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HANDOUT #11: THE LAGRANGIAN APPROACH TO MECHANICS

These notes are intended to be read as a supplement to the handout
from Gregory, Classical Mechanics, Chapter 12.

1 The basic set-up

Here I follow the notation of Gregory, Sections 12.1–12.3, with a few additions.

The basic set-up is as follows: We have N particles moving in R3, with position coordi-
nates r1, . . . , rN . We assemble these coordinates into a single big vector R = (r1, . . . , rN) ∈
R3N . Therefore, the configuration space of the unconstrained system is R3N .

If we wish, we can reinterpret this system as a single particle moving in the 3N -
dimensional Euclidean space R3N ; the two interpretations are mathematically equiv-
alent. (You might find this to be a strange way of thinking. But I personally find it
easier to conceptualize a single particle moving in a high-dimensional space, rather
than having to keep in my mind the simultaneous motion of many particles moving in
3-dimensional space. Perhaps this is a question of taste; but the reinterpretation as
a single particle moving in a high-dimensional space clarifies many things, as we shall
soon see.)

Now we impose k geometrical constraints:1

f1(R, t) = 0
... (1)

fk(R, t) = 0

where f1, f2, . . . , fk are specified functions. Here 0 ≤ k < 3N ; we thus explicitly allow
the case k = 0 (i.e. no constraints). Note also that we are now allowing time-dependent
constraints. (Gregory does this starting in Section 12.6, but I find it convenient to do it
from the beginning.) The configuration space of the constrained system at time t is
thus

Mt = {R ∈ R3N : fi(R, t) = 0 for i = 1, . . . , k} . (2)

1Geometrical constraints are sometimes also called holonomic constraints. Examples of nonholonomic
constraints are those that involve velocities, such as a disc rolling without slipping on a line or a surface.
As Gregory explains, some nonholonomic constraints — such as a disc rolling without slipping on a line — are
integrable, in which case they can be rewritten as geometrical constraints. But nonintegrable nonholonomic
constraints — such as a disc rolling without slipping on a surface — sometimes arise as well; they can always
be handled in the Newtonian approach, but they are more troublesome in the Lagrangian approach, and we
exclude them from our treatment.
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If the constraints happen to be time-independent, then Mt is the same set for all t,
in which case we can refer to it simply as M.

The constraints (1) are assumed to be functionally independent in the sense that the gradient
vectors ∇f1, . . . ,∇fk (where ∇ denotes partial differentiation with respect to R, with t held
fixed) are linearly independent at each point of the manifold Mt. Under this assumption,
the configuration space Mt is a smooth submanifold of R3N , of dimension n = 3N − k; its
normal vectors at any point are given precisely by the gradient vectors ∇f1, . . . ,∇fk.

If we wish, we can reinterpret this system as a single particle moving in the 3N -
dimensional Euclidean space R3N subject to the constraints (1): that is, a single particle
constrained to move on the (possibly moving) manifold Mt ⊆ R3N . So, from this point
of view, what we have is completely analogous to the elementary cases of a particle
constrained to move on a (possibly moving) wire or surface in R3; the only difference
is that here the ambient space has dimension 3N rather than just 3, and the manifold
Mt has dimension 3N − k rather than just 1 or 2.

We now parametrize the manifold(s) Mt by generalized coordinates q1, . . . , qn, which
we assemble into a big vector q = (q1, . . . , qn). “Parametrizing the manifold” means that we
have written a function

R = R(q, t) (3)

such that q 7→ R(q, t) maps q-space smoothly and bijectively onto Mt (for each t). Please
note that this parametrization is allowed to be time-dependent, even if the constraints are
time-independent!2 We can also write the parametrization (3) as

ri = ri(q, t) for i = 1, . . . , N , (4)

in which we make explicit the individual particles composing the system,
I stress that we are free to use any parametrization we want : any generalized coordinates

q1, . . . , qn that correctly parametrize the manifold Mt are permitted. This freedom to use
arbitrary generalized coordinates is a notable feature of the Lagrangian approach to mechan-
ics. (It is in a certain sense a precursor to the general coordinate invariance in Einstein’s
general relativity.)

As explained in class, this parametrization of the manifold Mt is intended to be local .
There may or may not exist a single coordinate system that parametrizes the whole
manifold Mt.

3 Rather, we divide the manifold Mt into coordinate patches (nonempty
open sets), and each patch in Mt is mapped smoothly and bijectively onto a nonempty
open set in q-space (that is, in Rn). Since the equations of motion of classical mechanics
are differential equations, this local approach suffices for our purposes: the system
remains within one coordinate patch for some interval of time, and that allows us to
perform any differentiations with respect to time and/or space that we may require.

2This freedom is useful even if there are no constraints: for instance, it allows us to use a rotating
coordinate system if we wish. (Rotating coordinate systems will be discussed later in this course, and are
important in the study of rigid-body motion.)

3Example: It is not possible to parametrize the unit sphere in R3 with a single coordinate system. (It
takes some topological work to prove this, but it is true.) For instance, spherical coordinates (θ, φ) are
singular at the north and south poles, since the azimuthal (“longitude”) angle φ is ambiguous there. Or
one could use the stereographic projection: this gives a good parametrization of the whole sphere except the
south pole.
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Our goal is now to obtain the equations of motion for the generalized coordinates q.
To do this, we start from the Newtonian equations of motion, and then do two things: First,
we eliminate all reference to the constraint forces; and second, we eliminate reference to R
in favor of q.

2 D’Alembert’s principle of virtual work

This explanation is intended as a simplification of Gregory, Section 12.4.

The Newtonian equations of motion for our system are

mir̈i = FS
i + FC

i for i = 1, . . . , N (5)

where FS
i is the specified force acting on particle i, and FC

i is the constraint force acting
on particle i.

The principle we use is simple: the constraint force always acts in a direction perpendic-
ular to the manifold Mt. Therefore, if B = (b1, . . . ,bN) is a tangent vector to the manifold
Mt, then the constraint force FC = (FC

1 , . . . ,F
C
i ) satisfies

FC · B = 0 , (6)

or equivalently (writing it out in terms of the individual particles)

N∑
i=1

FC
i · bi = 0 . (7)

This is the essential content of d’Alembert’s principle of virtual work.
[More precisely, what we should have said is: If B = (b1, . . . ,bN) is a tangent vector to

the manifold Mt at some specified point R ∈ Mt, then if the system is located at R at time t,
then the constraint force FC = (FC

1 , . . . ,F
C
i ) satisfies F

C · B = 0. That is what it means to
say that “the constraint force always acts in a direction perpendicular to the manifold Mt”.]

We are very familiar with this principle in the elementary cases of a particle constrained
to move frictionlessly on a (possibly moving) wire or surface in R3; indeed, the statement
that the the constraint force always acts in a direction perpendicular to the wire or surface is
merely the definition of “frictionless”! D’Alembert’s principle of virtual work is simply the
generalization of this principle to an arbitrary system of particles subjected to an arbitrary
collection (1) of geometrical constraints.

Indeed, if we reinterpret our system as a single particle constrained to move on the
(possibly moving) manifold Mt ⊆ R3N , then d’Alembert’s principle of virtual work is
precisely the statement that the the constraint force always acts in a direction perpen-
dicular to the constraint manifold.

What is the status of d’Alembert’s principle of virtual work? Is it a new assumption,
beyond Newton’s three laws? No! It is simply a general principle that we expect to be
able to prove for any specific “reasonable” type of constraint. For instance, we have
just seen that for a particle constrained to slide frictionlessly on a (possibly moving)
wire or surface, D’Alembert’s principle is simply the definition of “frictionless”.
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To illustrate the idea, let’s consider one more common form of constraint: Suppose
that two of the particles, say i and j, are connected by a rigid rod of length ℓ. Then
this rod exerts forces acting along the line connecting the two particles:

FC
i←j = T

ri − rj
|ri − rj |

(8a)

FC
j←i = −T

ri − rj
|ri − rj |

(8b)

where T is the tension, and FC
i←j = −FC

j←i by Newton’s Third Law. (So this particular
force satisfies the strong form of Newton’s Third Law.) Now the constraint |ri−rj | = ℓ
means that for any curve R(s) = (r1(s), . . . , rN (s)) lying in the manifold Mt, we have

[ri(s)− rj(s)] · [ri(s)− rj(s)] = ℓ2 (9)

and hence, differentiating with respect to s,(dri
ds

− drj
ds

)
· (ri − rj) = 0 , (10)

or in other words
(bi − bj) · (ri − rj) = 0 . (11)

Combining (8) with (11), we see that

bi · FC
i←j + bj · FC

j←i = 0 , (12)

just as d’Alembert’s principle of virtual work claims.
Note also that this reasoning was done at fixed time t; so it would hold even if the

rod had a specified time-varying length ℓ(t).

Remark. It seems to me that the usual physicists’ way of explaining d’Alembert’s
principle of virtual work — referring to “kinematically possible velocities v∗i ” or “kine-
matically possible infinitesimal displacements dri” as Gregory does in Section 12.4 —
just makes things unnecessarily confusing. And this approach becomes even more con-
fusing when one takes up time-dependent constraints, as Gregory does in Section 12.6:
then he has to clarify that the “kinematically possible velocities v∗i ” are not actually
possible velocities of the system with the actual moving constraints, but are merely pos-
sible velocities of the system with the constraints fixed to be those of one fixed time t;
and he ends with the “mysterious statement” that “moving constraints do real work
but no virtual work”.

All this is indeed unnecessarily mysterious! The point is simply that the constraint
force always acts in a direction perpendicular to the manifold Mt: this is true for
all (frictionless) constraints, whether or not they are time-dependent. D’Alembert’s
principle holds whether or not the constraints are time-dependent.

Now, if the constraints happen to be time-independent, then the velocities Ṙ are
tangent to the manifold M, so the constraint force (which is perpendicular to the
manifold M) does no work: FC · Ṙ = 0. On the other hand, if the constraints are
time-dependent, then the velocities Ṙ need not be tangent to the manifold Mt, and
the constraint force can do work. End of story.
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So let B = (b1, . . . ,bN) be any tangent vector to the manifold Mt, and let us take the
dot product of the Newtonian equations of motion (5) with the vector B. That is, let us take
the dot product of the ith equation in (5) with the vector bi, and then sum over i. Because
of d’Alembert’s principle (7), the constraint forces FC

i drop out, and we obtain

N∑
i=1

mir̈i · bi =
N∑
i=1

FS
i · bi . (13)

We have now completed our first task: eliminating reference to the constraint forces.
Note that we have an equation of the type (13) for each tangent vector B. Since the

manifold Mt is n-dimensional, there are n linearly independent tangent vectors at each
point, so we actually have n independent equations of motion. This is exactly what we need
for a system with n degrees of freedom!

3 Lagrange’s equations

We now turn to our second task: eliminating reference to R in favor of q.
First we need to find some tangent vectors B = (b1, . . . ,bN) to the manifold Mt; in par-

ticular, we would like to find n linearly independent tangent vectors. But this is easy: for
any index j (j = 1, . . . , n), the vector ∂R/∂qj [cf. (3)] is a tangent vector to the manifold Mt

— namely, it is the tangent vector in the direction of increasing coordinate qj (with all other
coordinates held fixed). So in our equations of motion (13) we can substitute B = ∂R/∂qj,
or in other words bi = ∂ri/∂qj: we get

N∑
i=1

mir̈i ·
∂ri
∂qj

=
N∑
i=1

FS
i · ∂ri

∂qj
for j = 1, . . . , n . (14)

The right-hand side of this equation is called the generalized force Qj corresponding to
the coordinate qj: that is, we define

Qj
def
=

N∑
i=1

FS
i · ∂ri

∂qj
. (15)

With this definition, our equations of motion have become

N∑
i=1

mir̈i ·
∂ri
∂qj

= Qj for j = 1, . . . , n . (16)

We now need to work a bit on the left-hand side of this equation.

Before proceeding further, let me clarify some important conceptual and notational
issues, which if not properly understood can lead to serious confusion.

We are going to be considering functions f(q, q̇, t) and writing things like

∂f

∂qj
,

∂f

∂q̇j
,

∂f

∂t
(17)
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and
d

dt
f(q, q̇, t) or simply

df

dt
or ḟ . (18)

What do we mean by these expressions?
To explain what these expressions mean, let me take an example you already know

well: consider a single particle moving in one dimension subject to a force law F (x, v, t)
that depends on the particle’s position x, its velocity v, and time t. For example, the
force law could be F (x, v, t) = etx2v + (cos t)xv17 or whatever. Then, by ∂F/∂x we
simply mean the partial derivative of F with respect to x when v and t are held fixed.
Likewise, by ∂F/∂v we simply mean the partial derivative of F with respect to v when
x and t are held fixed. And by ∂F/∂t we mean the partial derivative of F with respect
to t when x and v are held fixed. No ambiguity there: the quantities x, v and t
are considered as independent variables in the function F (x, v, t), so we can carry out
partial differentiation as usual.

Next we imagine that the particle is moving according to some specified function
x(t), so that its velocity is v(t) = ẋ(t); and we insert these into the force law , that is,
we consider the composite function F (x(t), ẋ(t), t), which is now a function of the single
variable t. Whenever we write dF/dt (or Ḟ ), we implicitly mean the time derivative of
such a composite function. It can of course be computed from the chain rule:

dF

dt
=

∂F

∂x
ẋ +

∂F

∂v
ẍ +

∂F

∂t
(19)

where ẋ and ẍ are the first and second time derivatives of the specified function x(t).
We sometimes call (19) the total derivative of F with respect to t; but all it means
is the time derivative of the composite function F (x(t), ẋ(t), t), where the underlying
motion x(t) is implicitly understood .

The interpretation of partial derivatives and total derivatives in our Lagrangian
formalism will be exactly the same. Namely, we consider a quantity f(q, q̇, t) that
depends on the generalized coordinates q, the generalized velocities q̇, and time t —
where q, q̇ and t are here considered as independent variables, just as x, v and t were
considered as independent variables in the expression F (x, v, t). [Don’t let yourself
be confused by the notational quirk that we write the generalized velocity with a dot
(i.e. q̇) rather than with a new letter (e.g. w). It is still considered as an independent
variable in the function f(q, q̇, t), exactly as v was in the function F (x, v, t).] Then
the partial derivatives (17) have their standard meanings: ∂f/∂qj means the partial
derivative with respect to qj when q1, . . . , qj−1, qj+1, . . . , qn, q̇ and t are all held fixed;
∂f/∂q̇j means the partial derivative with respect to q̇j when q, q̇1, . . . , q̇j−1, q̇j+1, . . . , q̇n
and t are all held fixed; and ∂f/∂t means the partial derivative with respect to t when
q and q̇ are all held fixed. This explains the meaning of the partial derivatives (17).

The total derivative (18) is likewise interpreted exactly as it was in our elementary
example. That is, we imagine that the system is moving according to some specified

function q(t), so that its generalized velocity is q̇(t) =
d

dt
q(t); and we insert these into

the function f , so that we consider the composite function f(q(t), q̇(t), t), which is now
a function of the single variable t. Whenever we write df/dt (or ḟ), we implicitly mean
the time derivative of such a composite function. It can of course be computed from
the chain rule:

df

dt
=

n∑
j=1

∂f

∂qj
q̇j +

n∑
j=1

∂f

∂q̇j
q̈j +

∂f

∂t
. (20)
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We again call this the total derivative of f with respect to t; but all it means is the
time derivative of the composite function f(q(t), q̇(t), t), where the underlying motion
q(t) is implicitly understood.

Another way of saying this is that the total-derivative operator d/dt, when it is
acting on a function f(q, q̇, t), is a shorthand for the partial-differential operator

d

dt

def
=

n∑
j=1

q̇j
∂

∂qj
+

n∑
j=1

q̈j
∂

∂q̇j
+

∂

∂t
. (21)

The second and last step in our analysis is to transform the left-hand side of (16) to
eliminate reference to R and its time derivatives in favor of q and its time derivatives.
In 1788 Lagrange discovered how to do this; his formula expresses the left-hand side of (16)
in terms of the kinetic energy of the system, as follows:

Proposition (Lagrange). The left-hand side of (16) can be written as

N∑
i=1

mir̈i ·
∂ri
∂qj

=
d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
, (22)

where T (q, q̇, t) is the kinetic energy

T =
N∑
i=1

1
2
mi ṙi · ṙi (23)

rewritten as a function of q, q̇ and t.

Before proving this Proposition, let us compute some examples to illustrate how it works:

Example 1. A single particle in Cartesian coordinates. The generalized coordinates are
q = (x, y, z) and the generalized velocities are q̇ = (ẋ, ẏ, ż). The kinetic energy is

T (q, q̇) = 1
2
m(ẋ2 + ẏ2 + ż2) . (24)

We have
∂T

∂ẋ
= mẋ (25)

and hence
d

dt

(
∂T

∂ẋ

)
= mẍ . (26)

On the other hand, we have
∂T

∂x
= 0 . (27)

Hence
d

dt

(
∂T

∂ẋ

)
− ∂T

∂x
= mẍ , (28)

as it should be. (And likewise for y and z.) □

Example 2. A single particle in plane polar coordinates. The generalized coordinates
are q = (r, φ) and the generalized velocities are q̇ = (ṙ, φ̇). The particle’s velocity vector is
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v = ṙêr + rφ̇êφ [where êr and êφ are the unit vectors in the radial and tangential directions,
respectively], so that the particle’s kinetic energy T = 1

2
mv · v is

T (q, q̇) = 1
2
m(ṙ2 + r2φ̇2) . (29)

Let us now carry out the differentiations requested by Lagrange:
Radial coordinate. We have

∂T

∂ṙ
= mṙ (30)

and hence
d

dt

(
∂T

∂ṙ

)
= mr̈ . (31)

On the other hand, we have
∂T

∂r
= mrφ̇2 . (32)

Hence
d

dt

(
∂T

∂ṙ

)
− ∂T

∂r
= m(r̈ − rφ̇2) , (33)

i.e. exactly m times the radial component of the acceleration. (Which is correct, because
∂r/∂r = êr, so that the generalized force in the radial direction is indeed the radial compo-
nent of the force.)

Tangential coordinate. We have

∂T

∂φ̇
= mr2φ̇ (34)

[note, by the way, that this equals the angular momentum] and hence

d

dt

(
∂T

∂φ̇

)
= m(r2φ̈+ 2rṙφ̇) , (35)

while
∂T

∂φ
= 0 . (36)

Hence
d

dt

(
∂T

∂φ̇

)
− ∂T

∂φ
= mr(rφ̈+ 2ṙφ̇) , (37)

i.e. exactly mr times the tangential component of the acceleration. (Which is again correct,
because ∂r/∂φ = rêφ, so that the generalized force in the tangential direction is r times the
tangential component of the force.)

In summary: To apply the Lagrangian method in some strange coordinate system, one
simply needs to find the formula for the kinetic energy in those coordinates; that is, one
basically needs to find the formula for (the squared magnitude of) the velocity in those coor-
dinates. Then the “Lagrangian machine” gives you, in essence, the formula for acceleration
in that coordinate system, without any further thought. □

Let us now start the proof of Lagrange’s formula (22). Clearly we first need to understand
what T (q, q̇, t) is; then we need to compute its derivatives with respect to q and q̇. And
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to understand the kinetic energy T defined by (23), we first need to understand the particle
velocities ṙi. To do this, let us begin by recalling that we have parametrized the manifold
Mt with functions ri(q, t) as in (3)/(4). We can use this to compute the particle velocities:

Step 1. Particle velocities. If the system moves according to some specified function
q(t), then the particle i has a position ri(q(t), t) and hence a velocity ṙi [note that this is a
total derivative in the sense just explained!] that can be computed from the chain rule:

ṙi =
n∑

j=1

∂ri
∂qj

q̇j +
∂ri
∂t

(38)

where the partial derivatives have the meaning just explained. [This corresponds to Gre-
gory’s equation (12.7) but has an extra term ∂ri/∂t because we are allowing time-dependent
constraints and time-dependent parametrizations; this extra term is included in Gregory’s
equation (12.21).]

Step 2. Partial-differentiating the particle velocities. We now forget temporarily about
the specified motion q(t), and we simply consider (38) as defining a function ṙi of the variables
q, q̇ and t, all considered as independent . We can understand these dependencies by looking
at the right-hand side of (38): since ri is a function of q and t but not of q̇ [cf. (4)], we see
that ∂ri/∂qj and ∂ri/∂t are likewise functions of q and t but not of q̇. The only place where
dependence on q̇ occurs is in the explicit appearance of q̇j on the right-hand side of (38). We
therefore see that the particle velocities ṙi are linear

4 in the generalized velocities q̇j, and we
have the curious-looking formula

∂ṙi
∂q̇j

=
∂ri
∂qj

. (39)

You may, if you wish, choose to remember this formula by the mnemonic “cancel the dots”;
but I want to stress that “cancelling the dots” is not in general a valid procedure, and that
the formula (39) is not at all trivial.5

Step 3. An identity for
d

dt

(
∂ri
∂qj

)
. For later use, let us compute the total time derivative

of ∂ri/∂qj. Since ∂ri/∂qj is a function of q and t but not of q̇, we have by the chain rule

d

dt

(
∂ri
∂qj

)
=

n∑
k=1

∂2ri
∂qj ∂qk

q̇k +
∂2ri
∂qj ∂t

(40a)

=
∂

∂qj

[
n∑

k=1

∂ri
∂qk

q̇k +
∂ri
∂t

]
(40b)

=
∂ṙi
∂qj

(40c)

4Or more precisely, affine.
5In particular, the Wikipedia article http://en.wikipedia.org/wiki/Lagrangian_mechanics#

Kinetic_energy_relations is wrong to say that this formula holds simply “because qj and q̇j are in-
dependent variables”; or at the very least, this is an insufficient explanation.
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where the last equality used (38) but with the dummy summation variable renamed from j
to k.

Step 4. Partial-differentiating one term in the kinetic energy with respect to q̇j. The
kinetic energy is a sum of terms 1

2
mi ṙi · ṙi; so let us consider one of these terms, and to

lighten the notation let us drop the factor mi; so let us consider 1
2
ṙi · ṙi. Lagrange tells us

that we must partial-differentiate this with respect to q̇j:

∂

∂q̇j

(
1
2
ṙi · ṙi

)
= ṙi ·

∂ṙi
∂q̇j

(41a)

= ṙi ·
∂ri
∂qj

(41b)

where the second equality used the identity (39).

Step 5. Taking the total time derivative of this. Lagrange then tells us to take the total
time derivative of the result (41):

d

dt

[
∂

∂q̇j

(
1
2
ṙi · ṙi

)]
=

d

dt

[
ṙi ·

∂ri
∂qj

]
(42a)

= r̈i ·
∂ri
∂qj

+ ṙi ·
d

dt

(
∂ri
∂qj

)
(42b)

= r̈i ·
∂ri
∂qj

+ ṙi ·
∂ṙi
∂qj

(42c)

where the last equality used the identity (40).

Step 6. Partial-differentiating one term in the kinetic energy with respect to qj. Lagrange
tells us that we must also partial-differentiate 1

2
ṙi · ṙi with respect to qj: clearly we have

∂

∂qj

(
1
2
ṙi · ṙi

)
= ṙi ·

∂ṙi
∂qj

. (43)

Step 7. Putting it all together. Subtracting (43) from (42), we get

d

dt

[
∂

∂q̇j

(
1
2
ṙi · ṙi

)]
− ∂

∂qj

(
1
2
ṙi · ṙi

)
= r̈i ·

∂ri
∂qj

. (44)

Multiplying this by mi and summing over i, we obtain Lagrange’s formula (22). □

Why did this proof work? The key fact was identity (40):

d

dt

(
∂ri
∂qj

)
=

∂ṙi
∂qj

. (45)

That is, in this case at least , it is permissible to “commute the total derivative (d/dt
or equivalently ˙ ) with the partial derivative ∂/∂qj”. Can we understand why this
commutation of derivatives is valid?
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Recall from (21) that the total-derivative operator d/dt, when it is acting on a
function f(q, q̇, t), is simply a shorthand for the partial-differential operator

d

dt

def
=

n∑
j=1

q̇j
∂

∂qj
+

n∑
j=1

q̈j
∂

∂q̇j
+

∂

∂t
. (46)

And the operator on the right-hand side of (46) does commute with ∂/∂qj (why?):
that is, we have[

n∑
j=1

q̇j
∂

∂qj
+

n∑
j=1

q̈j
∂

∂q̇j
+

∂

∂t

]
∂f

∂qj
=

∂

∂qj

[
n∑

j=1

q̇j
∂f

∂qj
+

n∑
j=1

q̈j
∂f

∂q̇j
+

∂f

∂t

]
(47)

for any function f(q, q̇, t). Moreover, if f is a function of q, q̇ and t, then so is ∂f/∂qj ;
so (46) applies to it as well. We conclude that for any function f(q, q̇, t), we have

d

dt

(
∂f

∂qj

)
=

∂

∂qj

(
df

dt

)
. (48)

The identity (40)/(45) is just this general fact specialized to f = ri. (In this particular
case f is in fact a function only of q and t, not q̇.)

So this is the deep reason why Lagrange’s formula (22) is valid.

In summary: Putting together the equation of motion (16) with Lagrange’s identity (22),
we have proven:

Lagrange’s equations. In every motion of the constrained system compatible
with Newton’s equations (5), the coordinates q(t) must satisfy the system of
equations

d

dt

(
∂T

∂q̇j

)
− ∂T

∂qj
= Qj for j = 1, . . . , n , (49)

where T (q, q̇, t) is the kinetic energy and

Qj =
N∑
i=1

FS
i · ∂ri

∂qj
(50)

is the generalized force.

Let us now further assume that the specified forces FS
i are conservative, i.e. that there

exists a potential energy function U(r1, . . . , rN , t) such that

FS
i = −∂U

∂ri
for i = 1, . . . , N . (51)

By the notation ∂U/∂ri I mean the gradient of U(r1, . . . , rN , t) with respect to the
vector variable ri, with all the other particle positions (as well as t) being held fixed.
This could also be written as ∇iU or ∇riU ; I used the notation ∇iU in Section 3.3.2
of Handout #6.

Note also that, in defining what we mean by a “conservative force”, we ordinarily
do not allow the potential energy to depend explicitly on t. (In Handout #6 I did
not allow it.) But in the present context there is no harm in allowing this somewhat
unusual generalization; Lagrange’s equations (56) will hold regardless.
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We now insert the parametrization (4) of the constraint manifold Mt in terms of the gener-
alized coordinates q and time t, yielding

U(q, t)
def
= U(r1(q, t), . . . , rN(q, t)) . (52)

By the chain rule we have

∂U

∂qj
=

N∑
i=1

∂U

∂ri
· ∂ri
∂qj

= −
N∑
i=1

FS
i · ∂ri

∂qj
= −Qj . (53)

So we can write the generalized force Qj as a partial derivative of the potential energy with
respect to the generalized coordinate qj,

Qj = −∂U

∂qj
, (54)

just as we write the ordinary force FS
i as a partial derivative of the potential energy with

respect to the ordinary coordinate ri [cf. (51)].
It follows that if we define the Lagrangian L(q, q̇, t) as

L(q, q̇, t) = T (q, q̇, t) − U(q, t) (55)

[note the funny minus sign! — this is not the total energy T + U !], then we have:

Lagrange’s equations for a conservative system. In every motion of the
constrained system compatible with Newton’s equations (5), the coordinates
q(t) must satisfy the system of equations

d

dt

(
∂L

∂q̇j

)
− ∂L

∂qj
= 0 for j = 1, . . . , n , (56)

where the Lagrangian is defined as L(q, q̇, t) = T (q, q̇, t) − U(q, t), with
T (q, q̇, t) being the kinetic energy and U(q, t) being the potential energy.

We can be even slightly more general (as Gregory points out in Section 12.7). Namely,
suppose that there exists a function U(q, q̇, t) [note that it is now allowed to depend also on
q̇!] such that the generalized force Qj can be written as

Qj =
d

dt

(
∂U

∂q̇j

)
− ∂U

∂qj
. (57)

Then Lagrange’s equations (49) can clearly be written in the form (56) if we define

L(q, q̇, t) = T (q, q̇, t) − U(q, q̇, t) . (58)

It no longer makes sense to call U a “potential energy”; but since it still plays the same
role in the Lagrangian formalism as a potential energy, we call it a velocity-dependent
potential. This generalization applies to one very important case, namely a charged particle
moving in an electromagnetic field.
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4 Symmetries and conservation laws

You should first read Gregory, Section 12.8 about energy conservation and Gre-
gory, Section 12.9 about conservation of generalized momenta conjugate to cyclic
coordinates. Then the explanation below is intended as a simplification of Gregory,
Section 12.10.

Symmetry is a fundamental concept in mathematics; and over the last century or so
it has come to play an increasingly central role in physics as well. We have already seen
that conservation laws are extremely important in physics. We now come to a beautiful
and surprising fact: the two themes of symmetries and conservation laws are intimately
connected. Namely, to every (continuous) symmetry of a physical system (more precisely,
a physical system expressible in Lagrangian form), there corresponds a conservation law.
This connection was discovered by Emmy Noether in 1918, and is now known as Noether’s
theorem.6

A symmetry of a (physical or mathematical) object is a mapping that leaves the object
invariant.7 For instance, the symmetries of the regular n-gon are rotations by multiples of
2π/n and reflections through lines passing through vertices of the n-gon and/or bisectors.
Likewise, the symmetries of n-dimensional Euclidean space — that is, the mappings of Rn

to itself that preserve distances — are translations, rotations and reflections. Since the
composition of two symmetries is obviously a symmetry, and the inverse of a symmetry is a
symmetry, the symmetries of any given object obviously form a group, called the symmetry
group of the object.8 The study of symmetries is thus intimately connected with group
theory.

Here we are concerned with symmetries of a dynamical law. What we mean is this:
Let K be the set of all kinematically possible motions of a particular physical system, and let
D be the subset of K consisting of all dynamically allowed motions (for the given dynamical
law). For instance, for a system of N particles moving through R3, the set K consists of
all smooth functions R(t) = (r1(t), . . . , rN(t)) from R (time) into R3N (configuration space),
while the set D consists of only those motions that satisfy Newton’s equations for the given
force law. Then any mapping M : K → K for which M[D] ⊆ D is called a symmetry of
the given dynamical law.9

Example 1. Suppose we have a system of N particles moving through R3, interacting
through forces Fi←j(ri, rj) that depend only on ri − rj. (We assume that there are no
external forces.) Then the dynamical law is invariant under spatial translation (or more
precisely, simultaneous spatial translation of all the particles) — that is, under the mapping
M : K → K defined by

(MR)(t) = R(t) + (c, . . . , c) (59)

6Emmy Noether (1882–1935) was an important German mathematician of the early twentieth century.
Though her main contributions were to abstract algebra (Noetherian rings are named after her), her 1918
foray into theoretical physics was also extraordinarily important for the subsequent development of physics.

7For this reason, the word invariance is also used as a synonym of “symmetry”.
8Thus, the symmetries of the regular n-gon form the dihedral group D2n; and the symmetries of n-

dimensional Euclidean space form the Euclidean group E(n).
9Usually we will also require that the mapping M be invertible, i.e. that it be a bijection of K to itself.

Then its restriction to D will also be a bijection of D to itself.
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where c ∈ R3 is an arbitrary vector. We can also write the mapping M as

ri 7→ ri + c for i = 1, . . . , N . (60)

The point is simply that if we simultaneously translate all the particles by the same displace-
ment c, then the relative positions ri − rj are unchanged, hence the forces are unchanged;
and since c is a constant vector (i.e. independent of time), the accelerations r̈i (which arise
in Newton’s laws) are also unchanged. Hence, if Newton’s laws mir̈i = Fi we satisfied before
the spatial translation, then they are also satisfied after.

Example 2. Suppose we have a system of N particles moving through R3, interacting
through forces Fi←j(ri, rj) whose magnitude depends only on the distance |ri−rj| and whose
direction points along the line connecting the two particles:

Fi←j(ri, rj) = fi←j(|ri − rj|)
ri − rj
|ri − rj|

. (61)

(We again assume that there are no external forces.) Then the dynamical law is invariant
under spatial rotation, namely under the mapping M : K → K defined by

ri 7→ Mri for i = 1, . . . , N (62)

where M is a 3× 3 matrix representing a rotation of R3.10 The reasoning is similar.

Example 3. Suppose we have a system of N particles moving through R3, with forces
Fi that may now depend in a completely arbitrary way on the positions r1, . . . , rN and the
velocities ṙ1, . . . , ṙN ; the only thing we demand is that the forces do not depend explicitly on
the time t. Then the dynamical law is invariant under time translation, namely under the
mapping M : K → K defined by

(MR)(t) = R(t+ a) (63)

where a ∈ R is arbitrary.

We now consider a physical system described by generalized coordinates q = (q1, . . . , qn)
and obeying Lagrange’s equations for some Lagrangian L(q, q̇, t). We shall develop Noether’s
theorem by starting from a special case and then gradually increasing the generality:

1) Very special case. Suppose that one of the coordinates, say qs, is cyclic, i.e. that
∂L/∂qs = 0. This is equivalent to saying that L is invariant under translation of the coordi-
nate qs (all the other coordinates being held fixed): that is,

L(q1, . . . , qs, . . . , qn, q̇, t) = L(q1, . . . , qs + c, . . . , qn, q̇, t) (64)

for any arbitrary constant c. (Do you see why these two statements are equivalent , i.e. that
each statement implies the other?)

10Later in this term we will discuss such matrices: they belong to the so-called special orthogonal
group SO(3). Concretely, they are 3 × 3 matrices M satisfying MTM = MMT = I (such matrices are
called orthogonal matrices) and also detM = +1. (The orthogonal matrices with detM = −1 correspond
to mirror reflections.)
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On the other hand, we know (and it follows immediately from Lagrange’s equations) that
if ∂L/∂qs = 0, then

d

dt

(
∂L

∂q̇s

)
= 0 , (65)

i.e. that the conjugate momentum

ps
def
=

∂L

∂q̇s
(66)

is conserved .
So, in this case, a symmetry (invariance under translation of the coordinate qs) implies

a conservation law (conservation of the conjugate momentum ps).
This is encouraging; let’s try to generalize it.

2) Nearly almost general case. We consider some coordinate transformation q∗ = q∗(q, t)
that leaves the Lagrangian invariant, i.e.

L(q∗, q̇∗, t) = L(q, q̇, t) . (67)

[Important: L is here meant to have a fixed functional form on both sides of the equation.

The assertion is that if we plug the arguments q∗, q̇∗, t into that function (where q∗
def
=

q∗(q, t)), we get the same numerical value as when we plug the arguments (q, q̇, t) into that
same function.]

Now let us further assume that there exists a whole family of such coordinate transfor-
mations, labeled by a continuous parameter ϵ and depending smoothly on ϵ, such that L
is invariant under every individual transformation in this family. And we also assume that
the identity transformation belongs to this family (for convenience let us label it as ϵ = 0).
Let us call these transformations q∗ϵ = q∗ϵ (q, t). We can then expand q∗ϵ (q, t) in Taylor series
in ϵ: using the fact that ϵ = 0 corresponds to the identity transformation, we have

q∗ϵ (q, t) = q + ϵf(q, t) + O(ϵ2) (68)

for a suitable function f(q, t) [namely, f(q, t) = (∂q∗ϵ/∂ϵ)|ϵ=0]; or writing explicitly the
coordinates, we have

q∗j;ϵ(q, t) = qj + ϵfj(q, t) + O(ϵ2) . (69)

[The quantity f is sometimes called the “infinitesimal transformation” corresponding to the
given family of transformations.] We now insert q∗ϵ into the Lagrangian and expand in Taylor
series in ϵ:

L(q∗ϵ , q̇
∗
ϵ , t) = L(q, q̇, t) + ϵ

[∑
j

∂L

∂qj
fj +

∑
j

∂L

∂q̇j
ḟj

]
+ O(ϵ2) . (70)

By hypothesis the Lagrangian is invariant under this transformation for all ϵ, so in particular
the coefficient of ϵ1 in the Taylor series (i.e. the square brackets in the preceding equation)
must vanish: ∑

j

[
∂L

∂qj
fj +

∂L

∂q̇j
ḟj

]
= 0 . (71)
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But by Lagrange’s equations we have

∂L

∂qj
=

d

dt

(
∂L

∂q̇j

)
, (72)

so the two terms in (71) combine via the product rule to give∑
j

d

dt

(
∂L

∂q̇j
fj

)
= 0 . (73)

In other words, the quantity

C =
∑
j

∂L

∂q̇j
fj (74)

is a constant of motion.

3) Almost general case. For Lagrange’s equations of motion to be invariant under the
coordinate transformation, it is certainly sufficient that L itself be invariant; but it is not
necessary. In fact, if L(q, q̇, t) and L′(q, q̇, t) are two Lagrangians related by

L′(q, q̇, t) = L(q, q̇, t) +
d

dt
F (q, t) (75)

for some function F (q, t) of the generalized coordinates and time (but not of the generalized
velocities), then L and L′ lead to the same equations of motion; you will prove this in
Problem 2(a) of Problem Set #6. So, in this situation, the two Lagrangians are “physically
equivalent” even though L′ ̸= L.

So let us assume that we have a one-parameter family of transformations q∗ϵ = q∗ϵ (q, t)
as in case #2, with infinitesimal transformation f given by (68)/(69), under which the
Lagrangian is invariant up to a total time derivative, i.e. that

L(q∗ϵ , q̇
∗
ϵ , t) = L(q, q̇, t) +

d

dt
Fϵ(q, t) (76)

for some functions Fϵ(q, t). Now we can expand Fϵ(q, t) in Taylor series in ϵ as

Fϵ(q, t) = F0(q, t) + ϵF̃ (q, t) + O(ϵ2) (77)

where F̃ (q, t) = (∂/∂ϵ)Fϵ(q, t)
∣∣
ϵ=0

; and since ϵ = 0 is the identity transformation, we have
F0(q, t) = 0. Inserting this into (76) we conclude that

L(q∗ϵ , q̇
∗
ϵ , t) = L(q, q̇, t) + ϵ

d

dt
F̃ϵ(q, t) + O(ϵ2) . (78)

Then, comparing (70) with (78), and following the same steps as in (71)–(73), we see that
the quantity

C =
∑
j

∂L

∂q̇j
fj − F̃ (79)

is a constant of motion, i.e. dC/dt = 0. (You should make sure to check the details yourself!)

Case #2 of course corresponds to the special case when F̃ = 0.
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4) General case (of sorts). Nowhere in the proof of case #2 above did we use the assump-
tion that q∗ (and hence f) is a function only of q and t, rather than also of the velocities
q̇. So we might as well dispense with that restriction. This more general transformation
q∗ = q∗(q, q̇, t) might better be termed a “path transformation” rather than a “coordinate
transformation”. Our assumption is therefore that we have a one-parameter family of path
transformations q∗ϵ = q∗ϵ (q, q̇, t), with infinitesimal transformation f = f(q, q̇, t) given by

q∗ϵ (q, q̇, t) = q + ϵf(q, q̇, t) + O(ϵ2) . (80)

Likewise, nowhere in the proof of case #3 above did we use the assumption that F is
independent of the velocities. So let us throw away that restriction too, and assume simply
that

L(q∗ϵ , q̇
∗
ϵ , t) = L(q, q̇, t) + ϵ

d

dt
F̃ (q, q̇, t) + O(ϵ2) (81)

for some function F̃ (q, q̇, t). Once we allow F̃ to be velocity-dependent, the connection
with “physical equivalence” of Lagrangians is lost [see Problem 2(b) of Problem Set #6],
so we shouldn’t really call this transformation a “symmetry” of the dynamical law — but

once we’ve gotten this far, who cares? The key fact is that C =
∑
j

∂L

∂q̇j
fj − F̃ is conserved

nonetheless, under the hypothesis that the transformation (80) obeys (81).

All these results are special cases of Noether’s theorem (1918), which is of considerable
importance not only in classical mechanics but in both classical and quantum field theory.

Example 1, revisited. Suppose that the Lagrangian is invariant under spatial transla-
tion in some fixed direction e, namely

ri 7→ ri + ϵe for i = 1, . . . , N . (82)

Then the conserved quantity associated with this symmetry will be linear momentum
(more precisely, its component in the direction e).

To see this, consider the Lagrangian in Cartesian coordinates:

L(r1, . . . , rN , ṙ1, . . . , ṙN , t) =
N∑
i=1

1
2
miṙ

2
i − U(r1, . . . , rN , t) . (83)

The kinetic energy
∑N

i=1
1
2
miṙ

2
i is manifestly invariant under spatial translation; so the La-

grangian is invariant under spatial translation if and only if the potential energy U(r1, . . . , rN , t)
is. Now, spatial translation (82) is of the form (68) considered in case #2 above, with fi = e.
The conserved quantity

C =
∑
j

∂L

∂q̇j
fj (84)

constructed by Noether’s theorem is therefore

C =
N∑
i=1

∂L

∂ṙi
· e =

N∑
i=1

miṙi · e = P · e (85)

where P is the total linear momentum of the system.
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In the special case of a single particle in Cartesian coordinates, this example even falls
into case #1 of Noether’s theorem (i.e. a cyclic coordinate).

Example 2, revisited. Suppose that the Lagrangian is invariant under spatial rotation;
then the conserved quantity associated with this symmetry will be angular momentum.

To see this, we again work with the Lagrangian in Cartesian coordinates. In Cartesian
coordinates, rotation by angle ϵ about an axis e (where e is a unit vector) yields

r∗i = ri + ϵ e× ri + O(ϵ2) , (86)

so that we are again in case #2, this time with

fi = e× ri . (87)

As in Example 1 we have we
∂L

∂ṙi
=

∂T

∂ṙi
= miṙi , (88)

so the conserved quantity is

C =
N∑
i=1

∂L

∂ṙi
· fi (89a)

=
N∑
i=1

miṙi · (e× ri) (89b)

=
N∑
i=1

e · (ri ×miṙi) (89c)

= e · L (89d)

where L is the total angular momentum of the system. [Here we used the invariance of the
scalar triple product under cyclic shifts of its three operands: a · (b × c) = b · (c × a) =
c · (a× b).]

Example 3, revisited. Suppose that the Lagrangian is invariant under time translation,
i.e. that ∂L/∂t = 0; then the conserved quantity associated with this symmetry will be
energy.

The map M is here defined by evolving the system forward ϵ in time, i.e. let

q∗ϵ (t) = q(t+ ϵ) = q(t) + ϵq̇(t) + O(ϵ2) , (90)

so that the “infinitesimal transformation” f is here

f = q̇ . (91)

(This therefore needs the general case #4 of Noether’s theorem, in which we allow f to
depend on q̇ as well as q and t.) Then

L(q∗ϵ , q̇
∗
ϵ , t) = L(q, q̇, t) + ϵ

[∑
j

∂L

∂qj
q̇j +

∑
j

∂L

∂q̇j
q̈j

]
+ O(ϵ2) . (92)
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Please note now that the quantity in square brackets equals dL/dt provided that ∂L/∂t = 0.

Therefore, if ∂L/∂t = 0 we conclude that case #4 of Noether’s theorem, with F̃ = L. It
follows the conserved quantity is

C =
∑
j

∂L

∂q̇j
q̇j − L (93)

— which is precisely the “energy function h” whose conservation (when ∂L/∂t = 0) was
already discussed in Gregory, Section 12.8. So we now see that what really underlies the
conservation of h is invariance under time translation.

You will see some further applications of Noether’s theorem in Problems 4 and 5 of
Problem Set #6.
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