
MATHEMATICS 3103 (Functional Analysis)
YEAR 2012–2013, TERM 2

PROBLEM SET #3

This problem set is due at the beginning of class on Monday 18 February. I urge
you to start on it early , as it is a bit long, and some of the problems are not entirely trivial.
Only Problems 2, 4(a,b) and 6 will be formally assessed, but I strongly urge you not to
neglect the others!

Topics: Normed linear spaces. Completeness of C(X). Definition and completeness of ℓp

(1 < p < ∞). Elementary properties of normed linear spaces. Subspaces and quotient
spaces. Continuous (= bounded) linear mappings. The space B(X, Y ) of continuous linear
mappings. Examples of bounded and unbounded linear operators. Special properties of
finite-dimensional spaces.

Readings:

• Handout #3: Introduction to normed linear spaces.

1. An alternate characterization of norms, and an alternate approach to ℓp.
In Lemma 3.9(b) we saw that the closed unit ball of a normed linear space is convex.
Here we want to prove the converse of this result. We will then use this fact to give an
alternate proof (not needing Hölder’s inequality) that the ℓp norm is indeed a norm.

(a) Let X be a real or complex vector space, and let N : X → R be a function with
the following properties:

(i) N(x) ≥ 0 for all x ∈ X (nonnegativity);

(ii) N(x) = 0 if and only if x = 0 (nondegeneracy);

(iii) N(λx) = |λ|N(x) for all x ∈ X and all λ ∈ R (or C) (homogeneity);

(iv) The set B = {x ∈ X: N(x) ≤ 1} is convex.

Prove that N is a norm on X.

Note that (i)–(iii) are just the standard properties (i)–(iii) of a norm. So what
you are proving here is that, in the presence of these properties, the convexity of
the “unit ball” is equivalent to the triangle inequality.

(b) For any sequence x = (x1, x2, . . .) of real (or complex) numbers and any real
number p ∈ [1,∞), define as usual

‖x‖p =

(

∞
∑

i=1

|xi|
p

)1/p

,
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and define ℓp to be the set of sequences for which ‖x‖p < ∞. First give a direct
elementary proof that ℓp is a vector space. [Hint: Bound |xi + yi|

p above in terms
of |xi|

p and |yi|
p.] Then prove that the set B = {x: ‖x‖p ≤ 1} is convex. [Hint:

Use the convexity of the function t 7→ tp on [0,∞).] Conclude from part (a) that
‖ · ‖p is a norm on ℓp.

Why does this proof fail if 0 < p < 1?

2. Inequivalent norms on an infinite-dimensional space. The linear space C[0, 1]
of continuous real-valued functions on the interval [0, 1] can be equipped with many
different norms, and here I would like to consider two of them:

• the sup norm ‖ · ‖∞ (Example 8 of Handout #1); and

• the L1 norm ‖ · ‖1 (Example 9 of Handout #1).

(a) Is the identity mapping of (C[0, 1], ‖ · ‖∞) into (C[0, 1], ‖ · ‖1) bounded? Prove
your assertion; and if the map is bounded, find its operator norm.

(b) Same question for the identity mapping of (C[0, 1], ‖ · ‖1) into (C[0, 1], ‖ · ‖∞).

This phenomenon is linked to the fact that (C[0, 1], ‖ · ‖1) is incomplete. If both of the
spaces were complete, this could not happen, as we shall see when we study the Open
Mapping Theorem.

3. Topological isomorphism versus isometric isomorphism. Recall that if
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ) are normed linear spaces, then a bijective linear map
T : X → Y is a topological isomorphism in case there exist numbers m > 0 and
M < ∞ such that

m‖x‖X ≤ ‖Tx‖Y ≤ M‖x‖X for all x ∈ X .

It is called an isometric isomorphism if we can take m = M = 1, i.e. if

‖Tx‖Y = ‖x‖X for all x ∈ X .

This is obviously a much stronger property.

Recall that c0 is the space of real sequences that converge to zero; and let c be the
space of real sequences that converge to some finite limit. It is easy to see that c is the
vector space spanned by c0 together with the single sequence (1, 1, 1, . . .). We equip
both c0 and c with the sup norm.

Now define a map T : c → c0 by

(Tx)1 = lim
n→∞

xn

(Tx)i+1 = xi − lim
n→∞

xn for i ≥ 1
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(a) Prove that T is a bounded linear map from c to c0, of norm ‖T‖ ≤ 2.

(b) Prove that T is a bijection from c to c0, and find an explicit formula for T−1.

(c) Prove that T−1 is a bounded linear map from c0 to c, of norm ‖T−1‖ ≤ 2. Conclude
that c and c0 are topologically isomorphic.

On the other hand, let us prove that c and c0 are not isometrically isomorphic, i.e.
there does not exist any isometric isomorphism of c onto c0. To do this, let us make
a definition: If C is a convex subset of a real vector space V , a point x ∈ C is called
an extreme point of C if there do not exist distinct points y, z ∈ C and a number
0 < λ < 1 such that x = λy + (1 − λ)z.

(d) Prove that the closed unit ball of c0 has no extreme points.

(e) Prove that the point (1, 1, 1, . . .) is an extreme point of the closed unit ball of c.

(f) Conclude from (d) and (e) that there cannot exist an isometric isomorphism of c
onto c0.

4. Operator norms of linear mappings defined by matrices. Let A = (aij) be an
m × n matrix of real numbers, and define the linear map A: Rn → Rm by

(Ax)i =
n
∑

j=1

aijxj for i = 1, 2, . . . , m .

(a) Suppose that we equip both the domain space Rn and the range space Rm with
the sup norm. Prove that the operator norm of the linear mapping A is given by

‖A‖(Rn,‖ · ‖∞)→(Rm,‖ · ‖∞) = max
1≤i≤m

n
∑

j=1

|aij | .

[Hint: Prove separately the two inequalities represented by the = sign.]

(b) Suppose that we equip both the domain space R
n and the range space R

m with
the ℓ1 norm. Prove that the operator norm of the linear mapping A is given by

‖A‖(Rn,‖ · ‖1)→(Rm,‖ · ‖1) = max
1≤j≤n

m
∑

i=1

|aij | .

These formulae for the operator norm of a linear mapping are important in numerical
linear algebra.

Now let A = (aij)
∞
i,j=1 be an infinite matrix of real numbers, and let us try to define

a linear map on infinite sequences by

(Ax)i =

∞
∑

j=1

aijxj for i = 1, 2, . . . . (∗)
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Of course we have to worry in general about convergence; but there is manifestly no
problem when x belongs to c00 (the space of infinite sequences having at most finitely
many nonzero entries), so this formula certainly defines a linear map A from c00 to
RN (the space of all infinite sequences of real numbers). We can then define, for any
1 ≤ p, q ≤ ∞, the quantity

‖A‖p→q = sup
x∈c00\{0}

‖Ax‖q

‖x‖p

,

which of course might take the value +∞ (in particular we recall that ‖Ax‖q = +∞ if
Ax /∈ ℓq).

(c) Show that

‖A‖∞→∞ = sup
i

∞
∑

j=1

|aij| .

Show further that if ‖A‖∞→∞ < ∞, then the sum (∗) is absolutely convergent
whenever x ∈ ℓ∞ and defines a sequence Ax ∈ ℓ∞, and that the resulting mapping
A: ℓ∞ → ℓ∞ is bounded and has operator norm ‖A‖ℓ∞→ℓ∞ = ‖A‖∞→∞.

(d) Show that

‖A‖1→1 = sup
j

∞
∑

i=1

|aij| .

Show further that if ‖A‖1→1 < ∞, then the sum (∗) is absolutely convergent
whenever x ∈ ℓ1 and defines a sequence Ax ∈ ℓ1, and that the resulting mapping
A: ℓ1 → ℓ1 is bounded and has operator norm ‖A‖ℓ1→ℓ1 = ‖A‖1→1.

5. A weighted right shift. Consider the operator W : ℓ2 → ℓ2 defined by

W (x1, x2, x3, . . .) = (0, x1,
1
2
x2,

1
3
x3, . . .) .

(a) Prove that W is a bounded linear operator on ℓ2, and compute its operator norm.

(b) Compute the operator norm of W n for each positive integer n, and show that
lim

n→∞
‖W n‖1/n = 0. (Such an operator is called quasinilpotent.)

(c) Does W have any eigenvalues? (Recall that λ ∈ C is called an eigenvalue of W
if there exists a nonzero vector x ∈ ℓ2 such that Wx = λx.)

6. Fredholm integral operators. Let [a, b] be a bounded closed interval of the real
line, and let K: [a, b] × [a, b] → R be a continuous function. For f ∈ C[a, b], define

(Tf)(s) =

b
∫

a

K(s, t) f(t) dt .
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(a) Prove that Tf is continuous whenever f is.

(b) Prove that T defines a bounded linear map from C[a, b] to itself, whose operator
norm satisfies

‖T‖C[a,b]→C[a,b] ≤ sup
s∈[a,b]

∫ b

a

|K(s, t)| dt .

(c) Prove that the operator norm is in fact equal to the expression given above on
the right-hand side.

7. A property of finite-dimensional subspaces. In a normed linear space X, let M
be a closed linear subspace and let N be a finite-dimensional linear subspace. Prove
that M + N is closed in X.

This generalizes the theorem that every finite-dimensional subspace of a normed
linear space is closed: just consider the special case M = {0}.

8. A criterion for separability. In a normed linear space X, we say that a subset
A ⊂ X is total if the linear span of A (i.e. the set of all finite linear combinations of
elements of A) is dense in X.

(a) Prove that if there there exists in X a countable total set, then X is separable.

(b) Prove, conversely, that if X is separable, then there exists in X a countable total
set consisting of linearly independent vectors.

9. Can one achieve d(x, M) = 1 in F. Riesz’s lemma?

(a) Let X be the closed linear subspace of C[0, 1] (equipped as usual with the sup
norm) consisting of the functions that vanish at 0. Let M be the linear subspace

of X consisting of the functions f ∈ X for which
∫ 1

0
f(t) dt = 0. It is easy to

see that M is closed (why?) and proper (why?). Prove that there does not exist
f ∈ X with ‖f‖ = 1 such that d(f, M) ≥ 1.

(b) Let X = ℓ1, and let c = (c1, c2, . . .) ∈ ℓ∞ be any sequence whose absolute value
does not attain its supremum, i.e. |cn| < ‖c‖∞ for all n. (For instance, cn = 1−1/n
is an example.) Then let M be the subspace of X defined by

M = {x ∈ ℓ1:
∞
∑

n=1

cnxn = 0} .

It is easy to see that M is closed (why?) and proper (why?). Prove that there
does not exist x ∈ X with ‖x‖ = 1 such that d(x, M) ≥ 1.
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(c) Let X be any real normed linear space, and suppose that there exists an element
T ∈ B(X, R) that does not attain its supremum on the closed unit ball of X. Let

M = ker T = {x ∈ X: T (x) = 0} .

It is easy to see that M is closed (why?) and proper (why?). Prove that there
does not exist x ∈ X with ‖x‖ = 1 such that d(x, M) ≥ 1.

Do you see how part (c) subsumes parts (a) and (b)? What are the maps T in
these two cases?

Remark: It follows from a deep theorem due to R.C. James, Characterizations of
reflexivity, Studia Math. 23, 205–216 (1964) that, for a Banach space X, the following
are equivalent:

(a) X has the “improved F. Riesz property”: that is, for every proper closed linear
subspace M ⊂ X, there exists x ∈ X with ‖x‖ = 1 and d(x, M) = 1.

(b) Every T ∈ B(X, R) attains its supremum on the closed unit ball of X.

(c) X is reflexive. [This is a property that we will define later in this course. We will
see that, for instance, ℓp is reflexive for 1 < p < ∞ but nonreflexive for p = 1,∞.
This explains the behavior in part (b) above.]

It is not hard to show that (c) =⇒ (a) ⇐⇒ (b); the difficult part of James’ theorem,
which is far beyond the scope of this course, is to show that (a) or (b) implies (c).
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