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HANDOUT #2: NEWTON’S SECOND LAW

Let’s begin by recalling Newton’s first law of motion (see Handout #1):

Newton’s First Law. An isolated object (i.e. one subject to no forces from
other objects) moves at constant velocity, i.e. in a straight line at constant speed.

Since acceleration is the rate of change of velocity, we can rephrase this as:

Newton’s First Law (rephrased). If the force F on an object is zero, then
its acceleration a is zero.

That’s all well and good, but most objects in the world are subject to forces. How will
they move? The correct answer can, of course, only be determined by experiment; but let’s
try nevertheless to guess what the correct law might be, by reasoning as follows:

1) Zero force (F = 0) implies zero acceleration (a = 0). So it’s reasonable to guess that
nonzero force (F ̸= 0) implies nonzero acceleration (a ̸= 0).

2) It’s also reasonable to guess that a bigger force makes a bigger acceleration. How much
bigger? Many behaviors are possible a priori : for example, the acceleration might be
proportional to the seventeenth power of the force (a ∝ F 17). But this seems unduly
complicated. The simplest guess is that the acceleration is directly proportional
to the force: a ∝ F .

3) What determines the constant of proportionality here? Well, we know from experience
that pushing on a pen with some specified force F has a greater effect than pushing
with the same force F on a car. That’s because the car is “more massive” than the
pen; it resists more strongly being pushed around. So, the acceleration a produced by
a given force F depends on the mass m of the object being pushed: the greater the
mass, the smaller the acceleration. How much smaller? Many behaviors are possible
a priori : for example, the acceleration might be inversely proportional to the ninth
power of the mass (a ∝ 1/m9). But the simplest guess is that the acceleration is
inversely proportional to the mass: a ∝ 1/m.1

4) Summarizing, we’ve guessed that the acceleration of an object is directly proportional
to the force exerted on the object, and inversely proportional to the mass of the object:
a ∝ F/m. This can be rewritten as a = CF/m where C is some constant.

5) We can arrange to have C = 1 by choosing our units appropriately. We have already
decided to measure acceleration in meters/second2, and to measure mass in kilograms.
But we are still free to define the unit of force. If we define the unit of force by

1The conceptual issues associated with the meaning of the term “mass” are discussed in more detail in
Chapter 2 of Kleppner and Kolenkow, An Introduction to Mechanics (pp. 56–58). In particular, Kleppner
and Kolenkow stress that Newton’s second law can be used to provide an operational definition of “mass”.
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One newton is the force needed to make a 1-kilogram object accelerate at
1 meter/second2.

then we will have C = 1, or in other words a = F/m.

We have thus guessed:

Newton’s Second Law (one-dimensional version). An object of mass m
subject to a force F moves with an acceleration a = F/m.

(This is often rewritten in the form F = ma.)

Oh, one more thing: we shouldn’t forget that force and acceleration are vectors —
each of them has a magnitude and a direction. Thus far we’ve been discussing how the
magnitude of the force is related to the magnitude of the acceleration, but we also need to
discuss the relation between their directions. Once again the simplest guess turns out to be
the correct one: namely, the acceleration points in the same direction as the force. We can
therefore state Newton’s Second Law in its full vector form:

Newton’s Second Law. An object of mass m subject to a force F moves with
an acceleration a = F/m.

(This is often rewritten in the form F = ma.)

Some remarks. 1. There may be many forces acting simultaneously on an object.
For example, a swimmer is subject both to a gravitational force from the earth (downwards)
and to a buoyancy force from the water (upwards). The force F appearing in Newton’s
Second Law is the net force on the object, that is, the vector sum of all the individual
forces acting on the object.

2. What if the force is varying in time? It’s not obvious what happens, but the simplest
guess turns out to be right:

Newton’s Second Law (clarification). The acceleration of the object right now
is proportional to the force acting on the object right now : that is, a(t) = F(t)/m
at each instant of time t.

This is the case no matter how the force may be varying (or not varying) with time.
This is a striking fact! Please note that the analogous statement for velocity (or position)

is simply false: the velocity of an object right now depends not only on the force being
exerted on it right now, but also on all the forces that have been exerted on it in the past.
Indeed, an object can have a big velocity right now even though no force is currently being
exerted on it. (Think of a tennis ball after it has lost contact with the racket.)

3. Behind the apparent simplicity of Newton’s Second Law lie some deep conceptual
subtleties. What, precisely, do we mean by force? How do we know when a force is acting
on an object?

First attempted answer: A “force” is some kind of a tangible push or pull,
usually by contact between two solid objects.
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But the progress of physics has revealed many types of forces that do not act by contact,
e.g. gravitational forces, electric and magnetic forces, etc. So it’s not so easy to know whether
or not a force is acting.

Second attempted answer: Newton’s Second Law tells us that F = ma. So a
force must be acting on an object whenever its acceleration is observed to be
nonzero.

This is true, but uninformative: it reduces Newton’s Second Law to the status of a mere
definition of “force”, with no physical content whatsoever ! Furthermore, we should remember
that the “F” in Newton’s Second Law is the net force on the object, i.e. the vector sum of
all the individual forces. Newton’s Second Law, if we interpret it as a mere definition of
“force”, tells only about the net force; it tells us nothing about the individual forces that
may or may not be acting.

A better way of understanding Newton’s Second Law is to see it as an incomplete law
and as the statement of a research programme. That is, Newton’s Second Law by itself tells
us nothing about how objects move; to make specific predictions, we need to supplement
Newton’s Second Law with force laws: that is, laws that tell us, precisely and quantitatively,
what the force on an object is when it is in the presence of specified other objects with
specified properties at specified locations. Newton’s Second Law is therefore best viewed as
a research programme, namely: “Go look for force laws!” We expect this to be a fruitful
research programme in the sense that we expect the force laws will turn out to be fairly
simple.2

Newton himself gave the complete force law in one case, namely:

The law of universal gravitation. Each object in the universe attracts each
other object with a force of magnitude F = Gm1m2/r

2, where m1 and m2 are
the masses of the two objects, r is the distance between them, and G is Newton’s
gravitational constant. [Here “attracts” means that the force on object 1 is
directed towards object 2, and vice versa.]

In systems where the only forces acting are gravitational (e.g. the solar system has this
property, to an excellent approximation), Newton’s Second Law plus the law of universal
gravitation is a complete physical theory in the sense that it gives precise predictions for the
motion of objects.3 That is, if one knows the masses and initial positions and velocities of a

2In what sense simple? Well, suppose, by contrast, that we define the “gorce” acting on an object as
G = mv. Then, no matter how hard we try, we will not find simple “gorce laws” — because the gorce
acting on an object right now depends not only on its current environment but also on the whole history of
environments in which it has been located (think again of the tennis ball after it has lost contact with the
racket). So “gorce laws” will not turn out to be simple; the incomplete law G = mv will not define a fruitful
research programme. The real meaning of Newton’s Second Law is that we expect force laws to turn out to
be simple in a way that “gorce laws” are not. This illuminating example is due to Feynman (The Feynman
Lectures on Physics, vol. 1, sec. 12–1).
Nor is this just a contrived example. In fact, the history of physics from Aristotle through the Middle

Ages was based on trying to find “gorce laws”: that is, laws governing the velocity of an object. This
misguided orientation led to a stagnation lasting nearly 2000 years. The key breakthrough was made by
Galileo (see Handout #1), who realized that one should not try to explain directly an object’s velocity, but
rather its acceleration. This insight led within a half-century to Newtonian mechanics and the launch of
modern physics.

3Which doesn’t mean, of course, that these predictions are exactly correct ; indeed, we now know that
Newtonian mechanics does not give an exactly correct description of the solar system, and that it has to be
replaced by Einstein’s general relativity.
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set of objects — and one assumes that they constitute an isolated system, i.e. one which
is located so far away from all other objects that the forces exerted on the system by those
other objects are negligible — then one can, in principle at least, calculate the entire future
(and past) motion of all the objects in the system.
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