MATHEMATICS 3103 (Functional Analysis) YEAR 2012–2013, TERM 2

PROBLEM SET #4

This problem set is due at the *beginning* of class on Monday 4 March. Only Problem 2 will be formally assessed, but I think you will find Problem 1 intriguing.

Topics: Basic properties of inner-product spaces and Hilbert spaces.

Readings:

- Handout #4: Introduction to Hilbert space.
- Kreyszig, Sections 3.1–3.6 and 3.8 (handout).
- 1. The parallelogram law. As discussed in class, the parallelogram law

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
 for all $x, y \in X$

is a necessary condition for a normed linear space to be an inner-product space (this is almost trivial). Here I would like you to prove that it is also a sufficient condition, restricting attention for simplicity to the case of a *real* normed linear space. [*Hint*: Use the polarization identity

$$(x,y) = \frac{1}{4}(\|x+y\|^2 - \|x-y\|^2)$$

to define the inner product. To prove the additivity (x+y,z)=(x,z)+(y,z), use the parallelogram identity cleverly. To prove the homogeneity $(\alpha x,y)=\alpha(x,y)$, prove it first for rational α and then argue by continuity.

2. An example of the Gram-Schmidt process. Consider the inner-product space C[-1,1] of continuous functions on the interval [-1,1], equipped with the inner product

$$(f,g) = \int_{-1}^{1} f(t) \, \overline{g(t)} \, dt .$$

- (a) Apply the Gram–Schmidt process to the functions $f_1(t) = 1$, $f_2(t) = t$, $f_3(t) = t^2$ to find the corresponding orthonormal set.
- (b) Apply the Gram-Schmidt process to the functions $f_1(t) = t^2$, $f_2(t) = t$, $f_3(t) = 1$ to find the corresponding orthonormal set. Is the answer different? Should it be?

1

- **Remarks.** 1. As discussed in Kreyszig, Section 3.7, the orthonormal system obtained by applying the Gram-Schmidt process to $f_n(t) = t^n$ (n = 0, 1, 2, ...) coincides (up to normalization) with the **Legendre polynomials**.
- 2. As proved several weeks ago, the inner-product space being considered in this problem is an *incomplete* inner-product space. Those of you familiar with measure theory will know that its completion can be identified with the space $L^2[-1,1]$ of Lebesgue-square-integrable functions on [-1,1].

 $^{^{1}}$ More precisely, $L^{2}[-1,1]$ is the space of equivalence classes, modulo modification on a set of measure zero, of Lebesgue-square-integrable functions on [-1,1].