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HANDOUT #7: MORE ON CENTRAL-FORCE MOTION

This handout is intended to complement the discussion of central-
force motion contained in Kleppner and Kolenkow (K+K), Sec-
tion 1.9 (kinematics) and Chapter 9 (dynamics). Read those sections
of K+K first, then read this.

1 Reduction to a one-dimensional problem (review)

The Newtonian equations of motion in polar coordinates for a particle of mass m subject
to a central force F(r) = F (r) êr are

m(r̈ − rφ̇2) = F (r) (1a)

m(rφ̈+ 2ṙφ̇) = 0 (1b)

As discussed in K+K, Section 9.3, these equations can be integrated by observing that the
angular momentum

L = mr× v = mr2φ̇ (2)

and the total energy

E = 1
2
mv2 + U(r) = 1

2
m(ṙ2 + r2φ̇2) + U(r) (3)

are constants of motion (i.e. dL/dt = 0 and dE/dt = 0). It follows that

1
2
mṙ2 +

L2

2mr2
+ U(r) = E , (4)

which is mathematically identical to the energy-conservation equation for a particle moving
in one dimension subject to the “effective potential energy”

Ueff(r) = U(r) +
L2

2mr2
. (5)

In particular, eq. (4) can be written as

dr

dt
= ±

√
2

m
[E − Ueff(r)] (6)

and hence solved by separation of variables:

t = t0 ±
r∫

r0

dr′√
2

m
[E − Ueff(r

′)]

. (7)
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From this one can in principle determine the motion r(t). And plugging this back into the
angular-momentum equation

dφ

dt
=

L

mr2
, (8)

one can in principle find φ(t) as well:

φ(t) = φ0 +

t∫
t0

L

mr(t′)2
dt′ . (9)

In practice it is often impossible to perform explicitly the integrals and inversions here (at
least in terms of elementary functions); in this case we have to resort to numerical solutions.

The qualitative analysis of central-force motions is discussed in K+K, Section 9.5.

2 Equation of the orbit: First-order version

There are some cases in which it is hopeless to find r(t) and φ(t) explicitly in terms of
elementary functions, but it is nevertheless possible to find the orbit r(φ) explicitly. Indeed,
the inverse-square force is an example of this, as we shall see.

K+K already observe (top p. 382) that dividing eq. (8) by eq. (6) yields

dφ

dr
= ± L

mr2
√

2

m
[E − Ueff(r)]

, (10)

from which one can in principle find the orbit φ(r) by integration. This integral will be of
the form ∫

dr

r2
√
stuff

, (11)

and the factor dr/r2 = −d(1/r) appearing here suggests that it might be useful to make the
change of variables u = 1/r. Doing this, we have

dφ

du
= ± L

m

√
2

m
[E − Ueff(1/u)]

(12a)

= ± L

m

√
2

m
[E − U(1/u)− L2

2m
u2]

. (12b)

This equation can be separated and integrated to give

φ = φ0 ±
∫

(L/m) du√
2

m
[E − U(1/u)− L2

2m
u2]

. (13)

In principle this gives φ(u) and hence φ(r). Note that the constants of motion L and E
appear explicitly.
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Remarks. 1. The physical meaning of the variable u = 1/r can be clarified by throwing
in an additional factor L/m, because we then have

L

mr
= rφ̇ = v⊥ , (14)

i.e. v⊥ is the angular component of the particle’s velocity v = ṙêr+v⊥êφ. So u is proportional
to v⊥.

2. The ± sign in eq. (12) depends on whether we are considering the outgoing or incoming
part of the orbit. It can be determined from

du

dφ
=

du

dr

dr

dφ
= − 1

r2
dr

dφ
= − m

L

dφ

dt

dr

dφ
= − m

L

dr

dt
. (15)

3 Equation of the orbit: Second-order version

Here is an alternate (and sometimes useful) approach to the orbit equation, which yields
a second-order differential equation for the function u(φ). Let us start by turning eq. (12)
upside-down to yield

du

dφ
= ±

√
2m

L2
[E − U(1/u)− L2

2m
u2] (16)

and then squaring it to yield(du
dφ

)2

+ u2 +
2m

L2
U(1/u) =

2mE

L2
. (17)

Now differentiate both sides with respect to φ: we get

2
d2u

dφ2

du

dφ
+ 2u

du

dφ
− 2m

L2u2
U ′(1/u)

du

dφ
= 0 (18)

where U ′ denotes the derivative of U with respect to its argument (namely, dU/dr). We can
now pull out a common factor 2 du/dφ to obtain

d2u

dφ2
+ u =

m

L2u2
U ′(1/u) = − m

L2u2
F (1/u) (19)

where we have used F (r) = −U ′(r). (Note that E disappeared in the differentiation, as
it should, since it is a constant of integration obtained in the passage from a second-order
differential equation to a first-order one. We have just reversed this process, so E disappears.)
In summary, we have

d2u

dφ2
+ u = − m

L2u2
F (1/u) (20)

The orbit equation (20) is a second-order differential equation that is mathematically of
the same form as the Newtonian equation of motion for a particle moving in one dimension,
but with φ now replacing t as the independent variable and u replacing x as the dependent
variable. In particular, the left-hand side looks like the equation of the harmonic oscillator,
while the right-hand side provides an “anharmonic” term. There are two special cases in
which this latter term is very simple:
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• If F = −k/r2 (inverse-square force), the right-hand side of eq. (20) is the constant
km/L2.

• If F = −k/r3 (inverse-cube force), the right-hand side of eq. (20) is (km/L2)u, i.e.
linear in u.

In both these cases (and more generally when the force is a sum of inverse-square and inverse-
cube terms), the orbit equation (20) is a linear constant-coefficient second-order differential
equation and hence easily solvable.

4 An example

The second-order form of the orbit equation is particularly useful for finding the force
law when the orbit is known, since we can rewrite eq. (20) as

F (1/u) = − L2u2

m

(
d2u

dφ2
+ u

)
. (21)

Here is an amusing example:
Suppose that the orbit is a circle of radius a that passes through the origin (this is

admittedly a very strange orbit!). If we place the center of the orbit at (x, y) = (a, 0), then
a bit of geometry (do it!) shows that the equation of the orbit in plane polar coordinates is

r = 2a cosφ . (22)

Let us now ask: What is the central force F (r) that permits a particle to move with angular
momentum L along this circle?

Inserting u = (2a)−1 secφ into (21), we find after some algebra (you should check this!!)

F (1/u) = − L2

4ma3
sec5 φ = − 8L2a2

m
u5 (23)

or equivalently

F (r) = − 8L2a2

m

1

r5
. (24)

So an attractive inverse-fifth-power force law F (r) = −k/r5 (k > 0) permits a circular orbit
that passes through the center of force. Of course, the initial conditions have to be chosen
just right for the particle to adopt this particular orbit.

5 Orbits for inverse-square forces

If the force law is inverse-square, F (r) = −k/r2, then the second-order orbit equation (20)
becomes

d2u

dφ2
+ u =

km

L2
, (25)

and its general solution is

u =
km

L2
+ A cos(φ− φ0) (26)
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where A and φ0 are constants. Going back to the variable r, this yields

r =
r0

1 + ϵ cos(φ− φ0)
(27)

where we have written

r0 =
L2

km
(28)

ϵ =
AL2

km
(29)

As discussed in K+K, Section 9.6 and Note 9.1, this is the equation in polar coordinates of
a conic section; here r0 is called the semilatus rectum and ϵ is called the eccentricity.
In particular we have

ϵ = 0: circle

0 < ϵ < 1: ellipse

ϵ = 1: parabola

ϵ > 1: hyperbola

This result can alternatively be derived (as in K+K, Section 9.6) by using the first-order
orbit equation (13). This approach has the advantage of relating the eccentricity to the total
energy E:

ϵ =

√
1 +

2EL2

mk2
. (30)

It follows that

E < 0: circle or ellipse

E = 0: parabola

E > 0: hyperbola

In interpreting these relations we must remember that we have chosen the zero of potential
energy to lie at r = ∞, i.e. U(r) = −k/r. If the force is attractive (k > 0), this means that
all potential energies are negative, and that locations closer to the origin have more negative
potential energies. Whether the total energy is positive, negative or zero then depends on
whether the kinetic energy (which is always nonnegative) is larger or smaller in magnitude
than the potential energy (which is negative). More precisely, a positive total energy means
that the particle can escape to infinity with a nonzero limiting speed; a zero total energy
means that the particle can just barely escape to infinity with a zero limiting speed; and
a negative total energy means that the particle’s orbit is bounded (i.e. reaches a maximum
distance from the origin rmax < ∞).

You should study carefully K+K, Section 9.6 and Note 9.1 concerning the mathematics
of conic sections and their application to inverse-square orbits.
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6 Nearly circular orbits (for a general central force)

Let us now return to the case of a general central force F (r). Consider the angular
momentum L to be fixed once and for all. Recall that the second-order orbit equation (20)
reads

d2u

dφ2
+ u = − m

L2u2
F (1/u) (31)

where u = 1/r. The simplest solution of this equation is a circular motion u = constant = u0,
where u0 solves the algebraic equation

u0 = − m

L2u2
0

F (1/u0) (32)

for the given value of L. (Note that this implies that the force is at least locally attractive,
i.e. F (1/u0) < 0.)

Now suppose that, with the particle in this circular orbit, we give it a small radial impulse
(which leaves L unchanged). Will u now oscillate around u0? And if so, what will the orbit
be?

To investigate small oscillations, we write

u(φ) = u0 + α(φ) (33)

where α is considered small. We then expand the right-hand side of eq. (31) in Taylor series
around u = u0:

− m

L2u2
F (1/u) = − m

L2u2
0

F (1/u0) − m

L2

(
d

du

F (1/u)

u2

)
u=u0

(u− u0) + O
(
(u− u0)

2
)

= u0 − m

L2

(
d

du

F (1/u)

u2

)
u=u0

(u− u0) + O
(
(u− u0)

2
)

(34)

where O
(
(u− u0)

2
)
denotes terms of order (u− u0)

2 and higher. Dropping all such terms,

we obtain the differential equation

d2α

dφ2
+ ω2α = 0 , (35)

where we have defined

ω2 ≡ 1 +
m

L2

(
d

du

F (1/u)

u2

)
u=u0

(36a)

= 1 − 2m

L2

F (1/u0)

u3
0

− m

L2

F ′(1/u0)

u4
0

(36b)

= 1 + 2 +
F ′(1/u0)

u0 F (1/u0)
(36c)

= 3 +
r0 F

′(r0)

F (r0)
. (36d)
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[Here we have used eq. (32) in going from the second to the third line (check this!), and we
have written r0 = 1/u0.] Eq. (35) is the differential equation of a simple harmonic oscillator
with “frequency” ω, but with the angle φ playing the role of “time”. Thus:

• If ω2 > 0, then the solutions are oscillatory,

α(φ) = A cos[ω(φ− φ0)] , (37)

and the period of oscillation (an angle) is given by 2π/ω.

• If ω2 < 0, then the solutions are growing and decaying exponentials,

α(φ) = Ae
√
−ω2 φ + Be−

√
−ω2 φ , (38)

and the orbit is unstable: that is, unless the initial conditions are perfectly tuned so
that the amplitude of the growing exponential is exactly zero, the deviation from the
circular orbit will grow exponentially with time, and the small-α approximation will
soon fail.

Examples. 1. Consider an attractive inverse-nth-power force F (r) = −k/rn with k > 0.
Then

r0 F
′(r0)

F (r0)
= n independent of r0 (39)

and hence
ω2 = 3− n . (40)

So the angle turned through in one complete oscillation is

Φ =
2π

ω
=

2π√
3− n

. (41)

• For n = 2 (inverse-square force), we have Φ = 2π, and the orbit is closed (as we already
know: it is an ellipse).

• For n = −1 (two-dimensional simple harmonic oscillator), we have Φ = π. (Why is
this correct? What is the orbit in this case?)

• As n ↑ 3, we have Φ ↑ ∞.

• For n > 3, the orbit is unstable.

2. Consider a small perturbation of an inverse-square force: F (r) = −k/r2−λF1(r) with
λ small [here F1(r) is some specified function]. Then Φ will be slightly different from 2π,
and the perihelion (point of closest approach to the origin) will precess : more precisely, it
will advance if Φ > 2π and be retarded if Φ < 2π. Here is an extremely interesting exercise
illustrating this behavior, along with two important applications:

Exercise. Consider a particle of massmmoving in a central force F (r) = −k/r2−λF1(r).
Compute, to first order in the small parameter λ, the precession of the perihelion (in radians
per revolution) for a nearly circular orbit of radius R. Be sure to say whether the perihelion
advances or is retarded at each revolution.

Here are two important special cases:
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(a) Suppose that in addition to the Sun (mass M), the solar system contained dust of
uniform density ρ. Compute the corresponding central force F (r). [Hint: The calcu-
lation given in Kleppner + Kolenkow, Note 2.1 shows that the gravitational force of a
uniform spherical shell on a test mass located outside the shell is the same as if all the
shell’s mass were located at its center, while the force on a test mass located inside the
shell is zero.] Show that the perihelion for a nearly circular orbit of radius R would be
retarded, and compute the retardation per revolution.

(b) According to general relativity, the orbit of a particle of mass m in the gravitational
field of a star (or black hole) of mass M is identical to the Newtonian orbit in a central
force

F (r) = −GMm

r2

[
1 +

3L2

m2c2r2

]
where L is the particle’s angular momentum and c is the speed of light. (Note that
L/mcr is dimensionless and equals v⊥/c. So the general-relativistic correction is small
whenever the particle’s motion is nonrelativistic.) Show that the perihelion for a nearly
circular orbit of radius R advances, and compute the advance per revolution.

Now plug in G = 6.673× 10−11m3kg−1sec−2, Msun = 1.99× 1030 kg, c = 2.998× 108

m/sec and

Semimajor Axis in
Planet Astronomical Units Eccentricity
Mercury 0.387 0.206
Venus 0.723 0.007
Earth 1.000 0.017
Mars 1.524 0.093

where 1 AU = 1.496× 1011 m. For Mercury, do you get the famous 43 seconds of arc
per century? [Actually you’ll be off by about 4%, because for non-circular orbits there
is a correction factor 1− ϵ2 where ϵ is the eccentricity.]

You can find more information at http://en.wikipedia.org/wiki/Tests_of_general_
relativity#Perihelion_precession_of_Mercury

and http://en.wikipedia.org/wiki/Kepler_problem_in_general_relativity
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