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HANDOUT #0: REVIEW OF SET THEORY

The basic theory of finite and infinite sets — and in particular the distinction between
“countably infinite” and “uncountably infinite” sets — is an essential prerequisite for Func-
tional Analysis and indeed for nearly all higher mathematics. It is well covered in Sections 1.1
and 1.2 of Kolmogorov–Fomin, and in a more conversational style in Vilenkin’s book Stories
about Sets . You should study this material without delay!

Here I will merely summarize the principal definitions and, without proof, the principal
results of this theory (see Kolmogorov–Fomin for the proofs).

Two sets A and B are said to have the same cardinality (or be equivalent or equipo-
tent or equipollent or equinumerous), written A ∼ B, if there exists a bijection from A

to B. I stress the word “there exists”: we don’t demand that every attempted bijection be
successful (or for instance that every injection of A into B be a surjection, or vice versa),
but only that there exist a bijection.

A set is said to be finite if it is equivalent to the set {1, 2, . . . , n} for some integer n ≥ 0.
(Note that the empty set corresponds to the case n = 0.) A set is said to be infinite if it is
not finite.

A set is said to be countably infinite if it is equivalent to the set N = {1, 2, . . .} of
natural numbers. (Such a set is obviously infinite — why?) An infinite set that is not
countably infinite is said to be uncountably infinite. A set is said to be countable if
it is either finite or countably infinite.1 We then have the following fundamental facts (see
Kolmogorov–Fomin for proofs):

Theorem 0.1 Every infinite set has a countably infinite subset.

Theorem 0.2 Every infinite set is equivalent to one of its proper subsets.

(Obviously such a thing cannot happen for a finite set — why?)

Theorem 0.3

(a) Every subset of a countably infinite set is countable (i.e. either finite or countably
infinite).

(b) A finite or countably infinite union of countably infinite sets is countably infinite.

(c) A finite Cartesian product of countably infinite sets is countably infinite.

1Warning: Kolmogorov–Fomin (or perhaps their translator) are a bit sloppy about distinguishing be-
tween “countably infinite” and “countable”. But one can usually easily reconstruct from the context what
is meant.

Note also that some authors (e.g. Dieudonné) use the terms denumerable, nondenumerable and at

most denumerable for what I have called “countably infinite”, “uncountably infinite” and “countable”.
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It follows from (c) and (a) [or alternatively from (b)] that the set Q of rational numbers is
countably infinite (why?).

Warning: A countably infinite Cartesian product of countably infinite sets is not in

general countably infinite! Indeed, even S =
∞∏

n=1

{0, 1} — that is, a countably infinite Carte-

sian product of copies of the two-element set {0, 1} — is uncountably infinite: this is an
immediate corollary of Theorem 0.5 below (why? what is the relation between subsets of
{0, 1} and infinite sequences of 0’s and 1’s?).

Theorem 0.4 (uncountability of the reals) The set of real numbers in the interval [0, 1]
is uncountably infinite.

Theorem 0.5 (Cantor’s theorem) For any set A, the set P(A) of all subsets of A is not
equivalent to A; it has strictly larger cardinality.

Theorem 0.6 (Cantor–Bernstein–Schröder theorem) Let A, B be two sets. Suppose
that A contains a subset A1 that is equivalent to B, and that B contains a subset B1 that is
equivalent to A. Then A and B are equivalent.

This can also be rephrased as: Suppose that there exist injective functions f : A → B and
g: B → A. Then there exists a bijective function h: A → B.
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