
MATHEMATICS 3103 (Functional Analysis)
YEAR 2012–2013, TERM 2

PROBLEM SET #5

This problem set is due at the beginning of class on Monday 11 March. Only
Problems 2, 4 and 7 will be formally assessed, but I think you will find the other problems
intriguing as well. Problem 8 is of particular interest, as it illustrates the interconnection
between different fields of mathematics (functional analysis and complex analysis).

Topics: Spaces of continuous functions: Urysohn’s lemma and the Tietze extension theorem;
Dini’s theorem; the Stone–Weierstrass theorem; the Arzelà–Ascoli theorem.

Readings:

• Handout #5: Spaces of continuous functions.

1. Generalization of the Tietze extension theorem. Prove the following slightly
generalized version of the Tietze extension theorem:

Let A be a closed subset of a metric space X, and let f : A → R be a
continuous function. Then there exists a continuous function g: X → R that
extends f (i.e. g ↾ A = f) and does not take any values that are larger or
smaller than all the values taken by f .

In other words, we now allow unbounded continuous functions f , and we also show
that if f is bounded above (resp. below) but does not actually attain this upper (resp.
lower) bound, then g can be chosen so that it does not attain this bound either. [Hint:

Consider f/(1 + |f |).]

2. Continuous functions on noncompact metric spaces.

(a) A few weeks ago we proved the (easy) theorem that every real-valued continuous
function on a compact metric space X is bounded. Now I would like you to
prove the converse: namely, if X is a noncompact metric space, then there exists
an unbounded real-valued continuous function on X. [Hint: Use the result of
Problem 1.]

Remark: For general (nonmetrizable) topological spaces, the situation is a
bit more complicated: compactness is not equivalent to the boundedness of all
continuous functions. But a variant of the above result holds: namely, for normal

topological spaces (those for which the Tietze extension theorem holds), a space
is countably compact (i.e. every countable open covering has a finite subcovering)
if and only if every real-valued continuous function is bounded.
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(b) In Theorem 5.16 we proved that if X is a compact metric space, then C(X)
is separable. Now I would like you to prove the converse: namely, if X is a
noncompact metric space, then C(X) is nonseparable. [Hint: Imitate the proof
that ℓ∞ is nonseparable, using the Tietze extension theorem.]

3. Dini’s theorem for semicontinuous functions. Prove that if (fn) is a decreasing
sequence of upper semicontinuous real-valued functions on a compact metric space X
that converges pointwise to a lower semicontinuous function g, then the convergence
is uniform.

4. A Stone–Weierstrass theorem for noncompact metric spaces? The Stone–
Weierstrass theorem applies to C(X) when X is a compact metric space, but what
happens if X is noncompact? Here are two examples:

(a) If X = R (or any unbounded subset of R), it doesn’t make sense to talk about
uniform approximation of bounded continuous functions by polynomials, because
all nonconstant polynomials are unbounded! But we can still ask about algebras A
of bounded continuous functions: Does the Stone–Weierstrass theorem hold for
these?

Give an example of an algebra A ⊂ C(R) that contains the constant functions
and separates points of R, and a function f ∈ C(R) that is not in the sup-norm
closure of A. [Hint: This is very easy.]

(b) Next consider a bounded but non-closed subset of R, e.g. X = (0, 1). Now it
makes sense to ask about uniform approximation of bounded continuous functions
by polynomials.

Give an example of a bounded continuous function f on (0, 1) that cannot
be uniformly approximated by polynomials. [Hint: f cannot have a continuous
extension to [0, 1]: for if it did, then it would be uniformly approximable by
polynomials.]

5. A variant of the Stone–Weierstrass theorem. Let A be an algebra of real-valued
continuous functions on a compact metric space X, and suppose that A separates the
points of X but does not necessarily contain the constant functions. Show that either
A = C(X) or else there exists a (unique) point p ∈ X such that A = {f ∈ C(X): f(p) =
0}.

6. Equicontinuity versus uniform equicontinuity. We know that any continuous
mapping from a compact metric space X to a metric space Y is in fact uniformly
continuous. I would like you now to prove a generalization of this: any equicontinuous
family of mappings from a compact metric space X to a metric space Y is in fact
uniformly equicontinuous.
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7. Fredholm integral operators. If X and Y are Banach spaces, a linear operator
T : X → Y is called compact if the image of every bounded set in X is relatively
compact in Y . (Recall that a subset of a metric space is called relatively compact if its
closure is compact.) Equivalently, T is compact if the image of the (open or closed)
unit ball in X is relatively compact in Y (why is this equivalent?).

In Problem 6 of Problem Set #3, you studied the Fredholm integral operator T : C[a, b] →
C[a, b] defined by

(Tf)(s) =

b∫

a

K(s, t) f(t) dt

where K: [a, b] × [a, b] → R is a continuous function, and you proved that T is a
bounded linear operator. Now I would like you to prove that T is in fact a compact

linear operator.

8. Application of equicontinuity to complex analysis. Analytic functions of a
complex variable are much more “rigid” than functions (even C∞ functions) of a real
variable: for instance, knowing an analytic function on a small neighborhood tells
you the function everywhere (analytic continuation); and knowing a bound on the
function on a simple closed curve allows you to bound the function and all its deriva-
tives inside the curve (Cauchy integral formula). These principles combined with
equicontinuity arguments lead to some surprising and powerful results. Here are two
examples:

(a) Let D = {z ∈ C: |z| < 1} be the open unit disc in the complex plane. The Hardy
space H∞(D) consists of the bounded analytic functions on D, equipped with the
sup norm ‖f‖H∞ = sup

|z|<1

|f(z)|.

For any complex number λ with |λ| ≤ 1, we can define a linear operator
Tλ: H∞(D) → H∞(D) by

(Tλf)(z) = f(λz) .

Clearly Tλ is a bounded linear operator of norm 1 (why?).

Prove that if |λ| < 1, then Tλ is compact. (See the preceding problem for the
definition of a compact linear operator.)

[Hint: Use the Cauchy integral formula to bound the derivative of f , then use the
Arzelà–Ascoli theorem.]

(b) Prove Montel’s theorem: Let D be a domain (i.e. connected open set) in the
complex plane, and let (fn) be a sequence of analytic functions on D that is uni-
formly bounded (i.e. there exists M < ∞ such that ‖fn‖∞ ≤ M for all n). Then
there exists a subsequence (fni

) that converges, uniformly on compact subsets of
D, to an analytic function g. [Hint: Do it first when D is an open disc. Use the
Cauchy integral formula to bound the derivative of f , then use the Arzelà–Ascoli
theorem and a diagonal argument.]
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Remark. This result, which was proven by French mathematician Paul Montel
in 1907, plays a central role in complex analysis. But it is only the first step, and
a vastly stronger result, proven by Montel in 1912, turns out to be true: namely,
fix two distinct points a, b ∈ C, and consider a sequence (fn) of analytic functions
on D that do not take the value a or b. Then there exists a subsequence (fni

) that
converges, uniformly on compact subsets of D, either to an analytic function g
or to infinity. This is a truly amazing result (avoiding two points is a hell of
a lot weaker than avoiding the exterior of a disc!), and its proof is quite a bit
more difficult than that of Montel’s 1907 theorem. A nice book on this subject
is Joel L. Schiff, Normal Families. Montel’s 1912 theorem plays a key role in the
study of holomorphic dynamics: for an accessible introduction to this fascinating
area combining complex analysis and dynamical systems, see Alan F. Beardon,
Iteration of Rational Functions .
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