
MATHEMATICS 3103 (Functional Analysis)
YEAR 2012–2013, TERM 2

PROBLEM SET #2

This problem set is due at the beginning of class on Monday 4 February. I urge
you to start on it early in the week, as some of the problems are not entirely trivial. Only
Problems 1 and 3 will be formally assessed, but I strongly urge you not to neglect the others!

Topics:

• Completeness. Completeness of the sequence spaces ℓ∞, c0, ℓ1 and ℓ2. Incompleteness
of the space C[a, b] with the L1 or L2 norm. Completion of a metric space.

• Compactness. Equivalent versions of compactness for metric spaces. Continuous func-
tions on compact metric spaces. Examples of compactness and noncompactness in
infinite-dimensional spaces. Locally compact metric spaces.

Readings:

• Kreyszig, Sections 1.5 and 1.6 (handout).

• Handout #2: Compactness of Metric Spaces.

• Dieudonné, Sections III.16, III.17 and III.18 (handout).

1. Completeness of the space B(A) of bounded functions. Let A be an arbi-
trary nonempty set, and let B(A) be the space of bounded real-valued functions on A,
equipped with the sup norm. Prove that B(A) is complete.

2. Compactness of finite and countably infinite Cartesian products.

(a) Let (X1, d1), . . . , (Xn, dn) be metric spaces, and let X be the Cartesian-product
space X1×· · ·×Xn [that is, the space consisting of n-tuples x = (x1, . . . , xn) with
xi ∈ Xi]. Equip X with either of the equivalent metrics

d1(x, y) =

n∑

i=1

di(xi, yi)

d∞(x, y) = max
1≤i≤n

di(xi, yi)

(see Problem 2(a) of Problem Set #1). Prove that if the spaces X1, . . . , Xn are
all compact, then so is X.
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(b) Let (X1, d1), (X2, d2), . . . be an infinite sequence of metric spaces, and let X be
the Cartesian-product space X1×X2 ×· · · [that is, the space consisting of infinite
sequences x = (x1, x2, . . .) with xi ∈ Xi], equipped with the metric

d(x, y) =
∞∑

j=1

1

2j

dj(xj , yj)

1 + dj(xj , yj)

(see Problem 2(c) of Problem Set #1). Prove that if the spaces X1, X2, . . . are all
compact, then so is X.

3. Compactness of some sets in ℓ1 and ℓ2. Given a sequence x = (x1, x2, . . .) of real
numbers, let us define Sx to be the set consisting of those infinite sequences of real
numbers that are “bounded above elementwise by x”, i.e.

Sx = {y ∈ R
N: |yn| ≤ |xn| for all n} .

In the notes we proved that if x ∈ c0, then Sx is a compact subset of c0 (and hence
also of ℓ∞). Here you will prove the analogous results for ℓ1 and ℓ2:

(a) If x ∈ ℓ1, then Sx is a compact subset of ℓ1.

(b) If x ∈ ℓ2, then Sx is a compact subset of ℓ2.

4. More on compactness in ℓ∞ and c0. Define Sx as in the preceding problem.

(a) Let x ∈ ℓ∞. Prove that the following are equivalent:

(i) x ∈ c0.

(ii) Sx is compact (as a subspace of ℓ∞).

(iii) Sx is separable (as a subspace of ℓ∞).

(b) Prove that a closed subset A ⊆ c0 is compact if and only if it is contained in the
set Sx for some x ∈ c0. [Hint: If A were indeed contained in some set Sx, what
would the smallest such x be? Define it and then prove that it lies in c0 whenever
A is compact.]

5. Upper semicontinuous and lower semicontinuous functions. Let X be a metric
space, let f : X → R be a real-valued function, and let x0 ∈ X. We recall that f is
continuous at x0 if for every ǫ > 0 there exists a neighborhood U of x0 such that

f(x0) − ǫ < f(x) < f(x0) + ǫ

for all x ∈ U . It is sometimes useful to consider these two inequalities separately: let
us say that f is

• upper semicontinuous at x0 if for every ǫ > 0 there exists a neighborhood U

of x0 such that f(x) < f(x0) + ǫ for all x ∈ U ; and
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• lower semicontinuous at x0 if for every ǫ > 0 there exists a neighborhood U of
x0 such that f(x) > f(x0) − ǫ for all x ∈ U .

(Clearly, a function is continuous at x0 if and only if it is both upper semicontinuous
and lower semicontinuous there.) Here are two drawings that can help to remember
what upper and lower semicontinuity mean:

The function at the left is upper semicontinuous, while the one at the right is lower
semicontinuous; in both cases the solid dot indicates f(x0).

A function f : X → R is said to be upper (resp. lower) semicontinuous if it is upper
(resp. lower) semicontinuous at every point of X.

Clearly, f is upper semicontinuous if and only if −f is lower semicontinuous, so it
suffices to study one of the two concepts; we can then immediately deduce results for
the other. So let us focus on lower semicontinuity.

(a) Show that a function f : X → R is lower semicontinuous if and only if the set
{x ∈ X: f(x) > a} is an open set for every a ∈ R.

(b) Let (fα)α∈I be a collection of real-valued functions on X (indexed by some arbi-
trary index set I), and define f as the pointwise supremum

f(x) = sup
α∈I

fα(x) .

Let us assume for simplicity that f(x) < ∞ for all x ∈ X, so that f is again a
real-valued function on X.

Show that if all the functions fα are lower semicontinuous, then so is f . Show
also, by example, that f need not be continuous even if all the functions fα are
continuous and the index set I is countably infinite and the metric space X is
compact. (Of course, a finite maximum of continuous functions is continuous.)

(c) Let f be a lower semicontinuous function on a compact metric space X. Show
that f is bounded below and attains its minimum. [Hint: Use open coverings.]

Remark. The most natural context for studying upper and lower semicontinuous
functions is that of functions taking values in the extended real line R = R ∪
{−∞, +∞}.1 Then the statement of part (b) would be true without the assumption
that f(x) < ∞ for all x ∈ X.

1With e.g. the metric d(x, y) = | tanhx − tanh y| where tanh(+∞) is defined as +1 and tanh(−∞) is
defined as −1. This metric has the property that lim

n→∞

(±n) = ±∞.
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