MATHEMATICS 3103 (Functional Analysis) YEAR 2012–2013, TERM 2

PROBLEM SET #2

This problem set is due at the *beginning* of class on Monday 4 February. I urge you to start on it *early* in the week, as some of the problems are not entirely trivial. Only Problems 1 and 3 will be formally assessed, but I strongly urge you not to neglect the others!

Topics:

- Completeness. Completeness of the sequence spaces ℓ^{∞} , c_0 , ℓ^1 and ℓ^2 . Incompleteness of the space C[a,b] with the L^1 or L^2 norm. Completion of a metric space.
- Compactness. Equivalent versions of compactness for metric spaces. Continuous functions on compact metric spaces. Examples of compactness and noncompactness in infinite-dimensional spaces. Locally compact metric spaces.

Readings:

- Kreyszig, Sections 1.5 and 1.6 (handout).
- Handout #2: Compactness of Metric Spaces.
- Dieudonné, Sections III.16, III.17 and III.18 (handout).
- 1. Completeness of the space $\mathcal{B}(A)$ of bounded functions. Let A be an arbitrary nonempty set, and let $\mathcal{B}(A)$ be the space of bounded real-valued functions on A, equipped with the sup norm. Prove that $\mathcal{B}(A)$ is complete.
- 2. Compactness of finite and countably infinite Cartesian products.
 - (a) Let $(X_1, d_1), \ldots, (X_n, d_n)$ be metric spaces, and let X be the Cartesian-product space $X_1 \times \cdots \times X_n$ [that is, the space consisting of n-tuples $x = (x_1, \ldots, x_n)$ with $x_i \in X_i$]. Equip X with either of the equivalent metrics

$$\mathbf{d}_1(x,y) = \sum_{i=1}^n d_i(x_i,y_i)$$

$$\mathbf{d}_{\infty}(x,y) = \max_{1 \le i \le n} d_i(x_i, y_i)$$

(see Problem 2(a) of Problem Set #1). Prove that if the spaces X_1, \ldots, X_n are all compact, then so is X.

(b) Let (X_1, d_1) , (X_2, d_2) , ... be an infinite sequence of metric spaces, and let X be the Cartesian-product space $X_1 \times X_2 \times \cdots$ [that is, the space consisting of infinite sequences $x = (x_1, x_2, \ldots)$ with $x_i \in X_i$], equipped with the metric

$$d(x,y) = \sum_{j=1}^{\infty} \frac{1}{2^{j}} \frac{d_{j}(x_{j}, y_{j})}{1 + d_{j}(x_{j}, y_{j})}$$

(see Problem 2(c) of Problem Set #1). Prove that if the spaces X_1, X_2, \ldots are all compact, then so is X.

3. Compactness of some sets in ℓ^1 and ℓ^2 . Given a sequence $x = (x_1, x_2, ...)$ of real numbers, let us define S_x to be the set consisting of those infinite sequences of real numbers that are "bounded above elementwise by x", i.e.

$$S_x = \{ y \in \mathbb{R}^{\mathbb{N}} : |y_n| \le |x_n| \text{ for all } n \}.$$

In the notes we proved that if $x \in c_0$, then S_x is a compact subset of c_0 (and hence also of ℓ^{∞}). Here you will prove the analogous results for ℓ^1 and ℓ^2 :

- (a) If $x \in \ell^1$, then S_x is a compact subset of ℓ^1 .
- (b) If $x \in \ell^2$, then S_x is a compact subset of ℓ^2 .
- 4. More on compactness in ℓ^{∞} and c_0 . Define S_x as in the preceding problem.
 - (a) Let $x \in \ell^{\infty}$. Prove that the following are equivalent:
 - (i) $x \in c_0$.
 - (ii) S_x is compact (as a subspace of ℓ^{∞}).
 - (iii) S_x is separable (as a subspace of ℓ^{∞}).
 - (b) Prove that a closed subset $A \subseteq c_0$ is compact if and only if it is contained in the set S_x for some $x \in c_0$. [Hint: If A were indeed contained in some set S_x , what would the smallest such x be? Define it and then prove that it lies in c_0 whenever A is compact.]
- 5. Upper semicontinuous and lower semicontinuous functions. Let X be a metric space, let $f: X \to \mathbb{R}$ be a real-valued function, and let $x_0 \in X$. We recall that f is continuous at x_0 if for every $\epsilon > 0$ there exists a neighborhood U of x_0 such that

$$f(x_0) - \epsilon < f(x) < f(x_0) + \epsilon$$

for all $x \in U$. It is sometimes useful to consider these two inequalities separately: let us say that f is

• upper semicontinuous at x_0 if for every $\epsilon > 0$ there exists a neighborhood U of x_0 such that $f(x) < f(x_0) + \epsilon$ for all $x \in U$; and

• lower semicontinuous at x_0 if for every $\epsilon > 0$ there exists a neighborhood U of x_0 such that $f(x) > f(x_0) - \epsilon$ for all $x \in U$.

(Clearly, a function is continuous at x_0 if and only if it is both upper semicontinuous and lower semicontinuous there.) Here are two drawings that can help to remember what upper and lower semicontinuity mean:

The function at the left is upper semicontinuous, while the one at the right is lower semicontinuous; in both cases the solid dot indicates $f(x_0)$.

A function $f: X \to \mathbb{R}$ is said to be upper (resp. lower) semicontinuous if it is upper (resp. lower) semicontinuous at every point of X.

Clearly, f is upper semicontinuous if and only if -f is lower semicontinuous, so it suffices to study one of the two concepts; we can then immediately deduce results for the other. So let us focus on lower semicontinuity.

- (a) Show that a function $f: X \to \mathbb{R}$ is lower semicontinuous if and only if the set $\{x \in X: f(x) > a\}$ is an open set for every $a \in \mathbb{R}$.
- (b) Let $(f_{\alpha})_{\alpha \in I}$ be a collection of real-valued functions on X (indexed by some arbitrary index set I), and define f as the pointwise supremum

$$f(x) = \sup_{\alpha \in I} f_{\alpha}(x) .$$

Let us assume for simplicity that $f(x) < \infty$ for all $x \in X$, so that f is again a real-valued function on X.

Show that if all the functions f_{α} are lower semicontinuous, then so is f. Show also, by example, that f need not be continuous even if all the functions f_{α} are continuous and the index set I is countably infinite and the metric space X is compact. (Of course, a *finite* maximum of continuous functions is continuous.)

(c) Let f be a lower semicontinuous function on a *compact* metric space X. Show that f is bounded below and attains its minimum. [Hint: Use open coverings.]

Remark. The most natural context for studying upper and lower semicontinuous functions is that of functions taking values in the **extended real line** $\mathbb{R} = \mathbb{R} \cup \{-\infty, +\infty\}$. Then the statement of part (b) would be true without the assumption that $f(x) < \infty$ for all $x \in X$.

¹With e.g. the metric $d(x,y) = |\tanh x - \tanh y|$ where $\tanh(+\infty)$ is defined as +1 and $\tanh(-\infty)$ is defined as -1. This metric has the property that $\lim_{n\to\infty} (\pm n) = \pm \infty$.