
MATHEMATICS 0054 (Analytical Dynamics)
YEAR 2023–2024, TERM 2

HANDOUT #12: THE HAMILTONIAN APPROACH TO MECHANICS

These notes are intended to be read as a supplement to the handout
from Gregory, Classical Mechanics, Chapter 14.

1 The basic set-up

I assume that you have already studied Gregory, Sections 14.1–14.4. The following
is intended only as a succinct summary.

We are considering a system whose equations of motion are written in Hamiltonian
form. This means that:

1. The phase space of the system is parametrized by canonical coordinates
q = (q1, . . . , qn) and p = (p1, . . . , pn).

2. We are given a Hamiltonian function H(q,p, t).

3. The dynamics of the system is given by Hamilton’s equations of motion

q̇i =
∂H

∂pi
(1a)

ṗi = − ∂H

∂qi
(1b)

for i = 1, . . . , n.

In these notes we will consider some deeper aspects of Hamiltonian dynamics.

2 Poisson brackets

Let us start by considering an arbitrary function f(q,p, t). Then its time evolution is
given by

df

dt
=

n∑
i=1

(
∂f

∂qi
q̇i +

∂f

∂pi
ṗi

)
+

∂f

∂t
(2a)

=
n∑

i=1

(
∂f

∂qi

∂H

∂pi
− ∂f

∂pi

∂H

∂qi

)
+

∂f

∂t
(2b)
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where the first equality used the definition of total time derivative together with the chain
rule, and the second equality used Hamilton’s equations of motion.

The formula (2b) suggests that we make a more general definition. Let f(q,p, t) and
g(q,p, t) be any two functions; we then define their Poisson bracket {f, g} to be

{f, g} def
=

n∑
i=1

(
∂f

∂qi

∂g

∂pi
− ∂f

∂pi

∂g

∂qi

)
. (3)

The time-evolution equation (2) can then be rewritten in compact form as

df

dt
= {f,H} +

∂f

∂t
. (4)

In the particular case where f = qi or pi, the function f has no explicit time-dependence, so
we have simply q̇i = {qi, H} and ṗi = {pi, H}, which you should verify are precisely (1).

But the importance of the Poisson bracket in Hamiltonian mechanics goes far beyond
this reformulation of the equation of motion. Rather, the Poisson bracket encodes the
fundamental geometrical structure of Hamiltonian phase space.

Remark. In the definition (3), the explicit time-dependence, if any, simply goes for
the ride; the important thing is how f and g depend on q and p. So, in discussing
Poisson brackets, we shall often just consider functions f(q,p) and g(q,p) and not
bother to discuss explicit time-dependence.

Let us begin by recording some fundamental properties of the Poisson bracket:

1. Bilinearity. We have

{α1f1 + α2f2, g} = α1{f1, g} + α2{f2, g} (5)

and likewise for g.

2. Anticommutativity. We have

{f, g} = −{g, f} . (6)

In particular it follows that {f, f} = 0 (why?).

3. Jacobi identity. For any three functions f, g, h we have

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 (7)

or equivalently (using anticommutativity)

{{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0 (8)

We will prove the Jacobi identity in the next section.
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4. Product identity. For any three functions f, g, h we have

{fg, h} = f{g, h} + g{f, h} . (9)

This is an easy consequence of the product law for partial differentation; you will be
asked to prove it in the next problem set. It basically expresses the fact that the
Poisson bracket {f, g} involves first derivatives of f and of g.

5. Fundamental Poisson brackets. The Poisson brackets among the canonical coor-
dinates q = (q1, . . . , qn) and p = (p1, . . . , pn) are

{qi, qj} = 0 (10a)

{pi, pj} = 0 (10b)

{qi, pj} = δij (10c)

where δij is the Kronecker delta, i.e.

δij =

{
1 if i = j

0 if i ̸= j
(11)

The three properties of bilinearity, anticommutativity and the Jacobi identity play
such a fundamental role in many areas of mathematics that they have been given a
name: an algebraic structure involving a “product” that is bilinear, anticommutative
and satisfies the Jacobi identity is called a Lie algebra.1 You already know two other
examples of Lie algebras:

• Vectors in R3, equipped with the cross product a× b.

• n× n matrices, equipped with the commutator [A,B] = AB −BA.

In both cases the bilinearity and anticommutativity are obvious; I leave it to you to
check the Jacobi identity.

We can now prove an important result in Hamiltonian dynamics:

Total time derivative of a Poisson bracket. For any two functions f(q,p, t)
and g(q,p, t), we have

d

dt
{f, g} =

{df
dt
, g
}

+
{
f,
dg

dt

}
. (12)

1After the Norwegian mathematician Sophus Lie (1842–1899), who created the theory of continuous
symmetry — what is now known as the theory of Lie groups and Lie algebras — and applied it to
differential geometry and differential equations. These theories now play a central role in many areas of
mathematics and theoretical physics.
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Despite its fairly obvious-looking form, this formula is not obvious; it requires a bit of
calculation.

Proof of (12). From the fundamental time-evolution equation (4) applied to {f, g}, we
have

d

dt
{f, g} = {{f, g}, H} +

∂

∂t
{f, g} . (13)

The first term on the right-hand side can be transformed using the Jacobi identity and
anticommutativity:

{{f, g}, H} = −{{g,H}, f} − {{H, f}, g} (14a)

= {f, {g,H}} + {{f,H}, g} . (14b)

And for the second term on the right-hand side, we use the fact that ∂/∂t commutes with
the partial derivatives ∂/∂qj and ∂/∂pj occurring in the definition of the Poisson bracket; it
therefore follows that

∂

∂t
{f, g} =

{∂f
∂t
, g
}

+
{
f,
∂g

∂t

}
(15)

(you should check the details!). Adding (14) and (15) and using the fundamental time-
evolution equation (4) for f and for g, we obtain (12). □

In particular, if f and g are constants of motion, then so is {f, g}. So this provides a
method for obtaining new constants of motion, given old ones! Of course, these new constants
of motion are not guaranteed to be nontrivial. (For instance, we might have {f, g} = 0.)
But here is one nontrivial example:

Example: Angular momentum. Consider a single particle in Cartesian coordinates,
so that q = (q1, q2, q3) is the position and that p = (p1, p2, p3) is the ordinary linear momen-
tum. In the next problem set I will ask you to show that three components of the angular
momentum L = q × p have the Poisson brackets

{L1, L2} = L3 (16a)

{L2, L3} = L1 (16b)

{L3, L1} = L2 (16c)

It follows that if two components of the angular momentum happen to be constants of
motion, then the third component of the angular momentum must also be a constant of
motion.

Note, by contrast, that nothing of the kind follows if only one component of the angular
momentum is a constant of motion. Indeed, we have seen lots of examples of systems
where one component of angular momentum (e.g. the z component) is conserved but
the other two are not.
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3 A unified notation for phase space

The key idea of the Hamiltonian formulation of mechanics is the extremely symmetric role
played by the coordinates q and the conjugate momenta p — in contrast to the Lagrangian
formulation, where the coordinates q and the velocities q̇ play very different roles. So it
would be nice to introduce a notation that makes this symmetry between the q and p more
explicit.

This unified notation is defined by the obvious approach of assembling the coordinates
q = (q1, . . . , qn) and the conjugate momenta p = (p1, . . . , pn) into a single vector X =
(q1, . . . , qn, p1, . . . , pn) of length 2n. That is, we define phase-space coordinates X =
(X1, . . . , X2n) by

Xi =

{
qi for 1 ≤ i ≤ n

pi−n for n+ 1 ≤ i ≤ 2n
(17)

We then introduce a 2n× 2n matrix Ω whose n× n blocks look like

Ω =

(
0n In

−In 0n

)
(18)

where In denotes the n×n identity matrix and 0n denotes the n×n zero matrix; or in more
detail,

Ωij =


1 if j = i+ n

−1 if i = j + n

0 otherwise

(19)

Note that the matrix Ω is antisymmetric, and that Ω2 = −I (why?). This matrix is just
the trick we need to get the appropriate minus sign into Hamilton’s equations: namely,
Hamilton’s equations

q̇i =
∂H

∂pi
(20a)

ṗi = − ∂H

∂qi
(20b)

for i = 1, . . . , n can trivially be rewritten as

Ẋ i =
2n∑
j=1

Ωij
∂H

∂Xj

(21)

for i = 1, . . . , 2n. (I leave it to you to check that this works: you will simply need to check
separately the cases 1 ≤ i ≤ n and n+ 1 ≤ i ≤ 2n.)

Likewise, in this notation the Poisson bracket of two functions f(X, t) and g(X, t) takes
the very simple form

{f, g} =
2n∑

i,j=1

∂f

∂Xi

Ωij
∂g

∂Xj

. (22)
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(Again, you should check this!) And the fundamental Poisson brackets among the canonical
coordinates are simply

{Xi, Xj} = Ωij . (23)

(You should check this too!)

We see here the fundamental role played by the matrix Ω in defining the “geometry” of
Hamiltonian phase space; it is analogous to the fundamental role played by the identity
matrix I in defining the geometry of Euclidean space.

In what follows it will also be extremely convenient to use Einstein’s summation
convention: namely, whenever an index appears exactly twice in a product — as does the
index j on the right-hand side of (21), and as do both of the indices i and j on the right-
hand side of (22) — then it is automatically considered to be summed from 1 to 2n unless
explicitly stated otherwise. So, for example, we abbreviate (21) by

Ẋ i = Ωij
∂H

∂Xj

, (24)

and we abbreviate (22) by

{f, g} =
∂f

∂Xi

Ωij
∂g

∂Xj

. (25)

This convention saves a lot of writing of summation signs, because in practice repeated indices
are nearly always intended to be summed. (The prototype for this is matrix multiplication.)

Let me now use this unified notation to give the promised proof of the Jacobi identity
for Poisson brackets. Gregory says (p. 416) that Jacobi’s identity

is quite important, but there seems to be no way of proving it apart from crashing it
out, which is very tedious. Unless you can invent a smart method, leave this one alone.

I would like to show you that with the unified notation this proof is a fairly straightforward
calculation. So let us consider three functions f, g, h of the phase-space coordinate X; and
let us prove the Jacobi identity in the form

{f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0 . (26)

By (22) [and using the summation convention] we have

{f, {g, h}} =
∂f

∂Xi

Ωij
∂{g, h}
∂Xj

(27a)

=
∂f

∂Xi

Ωij
∂

∂Xj

(
∂g

∂Xk

Ωkl
∂h

∂Xl

)
(27b)

= Ωij Ωkl

[
∂f

∂Xi

∂2g

∂Xj∂Xk

∂h

∂Xl︸ ︷︷ ︸
“term 1”

+
∂f

∂Xi

∂2h

∂Xj∂Xl

∂g

∂Xk︸ ︷︷ ︸
“term 2”

]
. (27c)
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Similarly, the other two triple brackets {g, {h, f}} and {h, {f, g}} will contains “terms 3–6”
obtained by replacing (f, g, h) by the cyclic permutation (g, h, f) for terms 3–4 and by (h, f, g)
for terms 5–6. Now I claim that term 1 will cancel term 6, term 3 will cancel term 2, and
term 5 will cancel term 4. Let me show the proof in detail for 1 ↔ 6; the other cases will
obviously follow by cyclic permutation of (f, g, h). We have

term 1 + term 6 = Ωij Ωkl

[
∂f

∂Xi

∂2g

∂Xj∂Xk

∂h

∂Xl

+
∂h

∂Xi

∂2g

∂Xj∂Xl

∂f

∂Xk

]
(28)

In the “term 6” part of this equation, let us interchange the summation indices k and l (both
of them are being summed from 1 to 2n, so we have a right to interchange their names):
since Ωlk = −Ωkl, we have

term 1 + term 6 = Ωij Ωkl

[
∂f

∂Xi

∂2g

∂Xj∂Xk

∂h

∂Xl

− ∂h

∂Xi

∂2g

∂Xj∂Xk

∂f

∂Xl

]
(29a)

= Ωij Ωkl

(
∂f

∂Xi

∂h

∂Xl

− ∂h

∂Xi

∂f

∂Xl

)
∂2g

∂Xj∂Xk

(29b)

def
= Ωij Ωkl Fijkl (29c)

where Fijkl is symmetric in j, k and antisymmetric in i, l. But we then have

Ωij Ωkl Fijkl = Ωlk Ωji Flkji by renaming dummy indices (30a)

= Ωkl Ωij Flkji by antisymmetry of Ω (used twice) (30b)

= −Ωkl Ωij Fijkl since Fijkl is symmetric in j, k and antisymmetric in i, l

(30c)

But a quantity equal to its own negative must be zero: that is, Ωij Ωkl Fijkl = 0 as claimed.
□

4 Canonical transformations

When we were studying Lagrangian mechanics, we saw that one of its advantages over the
Newtonian formulation is that it is covariant under arbitrary changes of coordinates: that
is, instead of the original coordinates q = (q1, . . . , qn) we could use some new coordinates
q′ = (q′1, . . . , q

′
n), defined in an arbitrary way as a function of the old coordinates:

q′1 = q′1(q1, . . . , qn, t)
... (31)

q′n = q′n(q1, . . . , qn, t)

If we then define the Lagrangian L′(q′, q̇′, t) to have the same values as L, i.e.

L′(q′, q̇′, t) = L(q, q̇, t) , (32)
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it turns out that the Lagrange equations of motion for L′ are equivalent to those for L. (To
prove this directly from the differential equations is a nontrivial calculation; but as pointed
out by Gregory, Chapter 13, pp. 387–388, this is an immediate consequence of the variational
principle.)

One of the outstanding features of the Hamiltonian formalism is that it possesses an
even wider flexibility: not only can we reparametrize coordinate space q to q′ as in the
Lagrangian formalism (with a corresponding “dual” change from p to p′); we can even
choose new coordinates that mix q and p! These transformations turn out to be of immense
importance, both theoretical and practical. Here we will only have time to scratch the surface
of the theory of canonical transformations.

Let us consider, as usual, a 2n-dimensional Hamiltonian phase space parametrized by
canonical coordinates q = (q1, . . . , qn) and p = (p1, . . . , pn). These canonical coordinates
have the fundamental Poisson brackets

{qi, qj} = 0 (33a)

{pi, pj} = 0 (33b)

{qi, pj} = δij (33c)

Now let Q1, . . . , Qn and P1, . . . , Pn be arbitrary functions of q and p (and also t if we wish).
We say that Q = (Q1, . . . , Qn) and P = (P1, . . . , Pn) form new canonical coordinates for
phase space if they have the correct Poisson brackets, i.e.

{Qi, Qj} = 0 (34a)

{Pi, Pj} = 0 (34b)

{Qi, Pj} = δij (34c)

Such a transformation (q,p) 7→ (Q,P ) is called a canonical transformation.
In terms of the unified notation this can be stated even more simply. We start from

canonical coordinates X = (X1, . . . , X2n) satisfying the fundamental Poisson brackets

{Xi, Xj} = Ωij . (35)

We then consider new coordinates Y = (Y1, . . . , Y2n) that depend in a completely arbitrary
way on X (and on t if we wish). The coordinates Y form new canonical coordinates if their
Poisson brackets are

{Yi, Yj} = Ωij . (36)

In this case the transformation X 7→ Y is called a canonical transformation.
But we can easily work out what this means concretely, by using the definition (22) of

Poisson brackets in the unified notation. We have

{Yi, Yj} =
2n∑

k,l=1

∂Yi
∂Xk

Ωkl
∂Yj
∂Xl

(37a)

= (JΩJT)ij (37b)

8



if we define the Jacobian matrix of the transformation from X to Y ,

Jij
def
=

∂Yi
∂Xj

. (38)

So the transformation X 7→ Y is a canonical transformation if and only if

JΩJT = Ω . (39)

Note that J is actually a function of X; so what we mean by (39) is that this equation
should hold for all X, i.e. everywhere in phase space.

A 2n× 2n matrix J satisfying (39) is called a symplectic matrix. So a transformation
X 7→ Y is a canonical transformation if and only if its Jacobian at every point of phase
space is a symplectic matrix.

Example 1: Linear transformations. A linear transformation Y = JX is a canonical
transformation if and only if the matrix J (which is indeed the Jacobian matrix of the
transformation, everywhere in phase space) is a symplectic matrix.

One example is the transformation

Qi = pi (40a)

Pi = −qi (40b)

that interchanges the q and p (and makes one compensating sign change). You should figure
out what the matrix J is in this case, and convince yourself that it is indeed symplectic.
(Hint : Use ΩT = −Ω and Ω2 = −I.)

Here is an opposite example: Make linear transformations of the q and p separately,

Q = Aq (41a)

P = Bp (41b)

where A and B are invertible n× n matrices. Then

J =

(
A 0

0 B

)
. (42)

Let us now impose the fundamental equation JΩJT = Ω [cf. (39)]:(
A 0

0 B

) (
0 I

−I 0

) (
AT 0

0 BT

)
=

(
0 I

−I 0

)
. (43)

Carrying out the matrix multiplications on the left-hand side (you should do it!), we get(
0 ABT

−BAT 0

)
. (44)
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Note now that the two required equations ABT = I and BAT = I are in fact equivalent
(they are transposes of each other). So we can take A to be any invertible n × n matrix,
provided that we then take B to be its inverse transpose:

B = (A−1)T = (AT)−1 (45)

(note that inverse and transpose commute). All such matrices (42) are symplectic matrices,
and hence all such transformations (41) are canonical transformations.

(Of course, there are also many symplectic matrices that are not block-diagonal, as our
example (40) showed.)

Example 2: General transformations of the coordinates q. As mentioned at the
beginning of this section, in the Lagrangian formalism we are free to reparametrize coordinate
space any way we like, i.e. use new generalised coordinates Q = f(q) where f is an arbitrary
(bijective) function. In the Hamiltonian formalism we also have this freedom, but we need
to make also a corresponding “dual” change from p to P :

Q = f(q) (46a)

P = G(q)p (46b)

where G(q) is an n× n matrix that we will need to determine.
Let J = J (q) be the Jacobian matrix of the transformation from q to Q:

Jij
def
=

∂Qi

∂qj
. (47)

And let us write K = K(q,p) for the Jacobian matrix ∂P/∂q:

Kij
def
=

∂Pi

∂qj
=

n∑
k=1

∂Gik(q)

∂qj
pk . (48)

Then the 2n× 2n Jacobian matrix J = ∂Y/∂X = ∂(Q,P )/∂(q, p) is

J =

(
J 0

K G

)
(49)

when written in terms of its n × n blocks; here the rows are (Q,P ) and the columns are
(q, p). 13 MAR 2024: Previously I had accidentally interchanged the rows and
columns; a student pointed out my error. Let us now impose again the fundamental
equation JΩJT = Ω:(

J 0

K G

) (
0 I

−I 0

) (
J T KT

0 GT

)
=

(
0 I

−I 0

)
. (50)

Carrying out the matrix multiplications on the left-hand side (you should again do it!), we
get (

0 JGT

−GJ T −GKT +KGT

)
. (51)
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If we choose
G(q) = (J (q)−1)T = (J (q)T)−1 , (52)

then the upper-right and lower-left entries of (51) equal the desired entries of Ω (namely, I
and −I, respectively). HELP!!!! How to prove that −GKT + KGT = 0, (i.e., that
KGT is symmetric) when G is defined by (52)??? It ought to follow from the
identity ∂Jij/∂qk = ∂Jik/∂qj, which is a consequence of (47), but I haven’t been
able to do it. Can anyone help me???

So the transformation from the old to new momenta is “dual” to the transformation from
old to new coordinates in the sense that the matrix G = ∂P/∂p has to be the inverse matrix
to J = ∂Q/∂q.

Example 3: Time evolution. Consider a system started at time zero at a phase-space
point X0 = (q0,p0), and let it evolve for a time t. Let us write X(t) for the phase-space
point where the system arrives at time t: this is a function of the initial condition X0 and t.
So, for each value of t, we can consider X(t) as a function of X0. Let us show that, for each
t, the transformation X0 7→ X(t) is a canonical transformation.

By hypothesis, the function X(X0, t) satisfies the partial differential equation2

∂Xi(t)

∂t
= {Xi(t), H} (53)

(where Poisson brackets are taken with respect to the canonical coordinates X0) together
with the initial conditions

X(0) = X0 . (54)

So let us now compute how the Poisson bracket {Xi(t), Xj(t)} varies with time:

∂

∂t
{Xi(t), Xj(t)} =

{∂Xi

∂t
,Xj

}
+ {Xi,

∂Xj

∂t
} (55a)

= {{Xi, H}, Xj} + {Xi, {Xj, H}} by the PDE (53) (55b)

= −{Xj, {Xi, H}} + {Xi, {Xj, H}} by antisymmetry (55c)

= {Xj, {H,Xi}} + {Xi, {Xj, H}} again by antisymmetry (55d)

= −{H, {Xi, Xj}} by the Jacobi identity (55e)

= {{Xi, Xj}, H} again by antisymmetry . (55f)

2The meaning of ∂/∂t in equation (53) may be a bit confusing, since it is not the same as the meaning
of ∂/∂t in equation (4). So let me try to explain.
In equation (4), f is a function of q, p and t: ∂f/∂t denotes the explicit time-dependence (if any) in

f , while {f,H} captures the time-dependence of f that comes through its dependence on q and p, which
themselves evolve in time according to Hamilton’s equations (1).
In the present situation, by contrast, there is no explicit time-dependence in f , because f is just a

coordinate Xi (that is, either a qi or a pi). So X(t) evolves in time only by the Poisson bracket {X, H} [cf.
(1)]. So the left-hand side of (53) would normally be written with d, not ∂. The reason I write it here with
∂ is that we are now considering X to be a function not only of t but also of the initial conditions X0; so I
write ∂/∂t to mean the derivative with respect to t when the initial conditions X0 are held fixed. (Usually
we just consider the initial conditions to be fixed, so we don’t make the dependence on X0 explicit; but
here the whole point is to consider simultaneously all possible initial conditions X0, in order to study the
properties of the map X0 7→ X(t).)
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So Fij(t)
def
= {Xi(t), Xj(t)} is a function of X0 and t that satisfies the partial differential

equation
∂Fij(t)

∂t
= {Fij(t), H} (56)

with initial condition
Fij(t) = {(X0)i, (X0)j} = Ωij . (57)

But the solution of this partial differential equation is simply the constant function Ωij!

More precisely, the constant function Ωij does solve this partial differential equation,
since {Ωij , H} = 0 [the Poisson bracket of a constant function with any other function
is zero]. And I am taking for granted that, by general theory, we can prove that the
solution is unique. Therefore, the solution can only be the constant function Ωij .

One property of canonical transformations is that they preserve phase-space volume,
i.e. | det J | = 1. This is, in fact, an immediate consequence of (39): taking determinants of
both sides, we get

(det J)2 (detΩ) = detΩ (58)

and hence (since detΩ ̸= 0) det J = +1 or −1. (In fact, with more work one can prove that
det J = +1.3)

Applying this in particular to the canonical transformation associated with time evolution
(Example 3 above), we obtain Liouville’s theorem: the time evolution under Hamilton’s
equations preserves phase-space volumes. This will be discussed further in the next section.

Let us now look more closely at infinitesimal canonical transformations. That is,
we consider a transformation X 7→ Y that is very close to the identity map, i.e.

Y = X + ϵΨ(X) (59)

for some vector function Ψ(X) — or writing it in components,

Yi = Xi + ϵψi(X) (60)

for some functions ψi(X) (1 ≤ i ≤ 2n). We now attempt to determine conditions on the
{ψi} such that this transformation is canonical through first order in ϵ; we do this by testing
the conditions (39) on the Jacobian matrix

Jij
def
=

∂Yi
∂Xj

(61)

3The standard proof that det J = +1 uses the pfaffian, which is a kind of “square root of the determinant”
for antisymmetric matrices. See https://en.wikipedia.org/wiki/Pfaffian and https://en.wikipedia.

org/wiki/Symplectic_matrix#Determinantal_properties
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of the transformation X 7→ Y . We see from (60) that the Jacobian matrix J is

J = I + ϵK (62)

where

Kij
def
=

∂ψi

∂Xj

(63)

is the Jacobian matrix of the transformation X 7→ Ψ. Substituting (62) into (39) and
keeping only terms through first order in ϵ, we see that the infinitesimal transformation (59)
is canonical if and only if

KΩ + ΩKT = 0 . (64)

Since Ω is antisymmetric, we can also write this as

KΩ − ΩTKT = 0 (65)

or in other words
KΩ − (KΩ)T = 0 . (66)

So this says that the matrix KΩ is symmetric, or equivalently that the matrix

Ω(KΩ)ΩT = ΩK (67)

is symmetric. This suggests that we should define a new vector function Φ(X) by

Φ(X) = ΩΨ(X) (68)

— or in components,

φi(X) =
2n∑
j=1

Ωij ψj(X) (69)

— so that its Jacobian matrix will be ΩK, i.e.

∂φi

∂Xj

= (ΩK)ij . (70)

Then the symmetry of the matrix ΩK says that

∂φi

∂Xj

=
∂φj

∂Xi

(71)

for all pairs i, j. But this is precisely the necessary and sufficient condition for the vector
function Φ(X) to be (locally at least) the gradient of a scalar function F (X). [You know
this in 3 dimensions: a vector field is (locally at least) the gradient of a scalar field if and
only if its curl is zero. But the principle holds true in any number of dimensions.] Thus,
the infinitesimal transformation (59) is canonical if and only if there exists a scalar function
F (X) such that

φi(X) =
∂F

∂Xi

. (72)
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Left-multiplying this by Ω and using the fact that Ψ(X) = −ΩΦ(X) since Ω2 = −I, we get

ψi(X) = −
2n∑
j=1

Ωij
∂F

∂Xj

. (73)

This is the necessary and sufficient condition for the infinitesimal transformation (59) to
be canonical. It is convenient to get rid of the minus sign by defining G = −F ; we thus
conclude that the infinitesimal transformation (59) is canonical if and only if there exists a
scalar function G(X) such that

ψi(X) = Ωij
∂G

∂Xj

(74)

(where we are now using the summation convention to lighten the notation). That is, every
infinitesimal canonical transformation is of the form

Yi = Xi + ϵΩij
∂G

∂Xj

, (75)

and conversely every infinitesimal transformation of this form is canonical. We call G the
generator of this infinitesimal canonical transformation. We also write (75) in the shorthand
form

δXi = ϵΩij
∂G

∂Xj

. (76)

But by (22) this also has an elegant expression in terms of Poisson brackets, namely

δXi = ϵ {Xi, G} . (77)

So this is one reason why Poisson brackets play such a central role in Hamiltonian mechanics:
they show how to generate infinitesimal canonical transformations.

One important special case of (77) is when the generator G is simply the Hamiltonian H:
then [by (4)] the transformation (77) is simply time evolution (forward by a time ϵ). And
we have already seen in Example 3 above that time evolution is a canonical transformation.
But this second proof, using infinitesimal transformations, is arguably simpler than the first
proof I gave you.

Another important special case is when the generator G is one of the components of
angular momentum L, say Lz. You will show in the next problem set that the (infinitesimal)
canonical transformation generated by Lz is a (infinitesimal) rotation around the z axis.

5 Liouville’s theorem and the Poincaré recurrence the-

orem

This section is an elaboration on Gregory, Section 14.5.

In the previous section we saw that the time evolution X0 7→ X(t) is a canonical trans-
formation: that is, the Jacobian matrix

J(t)
def
=

∂X(t)

∂X0

(78)
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is a symplectic matrix for all t. And since every symplectic matrix has determinant +1, we
can conclude that

det J(t) = +1 for all t . (79)

That is:

Liouville’s theorem. The time evolution under Hamilton’s equations for any
Hamiltonian H(q,p, t) preserves phase-space volumes (and preserves orienta-
tion).

As mentioned earlier, it is easy to see, by taking determinants, that every sym-
plectic matrix has determinant ±1; and though in fact every symplectic matrix has
determinant +1, this takes more work to prove. But we can show that det J(t) = +1
without using this deeper fact. The reasoning is simple: J(t) is a continuous function
of t, and J(0) is the identity matrix. So det J(t) is a continuous function of t, and
det J(0) = +1. Since a continuous function cannot jump from +1 to −1, it follows
that det J(t) = +1 for all t.

A similar argument applies to rigid-body motion, where the orientation of a rigid
body at time t, relative to its orientation at time 0, is given by an orthogonal matrix
R(t) [that is, a 3 × 3 real matrix satisfying RTR = I]. Taking determinants of the
identity RTR = I, we deduce that detR = ±1, and here both signs can occur: the
orthogonal group consists of both rotations (detR = +1) and reflections (detR =
−1). But we can still reason as before: R(t) is a continuous function of t, and R(0)
is the identity matrix. So detR(t) is a continuous function of t, and detR(0) = +1.
Since a continuous function cannot jump from +1 to −1, it follows that detR(t) = +1
for all t. So the motion of a rigid body involves only rotations, not reflections. (This
is, of course, physically obvious.)

Of course, the statement that time evolution preserves phase-space volumes is vastly
weaker than the statement that time evolution is a canonical transformation. But it is,
nevertheless, an important corollary.

Indeed, if all we want is Liouville’s theorem and not the stronger result about time
evolution being a canonical transformation, then there is a much simpler proof. Recall that
a fluid flow in R3 is incompressible (i.e. preserves spatial volumes) if and only if the velocity
vector field v(x, y, z, t) has zero divergence:

∇ · v = 0 . (80)

The same holds, in fact, for the flow of a “fluid” in RN for any dimension N . So let us apply
this to the Hamiltonian flow in 2n-dimensional phase space generated by a Hamiltonian
H(q,p, t). The velocity vector field is

v = (q̇, ṗ) =

(
∂H

∂p1
, . . . ,

∂H

∂pn
, − ∂H

∂q1
, . . . , − ∂H

∂qn

)
, (81)

and its divergence is

∇ · v =
n∑

i=1

∂

∂qi

(
∂H

∂pi

)
+

n∑
i=1

∂

∂pi

(
− ∂H

∂qi

)
= 0 . (82)
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Now consider an autonomous Hamiltonian system, i.e. one in which the Hamiltonian
H = H(q,p) does not depend on t. Then the time-evolution map Rt : X0 7→ X(t) also maps
Rt : X(s) 7→ X(s+ t). Therefore, the time evolution defines a one-parameter group:

Rt ◦ Rs = Rs ◦ Rt = Rs+t . (83)

Let us now apply this to a system of particles in a box, as follows. We consider N
particles with Euclidean coordinates r1, . . . , rN and momenta p1, . . . ,pN , with Hamiltonian

H(q,p) =
N∑
i=1

p2
i

2mi

+ U(r1, . . . , rN) . (84)

We shall assume that:

1. The particles are confined to a bounded set V ⊂ R3. (This can be done, for
instance, by taking U(r1, . . . , rN) to be +∞ when one or more of the particles ri is
outside V , and letting U(r1, . . . , rN) smoothly approach +∞ when one or more of the
particles ri approaches the boundary of V .)

2. The potential energy is bounded below:

U(r1, . . . , rN) ≥ −C (85)

for some number C < ∞. (This excludes things like point-particles with attractive
electric or gravitational forces, since for such particles the potential energy would
approach −∞ as the distance between the particles approaches zero. But no real-life
application of classical mechanics would involve particles whose radius is strictly zero.
Indeed, the force between atoms or molecules is strongly repulsive at short distances,
due to the electrical repulsion between nuclei.)

Now consider, for any value E, the region of the 6N -dimensional phase space where the
Hamiltonian is ≤ E:

V≤E
def
= {(r1, . . . , rN ,p1, . . . ,pN) ∈ R6N : H(q,p) ≤ E} . (86)

This region has finite volume: the particle positions r1, . . . , rN are confined to the bounded
region V , and the particle momenta p1, . . . ,pN are confined to the ellipsoid

N∑
i=1

p2
i

2mi

≤ E + C . (87)

We also observe that since the Hamiltonian is a conserved quantity, the time evolution Rt

maps V≤E to itself.
Now fix some number T > 0: we will consider the time evolution at integer multiples of

T , i.e. RT ,R2T ,R3T , . . . . And let U be any nonempty open set lying in V≤E (for instance,
an ϵ-ball around some point in the interior of V≤E). We can now state:
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Poincaré recurrence theorem (weak form). There exists n > 0 such that
U ∩RnTU ̸= ∅.

In other words, there exists a time nT at which at least one of the points in U has returned
to U . If U is an ϵ-ball, this implies:

There exists a time nT at which at least one of the points in U has returned to
within 2ϵ of its starting position.

Please remember that “position” here means position in the 6N -dimensional phase space.
So it means that

There exists a time nT at which, for at least one of the points in U , all of the
particles have returned to within 2ϵ of their initial positions and their initial
momenta.

Imagine this for a system of N = 1023 molecules of a gas, bouncing around in the box V .
If we wait long enough, we will come to a time when every single one of the molecules has
returned simultaneously to within 2ϵ of its initial position and its initial momentum! And
this, no matter how small ϵ > 0 is!

Proof of the Poincaré recurrence theorem. By Liouville’s theorem, the map RT

is volume-preserving. Therefore vol(RnTU) = vol(U) for all n. And of course vol(U) > 0
because U is a nonempty open set. Moreover, all the setsRTU,R2TU,R3TU, . . . are contained
in V≤E, since U ⊂ V≤E and the time evolution maps V≤E to itself.

If the sets RTU,R2TU,R3TU, . . . were disjoint, then we would have

vol(V≤E) ≥
∞∑
n=1

vol(RnTU) = ∞ , (88)

contrary to the fact that vol(V≤E) < ∞. So there must exist positive integers m < n such
that RmTU ∩RnTU ̸= ∅. But applying (RmT )

−1 = R−mT to this identity, we conclude that

U ∩R(n−m)TU ̸= ∅ , (89)

which proves the claim. □

With a bit more work, one can prove:

Poincaré recurrence theorem (strong form). For almost every point x ∈ U ,
there exists n > 0 such that RnTx ∈ U .

Here “almost every” means in the sense of measure theory, i.e. “except for a set of measure
zero”. Indeed, one can prove:

Poincaré recurrence theorem (very strong form). For almost every point
x ∈ U , we have RnTx ∈ U for infinitely many values of n.
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It is important that we here say “almost every”; it is not in general true that every
trajectory comes back to near its initial position. Consider, for instance, a pendu-
lum formed by a mass m attached to a rigid rod. There are some initial conditions
for which, as t → +∞, the pendulum approaches the point of unstable equilibrium
(θ = π, pθ = 0), without ever reaching it. These trajectories obviously do not have the
recurrence property. But these trajectories occur only for one special value of the en-
ergy; and the points with that energy form a lower-dimensional submanifold in phase
space, and hence have zero volume.

Of course, Poincaré’s recurrence theorem doesn’t tell us anything about how long we
have to wait until U ∩ RnTU ̸= ∅. But from the proof we can get a crude estimate of this
recurrence time. For a system of N particles, the phase space is 6N -dimensional, so the
volume of an ϵ-ball is of order ϵ6N . On the other hand, the volume of the set V≤E is very
crudely

vol(V≤E) ∼ vol(V )N (E + C)3N/2 , (90)

where the first factor gives the allowed volume in position space and the second factor gives
the allowed volume in momentum space. Then the recurrence time — or at least, the upper
bound on the recurrence time given by our proof — is the ratio of these volumes:

vol(V≤E)

vol(U)
∼
(
vol(V ) (E + C)3/2

ϵ6

)N

. (91)

Here the quantity in parentheses on the right-hand side is basically what the ratio of the
volumes of V≤E to U would be for a system consisting of a single particle. So imagine that
this ratio is merely 10, and imagine that the number of particles is merely N = 100; then
the recurrence time is almost certainly longer than the age of the universe!

The practical relevance of Poincaré’s recurrence theorem for statistical physics is thus
far from clear. But it is an important result in the mathematical field known as ergodic
theory.
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