeneracy property (ii), in
case M is not closed. Indeed, if M is not closed, we can take any x € M \ M, and then
|[x]||x/a = 0 (why?) but [z] # [0] (why?). On the other hand, if M is closed, then so
is x + M (why?), and d(0,x + M) = 0 if and only if 0 € x + M by Proposition 1.14 of
Handout #1, i.e. if and only if [x] = [0]. O

The next step is to verify completeness:

Proposition 3.13 Let X be a Banach space (i.e. a complete normed linear space) and let
M be a closed linear subspace of X. Then X/M is a Banach space (i.e. is complete).

PROOF. Consider a Cauchy sequence {x,, + M} in (X/M,|| - || x/a). Then for each positive
integer k there exists an integer n; such that

(@ + M) — (2 + M)||xm < 27F for all m,n > ny (3.28)

and we can also choose the n; so that n; < ny < ... . Now consider the subsequence
{zn, + M}. We have

(@, + M) — (s + M)l < 27 (3.29)

By definition of the quotient norm, it follows that we can successively choose y;, € x,, + M
such that

gk — yerall < 27F. (3.30)
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But it follows from this that {y;} is a Cauchy sequence in X (why? do you see why we used
2% instead of e.g. 1/k?). Therefore, since X is complete, {y;} converges to some y € X.
But then

[y, +M)=(y+M)lx/n0 = Nyst-M)=(y+M)llxm < llye—yll — 0as k— o0, (3.31)

0 {xn, + M} is convergent to y + M in (X/M, || - ||x/m). But {z,, + M} is a convergent
subsequence of the original Cauchy sequence {x, + M}, so {x,, + M} also converges to y+ M
by Proposition 1.27 of Handout #1. [

Very soon we will introduce a third operation for constructing new normed linear spaces
out of old ones: namely, forming spaces of linear mappings.

Continuous linear mappings

In linear algebra you studied linear mappings 7' from one vector space X to another
vector space Y. (Also called linear operators — the two terms are synonyms.) Here we
would like to see how linear mappings fit together with the normed structure.

So let (X, || - ||x) and (Y, ]| - ||y) be normed linear spaces, and let 7: X — Y be a linear
mapping. Let us define

Tx
IT|x—y = sup |[Tzlly = sup |[Tz|y = sup [7lly (3.32)
e X ceX sex\ioy 17l x
lzl|x =1 lz||x <1

(You should make sure you understand why all these definitions are equivalent.) Of course,
| 7| x—y might be +0co. We say that the map T is bounded if ||T|x_y < co.?

Remark. Another equivalent definition is
T x—y = inf{M: ||Tz||y < M|z|x for all x € X} (3.33)

provided that the infimum of an empty set is defined to be +00. You should supply the
details of the proof that this is indeed equivalent to the other definitions.

We then have the following fundamental fact:

Proposition 3.14 Let (X, | - ||x) and (Y,|| - ||y) be normed linear spaces, and let T: X — Y
be a linear mapping. Then the following are equivalent:

(a) T is continuous at 0.

(b) T is continuous.

4Warning: This terminology slightly conflicts with the usual meaning of “bounded” in discussing func-
tions from one metric space to another, i.e. a function is called bounded (in the usual sense) if its range is
a bounded subset of the range space. Now, the only linear map that is bounded in the usual sense is the
zero map! (Why?) So it is silly, for a linear map T, to ask for boundedness in the usual sense; the more
interesting question, for a linear map, is whether the restriction of T to a bounded subset of the domain space
is bounded in the usual sense; and that is exactly what ||T||x—y < oo says (why?).



(¢) T is uniformly continuous.

(d) T is bounded.

PROOF. The equivalence of (a), (b) and (c) is an easy consequence of the properties of the
norm and the linearity of 7' (you should work out the details for yourself). Furthermore, if
T is bounded, then it is clearly continuous at 0 (why?). On the other hand, suppose that
T is not bounded; then for each positive integer n there exists x,, € X with ||z,||x =1 and
|Txy,|ly > n. We then have z,,/n — 0 in X but T'(z,/n) # 0 in Y since ||T'(x,/n)|ly > 1.
This shows that 7" is not continuous at 0. [

In the special case where T is a bijection, the inverse map T~': Y — X is well-defined,
and we have the following criterion for its continuity:

Proposition 3.15 Let (X, | - ||x) and (Y,|| - |ly) be normed linear spaces, and letT: X — Y
be a bijective linear mapping. Then the following are equivalent:

(a) T~ is continuous at 0.

(b) Tt is continuous.

(c) T~ is uniformly continuous.
(d) T=1 is bounded.

(e) There exists m > 0 such that ||Tz||y > mljz||x for all z € X.

PROOF. The equivalence of (a)—(d) is just Proposition 3.14 applied to T~!. On the other
hand, (e) is equivalent to the statement that |7 'y||x < m™'||ly|ly for all y € Y, which is
precisely the statement that 77! is bounded (by m™1). O

A bijective linear mapping 7: X — Y is called a topological isomorphism (or linear
homeomorphism) if both 7' and T~! are continuous. Putting together Propositions 3.14
and 3.15, we have the following immediate corollary:

Corollary 3.16 Let (X, || - ||x) and (Y,]|| - |ly) be normed linear spaces, and let T: X —Y
be a bijective linear mapping. Then T is a topological isomorphism if and only if there exist
numbers m > 0 and M < oo such that

mllzllx < [[Tzlly < Mllz|x (3.34)
forallz € X.

Of course, if T: X — Y is a topological isomorphism, then so is 77': Y — X; and if
S: X =Y and T: Y — Z are topological isomorphisms, then so is T'o S: X — Z (why?).

Two normed linear spaces X and Y are said to be topologically isomorphic if there
exists a topological isomorphism 7: X — Y. From what has just been said, topological iso-
morphism is an equivalence relation among normed linear spaces (i.e. is reflexive, symmetric
and transitive).

It is worth observing that completeness of normed linear spaces is invariant under topo-
logical isomorphism:
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Proposition 3.17 Suppose that the normed linear spaces X and Y are topologically iso-
morphic. If X is complete, then so is'Y .

PROOF. Let T: X — Y be a topological isomorphism. If (y,) is a Cauchy sequence in Y,
then (T 'y,) is a Cauchy sequence in X (why?). Since X is complete, there exists r € X
such that 7'y, — x in X. But then y, — Tz in Y (why?). O

Do you see how the boundedness of both 7" and 7! was used in this proof?

Two norms || - ||; and || - ||2 on the same space X are said to be equivalent if the identity
mapping id: (X, | - [l1) — (X]| - ||2) is a topological isomorphism. By Corollary 3.16 we see
that || - ||; and || - || are equivalent if and only if there exist numbers m > 0 and M < oo
such that

mllzlly <zl < Ml (3.35)

(This property is sometimes taken as the definition of equivalent norms, and then the
topological-isomorphism property is proven to be an equivalent characterization.) Of course,
if norms || - ||; and || - || are equivalent and norms || - || and || - ||3 are equivalent, then
norms || - ||; and || - ||3 are equivalent; so equivalence of norms is an equivalence relation.

If normed linear spaces X and Y are topologically isomorphic, then they are essentially
identical for all topological purposes (i.e. things relating to open sets, convergence, continuity,
etc.) but not necessarily for metric purposes (i.e. things relating to distances, balls, etc.). A
stronger notion is isometric isomorphism: a bijective linear mapping 7: X — Y is called
an isometric isomorphism if ||Tz|ly = ||z||x for all x € X, i.e. if we can take m = M =1
in (3.34). Two normed linear spaces X and Y are said to be isometrically isomorphic
if there exists an isometric isomorphism 7@ X — Y. If normed linear spaces X and Y are
isometrically isomorphic, then they are essentially identical for all purposes.

Example: (R", || -||2) and (R™, || - ||o) are topologically isomorphic but not isometrically
isomorphic. To see that there cannot exist any isometric isomorphism from (R™, || - [|2) to
(R™, || - ||so), it suffices to note that the closed unit ball of (R",|| - ||2) is round, while the
closed unit ball of (R™, || - ||») has flat sides (you should draw these two balls for the case
n = 2). Stated more precisely, every boundary point of the closed unit ball of (R™ || - ||2) is
an extreme point, while this is not so for the closed unit ball of (R™,]| - ||s).’

Spaces of continuous linear mappings

At the purely algebraic level, we can define spaces of linear mappings as follows: If
X and Y are vector spaces over the same field (either R or C), then the space £(X,Y) of
all linear mappings from X to Y is a vector space under the obvious definitions of pointwise
addition and multiplication by a scalar.

Now let X and Y be normed linear spaces (again over the same field); we define B(X,Y)
to be the space of all continuous (or equivalently, bounded, hence the choice of the letter B)

5If C is a convex subset of a real vector space V, a point x € C is called an extreme point of C if there
do not exist distinct points y, z € C' and a number 0 < A < 1 such that x = Ay + (1 — A)=.
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linear mappings from X to Y.® Tt is obviously a linear subspace of £(X,Y") (why?). More
importantly, it is a normed linear space under the operator norm || - ||x_y:

Proposition 3.18 || - ||x_y is a norm on the vector space B(X,Y).

The easy verification of the properties of a norm is left to you. We call B(X,Y’), equipped
with the operator norm, the space of continuous linear mappings from X to Y.

The fundamental result is the following:

Proposition 3.19 Let X and Y be normed linear spaces, with Y complete (i.e. a Banach
space). Then B(X,Y) is complete (i.e. is a Banach space).

PROOF. Let (7},) be a Cauchy sequence in B(X,Y). We aim to show that (7,,) converges to
some T' € B(X,Y). The structure of the proof is the same as in our previous completeness
proofs: First we identify the putative limit 7', by using convergence in a weaker sense than
convergence in the norm of B(X,Y); next we prove that 7" belongs to the space B(X,Y);
and finally, we prove that (7),) actually converges to 7" in the norm of B(X,Y).

Step 1. Since (7)) is a Cauchy sequence in B(X,Y), it follows that (7,,z) is a Cauchy
sequence in Y for each x € X (why?). Since Y is assumed complete, this means that (7),z)
converges to some (necessarily unique) element of Y, call it Tx. The mapping 7: X — Y
defined by z — Tz is linear (why?).

Step 2. Since (T,,) is a Cauchy sequence in B(X,Y), it is necessarily bounded, i.e. there
exists M such that ||T,|x—y < M for all n. It easily follows from this that ||T||x_y < M
(why?). So T is indeed a bounded linear operator from X to Y, i.e. it belongs to the space
B(X,Y).

Step 3. Fix € > 0. Since (7,) is a Cauchy sequence in B(X,Y’), there exists ny such that

T — Thllx—y < € whenever m,n > ng, (3.36)
and hence that
| Tz — Thxlly < €||z|x for all z € X whenever m,n > ny . (3.37)
Now let n — oo with m fixed; we have T,,x — Tz by construction, and hence
|Tmx — Tz|ly < €||lz|x for all z € X whenever m > ng (3.38)
(why? do you see how Lemma 3.9(a) is being used here?). But this means that
T — T||x—y < € whenever m > ng, (3.39)

which is exactly what is needed to prove that T,,, — T in the space B(X,Y). O

Note that it makes no difference in the foregoing proposition whether X is complete or
not. This is related to the following fact:

Warning 1: Some authors (e.g. Dieudonné) write £(X,Y’) to denote the space of all continuous linear
mappings from X to Y.

Warning 2: I trust that there will be no confusion between the space B(X,Y") of bounded linear mappings
from a normed linear space X to another normed linear space Y, and the space B(A) of all bounded real-
valued functions (in the usual sense of “bounded”) on a set A. I apologize for using the same letter B in
both cases; but there are, alas, only 26 letters in the alphabet, and only one that starts the word “bounded”.
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Proposition 3.20 Let X and Y be normed linear spaces, with Y complete (i.e. a Banach
space), and let A be a dense linear subspace of X. Then every continuous linear mapping
T: A — Y has a unique extension to a continuous linear mapping T: X — 'Y, and ||TV||X_>y =
IT||azy. Indeed, the mapping v: T — T is an isometric isomorphism of B(A,Y) onto
B(X,Y).

PROOF. If a continuous extension 7' exists, it is certainly unique, since a continuous function
is determined by its values on a dense subset of the domain (why?), and indeed T' must satisfy

Tz = lim Ta, for any sequence (a,) in A converging to x (why?).

To see that a continuous extension T’ exists, let us try to define it by this formula. That
is, consider any z € X, and let (a,) be any sequence in A converging to x (why must such a
sequence exist?). Then (a,) is a Cauchy sequence in A, so that (Ta,) is a Cauchy sequence in
Y (why?). Since Y is complete, (T'a,,) converges to some y € Y'; we define Tz = y. To sece that
the definition makes sense, we must verify that for any other sequence (a},) in A converging
to x, we also have T'a!, — y; but this follows from ||Ta, — Tal|ly < [|T||a=y|lan — a,||x
(why?). In particular, this means that 7 | A =T (why?). I leave it to you to verify that T
is linear. B B

Let us now prove that ||T||x—y = ||T||a—y. The > is trivial, because T" is an extension
of T. On the other hand, if (a,) is a sequence in A converging to x, we have

|Tzlly = Jim [[Ta,ly < |[T][awy lim flan]lx = [[T[la-y|2]lx - (3.40)

It is easy to easy to see that the map T" +— Tis linear, and that it is a bijection of B(A,Y")
onto B(X,Y) (why?). Since ||T||x—y = ||T||a-y, it is an isometric isomorphism of B(A,Y)
onto B(X,Y). O

Remark. Proposition 3.20 is actually a special case of more general results concerning

extension of continuous mappings from one metric space to another: see e.g. Dieudonné,
(3.15.5) and (3.15.6).

The relation between the preceding two propositions arises from the fact that every
incomplete normed linear space X can be isometrically embedded as a dense linear subspace
of its completion X. Proposition 3.20 then tells us that B(X,Y") is isometrically isomorphic
to B()A( ,Y), so it makes no difference which of these two spaces we consider: they are
essentially the same space.

Some examples and counterexamples

It is instructive to look at some examples of bounded and unbounded linear operators:

Example 1: Linear mappings from R” to R™. As you undoubtedly recall from linear
algebra, any m x n matrix A = (a;;) of real numbers defines a linear mapping (by abuse of
language let us also call it A) from R” to R™ by

(Az); = Z a;;T; fori=1,2,...,m. (3.41)
j=1
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And conversely, every linear mapping from R™ to R™ is induced by such a matrix (why?).
Let us now show that every such mapping is bounded. To give meaning to this statement,
we first have to equip R™ and R™ with norms. We have already studied three such norms
— the ¢!, 2 and ¢*° norms — and it is easy to see that these three norms are all equivalent
on any space R™ (why? note that this statement does not survive if we try to take n — oo:
why?). So it doesn’t matter which one we choose; let’s choose for simplicity the ¢ norm
for both the domain space R™ and the range space R™. I then claim that the operator norm
Al ®n - loo)—(®™,| - | ) for such a mapping is given in terms of the matrix A = (a;;) by

Al @ - o) (@[ o) = MAX Z|aw| (3.42)

1<i<m

[ leave it to you to prove this (Problem 4(a) on Problem Set #3). It follows, in particular,
that every linear mapping from R™ to R™ is bounded.

The same considerations apply if A is an m x n matrix of compler numbers, and lead to
a bounded linear mapping from C" to C™. The formula for the norm is the same.

We will see later, in fact, that every linear mapping from a finite-dimensional normed
linear space to any normed linear space (finite-dimensional or not) is bounded (Proposi-
tion 3.25).

Example 2: Linear mappings on sequence spaces induced by infinite matrices.
In a similar way, we can start from an “infinite matrix” A = (a;;);5-, of real numbers, and
try to define a linear operator on a sequence space (for example, on one of our spaces () by

(Azx); = > ayz;  fori=12... . (3.43)

J=1

But now things become nontrivial: we have to verify, first of all, that the sum is indeed
convergent for all z in the domain space, and secondly, that the resulting sequence Ax
indeed belongs to the desired range space. Only if we can do this does it then make sense
to inquire whether the resulting linear map is bounded or not.
I won’t try to do this in general, but will simply give a few important examples:
Consider the infinite matrix

0100
0010
whose matrix elements are 1 fi—iz1
- == 3.45
i { 0 otherwise ( )

This matrix can be interpreted as acting on any of the /F spaces (1 < p < oo) and gives

A([L’l,llfg,l’g,...) = (1'2,1’3,1’4,...) (346)

14



(why?). You should convince yourself that = € ¢ implies Az € 7 and that ||Al|p—w» = 1.
This operator is called left shift.

Similarly, one can define the right shift on ¢7: you should figure out what is the corre-
sponding infinite matrix B and show that again || B||p—_e» = 1.

There are also weighted shifts, in which the infinite sequence of 1’s in the matrix of A
(or B) is replaced by a suitable sequence (a;)$2; of scalars, so that, for instance, the weighted
left shift sends (z1, %2, x3,...) to (a1xe, asxs, asxy, ...). Of course, we have to be careful in
our choice of weights (a;)2, if we want to make sure that the domain space is mapped into
the desired range space and that the mapping is bounded. Can you see that if the sequence
(a;)$2, is bounded, then the weighted left (or right) shift defines a bounded linear map from
any P space to itself? The class of weighted shift operators on ¢2 plays an important role in
the theory of linear operators on Hilbert spaces.

Some more examples of linear maps defined by infinite matrices are given in Prob-
lem 4(c,d) of Problem Set #3.

Example 3: Integral operators. We consider the space Cla,b] of (automatically
bounded) continuous functions on a bounded closed interval [a,b] C R, equipped with the
sup norm; we will define some linear mappings from C|a, b] to itself via integrals. To do this,
let K: [a,b] X [a,b] — R be a continuous function (called the kernel), and define a mapping
T: Cla,b] — Cla, b] by

- / K(s,t) f(t) dt . (3.47)

It is not hard to show that T'f is continuous whenever f is, and that 7" defines a bounded
linear map from Cla, b] to itself, of norm

||T||C[ab—>Cab] = sup/ |K S, t |dt (348)

s€la,b]

(Problem 6 on Problem Set #3). Do you see that this is an infinite-dimensional version of
Example 1, in which the matrix (a;;) is replaced by the kernel K(s,t) and the sum over j is
replaced by integration over ¢t? And do you see that (3.48) is the analogue of (3.42)? The
operator T defined by (3.47) is called a Fredholm integral operator of the first kind.”

If T is a Fredholm integral operator of the first kind, then U = I — T (where I denotes
the identity operator) is called a Fredholm integral operator of the second kind: explicitly it
is given by

(Uf)(s) /K 5,t) f (3.49)

If in (3.47) or (3.49), we change the upper limit of integration from b (a fixed limit) to
s (a variable limit), then T" or U is called a Volterra integral operator (of the first or second

"Named after the Swedish mathematician Erik Ivar Fredholm (1866-1927), who founded the modern
theory of integral equations.
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kind, respectively).®
Now let us look at some examples of what can go wrong in infinite dimensions:

Example 4: An unbounded linear map. Let A be the infinite diagonal matrix
diag(1,2,3,...), and let us try to define the corresponding linear operator A on (for example)
the sequence space 2, i.e.

The trouble is that this formula does not map ¢? into itself — can you see why? (You should
give an example of an x € % with the property that Az ¢ (2.) Indeed, the largest space on
which the operator A can be sensibly defined (as a mapping into ¢?) is the subspace M C ¢?
given by

M = {x e k|l < oo} (3.51)
k=1

It is not hard to see that M is indeed a linear subspace of £2, but it is not closed; indeed, it
is a proper dense subspace of /2. (Can you prove this? Indeed, you might as well go farther
and show that the subspace coyp C M consisting of sequences with at most finitely many
nonzero entries is already dense in ¢2.)

So now consider A as a linear map from M (equipped with the ¢? norm that it inherits
as a subspace of £?) into (2. Is it bounded? The answer is no: consider the vector e, having
a 1 in the nth coordinate and 0 elsewhere; it belongs to M (and indeed to cyy) and we have
llenllez =1 but ||Aenlle = n (why?); so the operator norm of A is infinite.

This is a typical situation: Unbounded operators cannot be defined in any sensible way
on the whole Banach space, but only on a proper dense subspace.

Here is another example of the same phenomenon:

Example 5: A differential operator. In the space C[0,1] of (bounded) continuous
functions on the interval [0, 1], equipped with the sup norm, let us try to define the operator
D of differentiation. The trouble, once again, is that differentiation makes no sense for
arbitrary functions f € C[0,1] (at least, not if we want the derivative f’ to also belong to
C[0,1]). Rather, we need to restrict ourselves to (for example) the space C'[0, 1] consisting
of functions that are once continuously differentiable on [0,1] (where we insist on having
also one-sided derivatives at the two endpoints, and the derivative f’ is supposed to be
continuous on all of [0, 1], including at the endpoints). This is a linear subspace of C|0, 1],
but it is not closed; indeed, with some work it can be shown that it is a proper dense subspace
of C[0, 1]. (There is an easy proof using the Weierstrass approximation theorem, if you know
this theorem.) Then the map D: f — f’ is a well-defined linear map from C'[0, 1] into C[0, 1].
But it is unbounded: to see this, it suffices to look at the functions f,, € C'[0,1] defined by
fn(z) = 2™ We have || fu]lcc = 1 but ||Df,]lec = n (why?), so the operator norm of D (as
an operator from C'[0, 1] into C[0, 1], where both spaces are equipped with the sup norm) is
infinite.

8Named after the Italian mathematician Vito Volterra (1860-1940), who made important contributions
to the theory of integral and integrodifferential equations as well as to mathematical biology.
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Example 6: A bounded linear bijection with unbounded inverse. Consider the

linear map 1" /2 — (2 defined by

1
(Tx); = 3% (3.52)

Can you see that T is bounded? What is its operator norm?

Can you also see that 7' is an injection? It is not a surjection, i.e. its image is not all
of £2; rather, its image is precisely the dense linear subspace M C ¢? defined in Example 4
above — can you see why?

Since T is a linear bijection from ¢2 to M, the inverse map T~! is well-defined as a map
from M to ¢?; it is obviously given by

(T™'2); = jxj, (3.53)

which is nothing other than the unbounded linear map A: M — ¢? discussed in Example 4
above. So a bounded linear bijection 7" 2 — M can have an unbounded inverse.

This pathology arises from the fact that the space M is not complete. We will see later
in this course that a bounded linear bijection from a Banach space onto another Banach
space always has a bounded inverse: this is a corollary of one of the fundamental theorems
of functional analysis, the Open Mapping Theorem.

This same map T could have been considered in any of the spaces % (1 < p < 00), not
just p = 2, with similar results; I leave it to you to work out the details.

Special properties of finite-dimensional spaces

In this section we would like to study some special properties possessed by finite-dimensional
normed linear spaces — properties that do not hold in general for infinite-dimensional normed
linear spaces. The culmination of this section is F. Riesz’s theorem stating that the closed
unit ball of a normed linear space is compact if and only if the space is finite-dimensional.

Proposition 3.21 Let (X, || - ||) be a finite-dimensional normed linear space over the real
(resp. complex) field, and let {ay,...,a,} be any basis for X. Then the mapping

T (619 s 7571) = Zgzaz (354)
i=1
of (R™|| - |leo) [resp. (C™|| - ||eo)/ onto (X, || - ||) is a topological isomorphism.

PRrROOF. I shall give the proof for R"; it is identical for C™.
Clearly T is a linear bijection from R™ to X (why?). Moreover, for £ = (§1,...,&,) € R”
we have

1Tl = (3.55a)

n
Z &'ai
i=1
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IA

ST lel all (3.55)
=1

< (Z ||az-||) ma |6 (3.550)
= <Z ||az'||) 1€]]oc (3.55d)
i=1
so T is bounded, hence continuous.
On the other hand, the unit sphere in (R, || - ||o), namely
S = {zeR™ ||z]|l =1}, (3.56)
is clearly a closed and bounded subset of (R™, || - || ), hence compact. Moreover, the function

€ — ||T¢]| is continuous on R™ (why?) and hence on S; so it attains its minimum on .S (why?)
and this minimum value m cannot be zero (why?). So we have ||T¢]| > m > 0 for all £ € S,
hence ||T¢|| > m||€||o for all £ € R™ (why?).

It then follows from Corollary 3.16 that T is a topological isomorphism. [J

Corollary 3.22 On a finite-dimensional vector space, all norms are equivalent.

PROOF. Let X be a vector space of finite dimension n, and let || - ||; and || - ||2 be norms
on X. Fix a basis {aq,...,a,} of X, and define the linear bijection 7: R" — X by (3.54).
By Proposition 3.21, T is a topological isomorphism (R, || - [|») — (X,]|| - ||1) and also
R™ || - ll) — (X,]| - |l2)- But then id = T o T~! is a topological isomorphism from
(X Ml) to (X - fl2). B

Corollary 3.23 Fvery finite-dimensional normed linear space is complete.

PRrOOF. This follows from Propositions 3.17 and 3.21 and the completeness of (R”, || - ||)-
0J

Corollary 3.24 Fvery finite-dimensional subspace of a normed linear space is closed.

ProoF. This follows from the preceding corollary and the fact that a complete set in any
metric space is necessarily closed. [

In Problem 7 of Problem Set #3 you will prove a generalization of Corollary 3.24.

Proposition 3.25 Let X and Y be normed linear spaces, with X finite-dimensional. (Here
the space Y is arbitrary.) Then every linear mapping of X into Y is continuous.
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PRrROOF. If X is an n-dimensional real normed linear space, then X is topologically isomorphic

to (R™, ]| + ||) by Proposition 3.21. On the other hand, any linear map from R" to Y is
of the form T'(&y,...,&,) = Y iy &y, for suitable vectors yi, ..., y, in Y (why?); and such a
map is necessarily bounded [from (R",|| - ||») to (Y,]| - |y)] by the same calculation that

was done during the proof of Proposition 3.21. [

We now turn to the deepest result characterizing finite-dimensional spaces among normed
linear spaces, due to F. Riesz’:

Theorem 3.26 (F. Riesz’s theorem) For a normed linear space X, the following are
equivalent:

(a) The closed unit ball in X is compact.
(b) Every closed bounded set in X is compact.
(c) X is locally compact.
(d) X is finite-dimensional.
The proof of this theorem will rely on a simple but important lemma, also due to F. Riesz:

Lemma 3.27 (F. Riesz’s lemma) Let X be a normed linear space, and let M be a proper
closed linear subspace of X. Then for each € > 0 there exists a point v € X such that ||z| =1
and d(x, M) > 1 —e.

ProOOF OF F. RIESZ’S LEMMA. Since M is proper, there exists a point x; € X \ M; and
since M is closed, we have d(xy, M) = d > 0. But this means that there exists o € M such
that ||z1 — x| is arbitrarily close to d, say < d/(1 — €). Now set

xr1 — To

r = — . 3.57
s — ol %90
By construction ||z|| = 1. Moreover, for any y € M we have
Ir1 — X
T — = ||/ — 3.58a
S e (305
_ e = (o + [l — wolly) ] (3.58h)

|21 — o]

(why?). Since g + ||z1 — zol|ly € M, the numerator is > d (why?); and the denominator is
< d/(1 —e€); so theratiois > 1 —e. O

9Hungarian mathematician Frigyes Riesz (1880-1956) was another leading contributor to functional anal-
ysis. We use his initial “F” to distinguish him from his younger brother Marcel Riesz (1886-1969), who also
made important contributions to analysis, particularly partial differential equations.
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Remark: It is natural to ask whether we can actually achieve d(z, M) =1 in F. Riesz’s
lemma. This turns out to be delicate: the answer is yes in some normed linear spaces and
no in others. For instance, in Euclidean spaces (which we will discuss later), we can take z
to belong to the orthogonal complement M+ of M, and thereby achieve d(z, M) = 1. For
the /P spaces with 1 < p < 0o, the answer also turns out to be yes. On the other hand, you
will see in Problem 9 of Problem Set #3 a case in which the answer turns out to be no.

PrOOF OF F. RIESZ’S THEOREM. It is easy to see that (a), (b) and (c) are all equivalent;
you should supply the proof.

If X is finite-dimensional, then it is topologically isomorphic to (R",|| - ||~), Where we
know that every closed bounded set is compact; so the same is true for X.

Conversely, suppose that the closed unit ball B(0,1) C X is compact. Then there exists
a finite sequence of points ay, ..., a, € B(0,1) such that B(0,1) is contained in the union
of the closed balls of center a; and radius 1/2. Let M be the finite-dimensional subspace
of X generated by aq,...,a,; by Corollary 3.24 it is closed. Suppose now that M is proper
(i.e. that M # X); then by F. Riesz’s lemma there exists x € X such that ||z|| = 1 and
d(x,M) > 3/4. But this contradicts the hypothesis that B(0,1) € |J B(a;,1/2). We

=1

conclude that X = M, hence that X is finite-dimensional. [J

Warning: For topological vector spaces, it is still true that a space is locally compact
if and only if it is finite-dimensional. But there do exist infinite-dimensional non-normable
topological vector spaces in which every closed bounded set is compact — the most important
of these are called Montel spaces, and they arise in many applications in both real and
complex analysis.!?

Introduction to duality for normed linear spaces

Among the spaces B(X,Y') of continuous linear mappings, there are two choices of the
target space Y that are of particular importance:

e Y = R (or C in the case of a complex normed linear space), considered as a one-
dimensional vector space. This is obviously the simplest case.

e Y = X. In this case maps can be freely composed: therefore B(X, X), in addition to
being a vector space, also has the structure of an operator algebra.

The case Y = X leads to the subject of spectral theory, which is of especial importance
in quantum mechanics (among other applications) and which you are invited to study in a
fourth-year course. Here I would like to begin the analysis of the case Y = R (or C), which
plays a central role in the theory of Banach spaces; we will continue this study a few weeks
from now, after proving the Hahn—Banach theorem. In what follows I will assume (simply
to fix the notation) that the field of scalars is R, but everything here works with minor

19Tn honor of the French mathematician Paul Montel (1876-1975). Montel’s theorem in complex analysis
can be interpreted as saying that certain spaces of analytic functions are Montel spaces.
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modifications when the field of scalars is C. (When we discuss the Hahn—-Banach theorem
we will have to treat the complex case separately.)

A linear mapping from a vector space X to the field of scalars (here R) is called a
linear functional on X. The space £(X,R) of all linear functionals (continuous or not)
on X is called the algebraic dual space of X, and is denoted X*. I assume that in
your course in linear algebra you studied (even if only briefly) the theory of algebraic duals
of finite-dimensional vector spaces, and proved in particular that the algebraic dual of an
n-dimensional vector space is n-dimensional.!! The theory of algebraic duals of infinite-
dimensional vector spaces belongs to a more advanced course in linear algebra.

In analysis, however, we are principally interested in continuous linear functionals. The
space B(X,R) of all continuous linear functionals on a normed linear space X is called the
(topological) dual space of X, and is denoted X*. It is itself a normed linear space under
the norm

[]lx- = [llx—r = sup [{(z)]. (3.59)

lzllx<1
By Proposition 3.19, the normed linear space X* is complete, i.e. is a Banach space; this
holds whether or not X is complete. Moreover, Proposition 3.20 tells us that if A is a dense
linear subspace of X, then A* is isometrically isomorphic to X* under the obvious mapping.

Let us begin with some purely algebraic considerations. If X is a vector space (not
necessarily normed) and M is a linear subspace of X (not necessarily closed), we say that
M has codimension n in X (where n is a positive integer) if the quotient space X/M has
dimension n, or in other words if there exist ey, ..., e, € X\ M such that every vector x € X
can be uniquely represented in the form x = \je;+...+ N\ e, +2 where A\, ..., \, are scalars
and z € M. A linear subspace of codimension 1 is called a (linear) hyperplane. Note that
in this case one can choose any vector in X \ M to play the role of e; (why?).

If M is a (linear) hyperplane in X, then each coset zq + M (where zy € X) is called an
affine hyperplane in X .2

The relevance of hyperplanes to linear functionals is explained by the following proposi-
tion, which is purely algebraic:

Proposition 3.28 Let X be a vector space.

(a) The kernel of a nonzero linear functional { € X*,

ker¢{ = {x € X: l(x) =0}, (3.60)

"UWarning: Though this implies that the vector spaces X and X* are isomorphic, they should nevertheless
be kept conceptually distinct, because they are not naturally isomorphic. That is, though there exists a linear
bijection from X to X¥, there in fact exist infinitely many such bijections, and no one of them is any more
“natural” than any other. Rather, to pick out one of those isomorphisms as “canonical”, one has to introduce
additional structure beyond the vector-space structure of X: for example, by choosing a basis ey, ..., e, of X.
Then there is determined in a natural way a “dual basis” fi,..., f, of X* (satisfying f;(e;) = &;; for all 4, 7)
and an isomorphism T: X — X* defined by T'(e;) = f; for all i. For a rant in which I attempted (probably in
vain) to explain this principle to my fellow physicists, see A.D. Sokal, Some comments on multigrid methods
for computing propagators, Phys. Lett. B 317, 399408 (1993), http://arxiv.org/abs/hep-1at/9307020

12Warning: Some authors (e.g. Dieudonné) use the term “hyperplane” without adjectives to mean a
linear hyperplane; others (e.g. Kolmogorov—Fomin) use it to mean an affine hyperplane; and still others
(e.g. Giles) oscillate between the two meanings! I shall follow Dieudonné in adhering to the first meaning.
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is a hyperplane in X. Conversely, every hyperplane H C X 1is the kernel of some
nonzero linear functional ¢ € X*.

(b) The set where a nonzero linear functional { € X* takes the value 1,
Ay = (1] = {z e X: l(x) =1}, (3.61)

1s an affine hyperplane in X, not passing through the origin. Conversely, every affine
hyperplane A C X not passing through the origin is of the form Ay for some nonzero
linear functional ¢ € X*.

PROOF. (a) Let ¢ be a nonzero linear functional on X. Then ker ¢ is a proper linear subspace
of X (why?). Now fix any zo € X \ ker ¢, and note that ¢(zy) # 0. We can then represent
each v € X uniquely in the form x = Axg + y with A € R and y € ker{; indeed, such a
representation can hold only if we take A = ¢(x)/l(x¢) [just apply £ to both sides to see this],
and if we do choose this value of A, then x — Azy € ker ¢ (why?). This shows that ker ¢ is a
hyperplane in X.

Conversely, if H is a hyperplane in X, choose any xo € X \ H; then by hypothesis each
x € X can be represented uniquely in the form x = Az +y with A € R and y € H. Defining
¢(x) = X then does the trick.

(b) If £ is a nonzero linear functional on X, there clearly exists zyp € X such that ¢(xg) = 1
(why?). Then we have A, = x¢ + ker ¢ (why?), so using the result of part (a) we conclude
that Ay is an affine hyperplane in X; and clearly 0 ¢ A,.

Conversely, if A C X is an affine hyperplane not passing through the origin, then we
can write A = xy + H for some hyperplane H and some xy € X \ H. By the result of part
(a), there exists a nonzero linear functional ¢, € X* such that H = ker{y; in particular,
lo(zo) # 0. Defining ¢(x) = lo(x)/ly(xo) then does the trick. O

Let us now pass from algebra to analysis, and assume that X is a normed linear space.

Proposition 3.29 In a normed linear space X, a hyperplane M C X 1is either closed or
dense.

PROOF. By Proposition 3.11, M is a linear subspace of X containing M. Since M has
codimension 1, the only possibilities are M = M and M = X. [

Note that the affine hyperplanes xy + M are also closed or dense according as M is.

Proposition 3.30 Let X be a normed linear space, and let { € X* be a linear functional.
Then { is continuous if and only if ker £ is closed. Moreover, we have the quantitative relation

€] x- = 0.4 (3.62)

where

Ap = (1] = {z e X: l(x)=1}. (3.63)
[If ¢ =0 we have Ay = @ and we define d(0, ) = +o0./
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PROOF. Everything is trivial (including the quantitative relation) if £ = 0, so we henceforth
assume that ¢ # 0.

If ¢ is continuous, then ker ¢ is obviously closed. To prove the converse, suppose that
H = ker/ is a closed, and choose any zq € X \ H such that ¢(xg) = 1; we then have
d(zo, H) > 0 (why?). Then every x € X can be uniquely written in the form z = Azg + =
with z € H (why?), and such an z satisfies

[zl = d(z,0) = d(z, H) = |A|d(xo, H) (3.64)
(why?) and
0(z) = X (3.65)
(why?), hence
1
[6(z)] < Ao 1) ]l (3.66)

which proves that ¢ is continuous.
The quantitative relation clearly holds when ¢ is discontinuous, because we have ||/||x g =
+00 and dx (0, A¢) = 0 (why?). When ¢ is continuous, we have
[0(z)| 1 1 1
[llx- = sup = = — =
w20 ] e Il inf lzf| - d(0, A)
1 z:4(z)=1
x: l(x)#0 |£(.§L’)|

(you should make sure you understand each equality here). O

(3.67)

In order to make further progress in the theory of dual spaces, we need to ensure that the
dual space X* is “large enough”, i.e. that there are “enough” continuous linear functionals.
What is “enough”? Well, first of all, we would like the continuous linear functionals to
separate points of X: that is, for each pair x,y € X with x # y, there should exist ¢ € X*
such that ¢(x) # £(y). By linearity this is equivalent to the assertion that for every z € X
with = # 0, there exists ¢ € X* such that ¢(z) # 0. A few weeks from now we will deduce,
as a corollary of the Hahn—Banach theorem, that this is indeed true, and indeed that ¢ can
be chosen to make ¢(z) as large as it is allowed to be:

Proposition 3.31 (Corollary of Hahn—Banach theorem, to be proven later) Let X
be a normed linear space. Then for each nonzero xy € X, there exists a nonzero fy € X*
such that go(.ﬁ(]o) = ||€0||X* ||.§L’0HX

Equivalently, we can choose ¢, € X* with ||{y||x+ = 1 such that ¢y(zo) = ||zo|x-

Let us go a little bit farther to explore one of the consequences of Proposition 3.31. Given
a normed linear space, we can form the dual space X* and then the second dual space
(X*)* [usually written X** for short]. It is automatically complete, hence a Banach space.

Proposition 3.32 Let X be a normed linear space, and let x € X. Then the linear func-
tional T on X* defined by
z(0) = l(x) (3.68)

is continuous and hence belongs to X**. Moreover, the map 1. x — T is an isometric iso-
morphism of X onto its image ([X], which is a linear subspace of X**. If X is complete,
then ([ X] is a closed linear subspace of X**.
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PROOF. T is obviously a linear functional on X*. Since

(O] = [f=)] < lzllx 1]

7 is in fact a continuous linear functional on X* (i.e. belongs to X**) with ||Z]|x~ < ||z x-
On the other hand, for any nonzero x € X, Proposition 3.31 tells us that there exists £ € X*
with [|{||x~ = 1 and T(¢) = {(x) = ||z||x, so ||Z||x > ||z|[x. Therefore ||Z||x+ = ||z|x. In
particular, ¥ # 0 whenever x # 0.

The map ¢: © — T is obviously linear, and we have just seen that it is injective and an
isometry from X into X**. So it is an isometric isomorphism from X onto its image ¢[X],
which is a linear subspace of X**. If X is complete, then by Proposition 3.17 so is ¢[X], so
it must be closed in X**. [

The map ¢ is called the natural embedding of X into X**. It is then natural to ask
whether the image of ([X] is all of X** or is only a proper subspace. We make the following
definition:

Definition 3.33 A normed linear space X is said to be reflexive if the natural embedding
maps X onto X**, i.e. if fX] = X**.

For instance, all finite-dimensional normed linear spaces are reflexive (can you work out
a proof of this?), and we will see next week that all Hilbert spaces are reflexive. Among the
(P spaces, we will see that the spaces with 1 < p < oo are reflexive, while ¢! and ¢ are
nonreflexive. One of the central themes in functional analysis is to study the property of
reflexivity and to relate it to other properties that a Banach space may or may not possess.

Warning: Please note that reflexivity says more than just that X is isometrically isomor-
phic to X**: it says that X is isometrically isomorphic to X** under the natural embedding.
Indeed, R.C. James has constructed an example of a nonreflexive separable Banach space X
for which X is isometrically isomorphic to X**! See R.C. James, A non-reflexive Banach
space isometric with its second conjugate space, Proc. Nat. Acad. Sci. USA 37, 174-177
(1951).

Here is one final important concept:

Definition 3.34 Let X andY be normed linear spaces, and let T: X — Y be a continuous
linear mapping. Then the adjoint (or dual or transpose) map T*: Y* — X* [note the
reversal of order herel] is defined by

(T*(0))(z) = {(Tx) (3.70)
forteY* andxz € X.

First of all, we should check that this definition makes sense! It is obvious that (7*(¢))(z) =
((T'z) is linear in z, so T*(¢) is indeed a linear functional on X. Moreover, we have

(T (O) (@) = [((Tx)] < [l¢]

Tz|ly < ||/

v v | T x=v 2] x , (3.71)
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so T*(¢) is a bounded linear functional on X, of norm at most ||¢||y« ||T||x_y. Finally, the
map 7%: Y* — X* given by T*: ¢ +— T*({) is manifestly linear; and we have just shown that
it is a bounded linear operator, whose operator norm satisfies

1T |ly—x+ < 1Tl x—y (3.72)
(why?). So we indeed have T* € B(Y™*, X*), as desired.

Lemma 3.35 We have ||T%|

veox- = |[|T||x=y.

PROOF. We have just shown that ||7%|

viex+ < ||T||x—y, so we need only show the reverse

inequality. So let x € X. Then by Proposition 3.31 there exists ¢ € Y* such that ||{||y+ =1
and {(Tx) = ||Tz||y. Therefore
[Tzlly = (Tz) = (T*(O))(x) < (T(Olx- Izl x
< T yeex= v+ llzlix = [T yemx- lzllx . (3.73)

Since this holds for every x € X, we have shown that ||T||x—y < ||T*||y+=x+. O

Lemma 3.36

(a) If T: X — Y is a topological isomorphism, then T*: Y* — X* is also a topological
isomorphism, and in fact (T*)~' = (T~1)*.

(b) If T: X — Y is an isometric isomorphism, then T*: Y* — X* is also an isometric
1somorphism.

PROOF. (a) Let T be a topological isomorphism, and let us write S = T~!. Since by
hypothesis S € B(Y, X), the adjoint S* € B(X*,Y*) is well-defined. Then, for any =z € X
and ¢ € X*, we have by definition

(T*(S™(O)(x) = (5"(O)(Tx) = £(S(Tx)) = () (3.74)

(why?), so that T*(S*(¢)) = ¢, i.e. T* 0 S* = Ix+. A similar calculation shows that S* o T* =
Iy+«. Hence T and S* are inverses, as was to be shown.

(b) Let T be an isometric isomorphism. Then we have just shown that 7™* is a topological
isomorphism; we need only show that it is an isometry. But this is easy: since T is an
isometric isomorphism, we have ||T'||x_y = 1 and |[|[T"!||y_x = 1. But then by Lemma 3.35
we have [T*[ly-—x- = |Tllx—y and [(T%)x-—y- = (T
(why does the first equality hold?). So 7™ is an isometry. [

xeme = T lyox = 1

Much more can be said about dual spaces and adjoint operators, but this is enough for
now.
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Duals of the sequence spaces ¢y and £ (1 < p < 00)

We are now ready to determine the duals of the sequence spaces ¢y and P for 1 < p < o
(but not ¢2°, which is more difficult). We shall do this “with our bare hands”, i.e. we shall
not use the not-yet-proven Proposition 3.31 or any other “deep” result.

The intuition behind all of this is the following elementary fact: every linear functional
on R" is of the form

t(a): x — Zaixi (3.75)

for some unique a € R™; and conversely, every a € R™ defines a linear functional ¢(a) on R™
by the above formula.

It is natural to try to adapt this idea to spaces of infinite sequences, defining linear
functionals by the formula (3.75) but with the sum now taken to infinity. But now we have
to be careful about the precise spaces in which = and a are taken to lie, and to make sure
that the infinite sum is convergent and defines a bounded linear functional.

Let us start with the case X = ¢y (equipped as usual with the sup norm). We will show
that the dual X* can be naturally identified with the space ¢*. Here and in what follows, we
will write e; to denote the infinite sequence having a 1 in the ith coordinate and 0 elsewhere.

Proposition 3.37 For any a € (*, the sum Y a;x; is absolutely convergent for all x € ¢,
i=1
and defines a linear functional

t(a): x — Zaixi (3.76)

on co that is bounded (i.c. belongs to ;) and has norm [|u(a)||cs = [la|lp. Moreover, every
bounded linear functional on ¢y arises in this way, and the map v is an isometric isomorphism
of I* onto c.

PROOF. Fix a € ¢*. Then for all z € ¢, we have

[e.9]

D laswi| < lalla (|2l (3.77)

i=1

[e.e]
(why?), so the sum Y a;x; is absolutely convergent and satisfies
i=1

o
E Q;;
i=1

It follows that «(a) € cg and that [|c(a)le: < [|al|e .
To see the reverse inequality, consider for each n the vector 2™ € ¢yy C ¢o defined by

< D law| < alle [|zlle, (3.78)
1=1

RO {sgn(a,-) for1<i<n

3.79
0 fori>n ( )

26



where
1 ifx>0
sgn(z) = { —1 ifz<0 (3.80)
0 itr=0
We then have ||z, < 1 (why?) and

n

a)(z™) = Zai sgn(a;) = Z|ai|. (3.81)

i=1

It follows that ||¢(a)

e > lalle

o > ; |a;| for all n, and hence ||¢(a)

The map «: £* — ¢}, is clearly linear and injective (why is it injective?), so it remains only
to show that it is surjective, i.e. that every ¢ € ¢} is of the form ¢(a) for some (necessarily
unique) a € ¢!. Indeed, we claim that ¢ = t(a) where a is given by the formula

@ = (e (3.82)

(recall that e; € ¢ is the vector having a 1 in the ith coordinate and 0 elsewhere). To see
this, note first that if z = (1, x9,...) € ¢, then

n
r — E xI;e;
i=1

= suplz;| — 0 (3.83)

i>n

€0

n

as n — oo (why?), i.e. Y x;e; — x in ¢g as n — oo. Now consider any ¢ € ¢; since £ is
i=1

continuous, we have

14 <Z:Ee> = Zx Ue;) — U(z) (3.84)

as n — 00, or in other words
l() = am; (3.85)
i=1

where the sum is convergent (but we have not yet proven that the convergence is absolute).
The final step is to prove that a € ¢! (this will imply in particular that the convergence is
absolute). To see this, let vectors (™ € cyy C ¢y be defined once again by (3.79), and recall
that ||z™]|,, < 1. Then

n

Dolail = Y assgn(a) = (=) < |l (3.86)
1=1

i=1

so taking n — oo we conclude that a € ¢* (with ||a|a < ||¢
(and hence, from the first part of the proof, that ||a|,; = ||¢

c;;)- It now follows that ¢ = ¢(a)
). O
0

Remarks. 1. Since a dual space is automatically complete by Proposition 3.19, and
Proposition 3.37 tells us that ¢! is isometrically isomorphic to the dual space ¢, we obtain
from Proposition 3.37 an alternate proof of the completeness of ¢*.
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2. The first part of this proof works for x € £°° just as well as it does for x € ¢y. It follows
that, for any a € ¢!, the formula (3.76) defines a bounded linear functional «(a) € (£*°)* of
norm |[¢(a)| =)+ = ||a|¢, and that the map ¢ is an isometric isomorphism of ¢! into (£>°)*.
But this map is not onto: we will see later that there exist linear functionals in (£°°)* that
are not of the form «(a) for some a € (1.

3. Essentially the same proof works for the complex sequence spaces; we need only replace
sgn(a;) in (3.79) by @;/|a;|, where — denotes complex conjugate.

Let us now treat, by a similar method, the case X = 7 with 1 < p < oo (note that the
case p = 1 is included but p = oo is not). We let ¢ € (1, 00| be the conjugate index defined

by 1/p+1/q=1.
Proposition 3.38 Fiz p € [1,00), and let ¢ € (1,00] be the conjugate index defined by
1/p+1/q=1. Then, for any a € (%, the sum >, a;x; is absolutely convergent for all x € (P,

i=1
and defines a linear functional

t(a): x — Zaixi (3.87)

on (¥ that is bounded (i.e. belongs to (€°)*) and has norm ||u(a)||@) = |lallea. Moreover,
every bounded linear functional on P arises in this way, and the map ¢ is an isometric
isomorphism of (7 onto (¢P)*.

We will imitate the proof of the preceding proposition, but using Holder’s inequality in
place of the elementary bound ) |a;x;| < ||al|1 |||l This will handle the case 1 < p < occ.

i=1

The case p = 1 is even easier (i.e. uses elementary inequalities rather than Holder) and is
left as an exercise for you.

PROOF OF PROPOSITION 3.38 FOR THE CASE 1 < p < oo. Fixa € ¢9. Then for all x € ¢
we have

> lagzl < lally llll, (3.88)
1=1

by Holder’s inequality, so the sum > a;x; is absolutely convergent and satisfies
i=1

o
E Q;;
i=1

It follows that ¢(a) € (¢?)* and that ||c(a)||we)- < ||allq-
To see the reverse inequality, consider for each n the vector 2™ € ¢y C €7 defined by

< D laiw] < lallgllzll, - (3.89)
1=1

o = Jsen(a) et forl<i<mn (3.90)
0 fori >n
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We then have
n 1/p n 1/p
2, = (Z |az-\<q—”p) - (Z \am) (391)
i=1 i=1
since (¢ — 1)p = ¢, while
a)(@™) = Jail? (3.92)
i=1

(why?). It follows that

v(a)(z™ - ' - Ha

since 1 — 1/p =1/q. Taking n — oo, we conclude that ||¢(a)||@e) > ||allq-

The map ¢: ¢4 — (¢P)* is clearly linear and injective (why is it injective?), so it remains
only to show that it is surjective, i.e. that every ¢ € (¢P)* is of the form «(a) for some
(necessarily unique) a € ¢9. Indeed, we claim that ¢ = ¢(a) where a is given by the formula

To see this, note first that if z = (21,22, ...) € 7, then

n o) 1/p
i inei = ( Z |xi\p> — 0 (3.95)
i=1

i=n+1

p

n

as n — oo (why?), ie. Y x;e; — x in ¥ as n — oo. Now consider any ¢ € (¢P)*; since £ is
i=1

continuous, we have

¢ (er> = inﬁ(ei) — {(2) (3.96)

as n — 00, or in other words
l(z) = am; (3.97)
i=1

where the sum is convergent (but we have not yet proven that the convergence is absolute).
The final step is to prove that a € ¢9 (this will imply in particular that the convergence is
absolute). To see this, let vectors (™) € ¢y C P be defined once again by (3.90), and recall
that the formula (3.91) for ||z™],. Then

n n n 1/p
D lail® = > aisgn(a) el = 0@™) < (@ 127, = (1] er)- (ZM") ,
=1 i=1 1=1

(3.98)

n 1/q
<Z |az~lq> <[] ery- (3.99)

1=1

hence
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since 1 — 1/p = 1/q. Taking n — oo we conclude that a € ¢ (with |la||, < [[€]|()-). It now
follows that ¢ = «(a) (and hence, from the first part of the proof, that ||all, = [|[€]|@r)-). O

Since a dual space is automatically complete by Proposition 3.19, and Proposition 3.38
tells us that ¢¢ for 1 < ¢ < oo is isometrically isomorphic to the dual space (¢)*, we obtain
from Proposition 3.38 an alternate proof of the completeness of the spaces ¢4 for 1 < ¢ < oo.

Even more importantly, we can obtain from Proposition 3.38 the following corollary:

Corollary 3.39 The spaces P for 1 < p < oo are reflexive.
Remark. We will see later that ¢! and ¢ are nonreflexive.

At first glance one might think that the reflexivity of /7 for 1 < p < oo is an immediate
consequence of Proposition 3.38: after all, the dual of 7 is ¢4 (where 1/p+1/q = 1), and
the dual of ¢ is ¢P, so the second dual of 7 is P, and we are done — right? Well, no ... not
quite! As I have stressed, reflexivity says more than just that X is isometrically isomorphic
to X™**: it says that X is isometrically isomorphic to X** under the natural embedding. So
we need to verify that the isometric isomorphisms constructed by Proposition 3.38 piece
together to yield the natural embedding of /% into (¢7)**. This is not difficult, but it requires
a bit of attention to detail.

Let ¢4: €7 — (¢P)* be the isometric isomorphism constructed by Proposition 3.38: that is,

(tg(a))(x) = Za:c (3.100)

for a € ¢4 and x € (. Of course we also have ¢,: /7 — ((9)* defined in the same way. Finally,
let J,: P — (¢?)** be the natural embedding. [I now use the letter J rather than ¢ to avoid
confusion.] Since ¢, maps 9 to (¢7)*, its adjoint ¢; maps (7)™ to (£?)*, and I claim that:

Lemma 3.40 (50 J, = (.

To start with, you should check that the statement of this lemma makes sense, i.e. that
the maps act between the correct spaces. We can then prove the lemma as follows:

PROOF. We need to show that (. o J,)(x) = ¢,(z) for all x € 7, or in other words that

((eg o Hp)(@)(y) = (1p())(y) (3.101)

for all z € /P and all y € ¢9. Now
(@) (y) = D wii (3.102)
i=1

by definition of ¢,. On the other hand, we have

((eg o p)(@)(y) = (g(Lp(@))(y) = (Jp(2))(tg(y) = (La(y))(x) = Zyaf (3.103)



by the definitions of adjoint, J, and ¢,. O

PROOF OF COROLLARY 3.39. By the lemma we have ¢} o J, = 1,. But by Lemma 3.36(b),
the map ¢ is an isometric isomorphism. Then J, = (L:;)_l o1, is an isometric isomorphism,
as was to be proved. [
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