
MATHEMATICS 0054 (Analytical Dynamics)
YEAR 2023–2024, TERM 2

HANDOUT #10: INTRODUCTION TO PERTURBATION THEORY

You should begin by reading the handout from Marion, Classical
Dynamics of Particles and Systems, Sections 7.1–7.4, concerning
the qualitative analysis of nonlinear oscillations. Then continue by
reading this handout.

The harmonic-oscillator equation mẍ = −kx is linear; this implies that the frequency of
oscillation is independent of the amplitude (why?). Of course we know from explicit calcu-
lation that the frequency of oscillation is ω =

√
k/m, and that the shape of the oscillations

is a pure sinewave.
But most things in the real world are nonlinear; linear equations are frequently a useful

approximation, but sometimes we would like to go beyond the linear approximation in order
to obtain more precise results. Perturbation theory is a systematic way of doing that. In
this handout we will develop perturbation theory in one very simple context: namely, the
Newtonian mechanics of one-dimensional nonlinear oscillations.1 We shall mostly confine
ourselves to the case of a force law depending only on position, i.e. F = F (x). We shall as-
sume that the function F is smooth (e.g. infinitely differentiable), so that it can be expanded
in Taylor series around the point x = 0:

F (x) = f0 + f1x + f2x
2 + f3x

3 + . . . . (1)

We furthermore assume that x = 0 is a point of stable equilibrium: “equilibrium” means
that f0 = 0, and “stable equilibrium” then means that f1 < 0 (why?).2 So we can write
f1 = −k and hence

F (x) = −kx − k2x
2 − k3x

3 − . . . . (2)

1In future courses you may study perturbation theory in more complicated contexts, such as multidi-
mensional oscillations in Newtonian mechanics, anharmonic oscillators in quantum mechanics, nonlinear
partial differential equations, etc. In particular, MATH0027 (Methods 5) includes a more detailed study of
perturbation theory for nonlinear ordinary differential equations.

2Strictly speaking, the cases

• f0 = f1 = f2 = 0, f3 < 0

• f0 = f1 = f2 = f3 = f4 = 0, f5 < 0

...

could also be considered to be “higher-order stable equilibria”. But each such case has to be analyzed
separately, as the leading small-oscillation behavior of each one is different (and it is not simple harmonic).
For simplicity we will restrict attention to the case f0 = 0, f1 < 0 where the leading approximation is simple
harmonic.
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If the displacement from equilibrium (x) is very small, then the leading term −kx dominates
over the higher-order terms, and we have Hooke’s “law” F (x) = −kx (which really ought to
be called Hooke’s approximation!); and the resulting harmonic-oscillator equationmẍ = −kx
is linear. This is what we have called the “linearized approximation”.

But what happens if the amplitude of oscillation is not so small? Perturbation theory is
a systematic procedure for determining the motion — both the frequency and the shape of
the oscillations — as a Taylor series in the amplitude of oscillation ϵ. We hope that taking
a few terms in this Taylor expansion will give a good approximation to the exact answer,
provided that ϵ is not too large.

1 Perturbation theory: First approach

Let us consider a particle of mass m moving in the force law

F (x) = −kx − k2x
2 − k3x

3 − . . . (3)

or equivalently the potential energy

U(x) =
1

2
kx2 +

1

3
k2x

3 +
1

4
k3x

4 + . . . . (4)

The equation of motion is therefore

mẍ = −kx − k2x
2 − k3x

3 − . . . . (5)

We consider an oscillation whose maximum displacement in the +x direction is ϵ; this can be
obtained by placing the particle at position x = ϵ and releasing it from rest, i.e. by choosing
the initial conditions

x(0) = ϵ (6a)

ẋ(0) = 0 (6b)

So we wish to solve the differential equation (5) with initial conditions (6). We do this by
expanding everything in power series in ϵ and solving term-by-term. That is, we expand the
desired solution x(t) as

x(t) = x0(t) + ϵx1(t) + ϵ2x2(t) + . . . (7)

and we also expand the initial conditions in power series:

x(0) = 0 + ϵ+ 0ϵ2 + . . . (8a)

ẋ(0) = 0 + 0ϵ+ 0ϵ2 + . . . (8b)

Combining (7) with (8) and comparing terms in each power of ϵ, we can rewrite the initial
conditions as

xi(0) =

{
1 for i = 1

0 for i = 0 and i ≥ 2
(9a)

ẋi(0) = 0 for all i (9b)
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We now insert the solution Ansatz (7) into the differential equation (5), i.e.

m(ẍ0 + ϵẍ1 + ϵ2ẍ2 + . . .) = −k(x0 + ϵx1 + ϵ2x2 + . . .) − k2(x0 + ϵx1 + ϵ2x2 + . . .)2

− k3(x0 + ϵx1 + ϵ2x2 + . . .)3 − . . . , (10)

and compare coefficients of each power of ϵ, starting at order ϵ0 and working our way upwards:

Extracting the terms of order ϵ0 in (10), we obtain

mẍ0 = −kx0 − k2x
2
0 − k3x

3
0 − . . . (11)

with initial conditions
x0(0) = 0 , ẋ0(0) = 0 . (12)

Because of the zero initial conditions, the solution is obvious:

x0(t) = 0 for all t (13)

This is, of course, no surprise: the “zeroth-order” solution x0(t) is what we would have if ϵ
were zero; and that is the particle sitting at rest at x = 0.

This fact that x0 = 0 is trivial, but it is also very important: it means that the differential
equation (10) becomes

m(ϵẍ1 + ϵ2ẍ2 + . . .) = −k(ϵx1 + ϵ2x2 + . . .) − k2(ϵx1 + ϵ2x2 + . . .)2

− k3(ϵx1 + ϵ2x2 + . . .)3 − . . . , (14)

so that the contribution from k2 starts at order ϵ2, the contribution from k3 starts at order
ϵ3, and so forth. In other words, at each order in ϵ there are only finitely many terms
contributing; this is what allows the equations to be solved successively in an organized way.

We can now get down to real business, by comparing coefficients of each power of ϵ in
(14), beginning with order ϵ1 and working our way upwards:

Extracting the terms of order ϵ1 in (14), we obtain

mẍ1 + kx1 = 0 (15)

with initial conditions
x1(0) = 1 , ẋ1(0) = 0 . (16)

This is just a linear harmonic oscillator; the solution of (15) with the initial conditions (16)
is

x1(t) = cosω0t (17)

where
ω0 =

√
k/m . (18)

[We call this frequency ω0 because we will see later that the actual frequency of oscillation ω
can be expanded as a power series in ϵ whose leading term is ω0: ω = ω0+ ϵω1+ ϵ2ω2+ . . . .]
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Of course, we knew this too: for small x, the force is approximately −kx, so the oscilla-
tions are approximately simple harmonic. This is just what we have called the “linearized
approximation”.

Things start getting interesting at the next order:

Extracting the terms of order ϵ2 in (14), we obtain

mẍ2 + kx2 = −k2x
2
1 (19)

with initial conditions
x2(0) = 0 , ẋ2(0) = 0 . (20)

Observe that the x1 occurring on the right-hand side of (19) is a function that we have
already computed , namely (17). The differential equation (19) thus reads

mẍ2 + kx2 = −k2 cos
2 ω0t . (21)

Mathematically, this is just a forced linear harmonic oscillator, with a forcing function
−k2 cos

2 ω0t that comes from passing the first-order solution (17) through the quadratic
term in the force law.

So let us recall how to solve a forced linear harmonic oscillator with a forcing function
f(t), i.e. the equation

mẍ + kx = f(t) . (22)

As you know, the general solution to an inhomogeneous linear differential equation is a linear
combination of the general solution to the corresponding homogeneous equation and a partic-
ular solution to the inhomogeneous equation. Here the corresponding homogeneous equation
is the harmonic-oscillator equation mẍ+ kx = 0, and its general solution is an oscillation of
arbitrary amplitude and phase at the “natural frequency” ω0, i.e. x(t) = A cosω0t+B sinω0t.
Finding a particular solution to the forced-oscillator equation (22) is not always a trivial
matter; but it is easy when the forcing function is sinusoidal at some other frequency ω, i.e.
f(t) = F0 cosωt, because in this case it is easy to see that a suitable multiple of cosωt will
be a solution. Plugging in the Ansatz x(t) = C cosωt and solving for C, we obtain

C =
F0

k −mω2
=

F0

m(ω2
0 − ω2)

. (23)

Therefore the general solution to the linear-harmonic-oscillator equation with sinusoidal
forcing function, mẍ+ kx = F0 cosωt, is

x(t) = A cosω0t + B sinω0t +
F0

m(ω2
0 − ω2)

cosωt . (24)

Important remark. This solution holds only when ω ̸= ω0,
since otherwise we would be dividing by zero! We will come
back to the case of what happens when ω = ω0, i.e. when we
drive a harmonic oscillator at its resonant frequency.
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Similarly, if the forcing function is a linear combination of several sinusoidal functions, i.e.
f(t) =

∑
i

Fi cosωit, then the required particular solution is obviously the sum of the indi-

vidual ones, so that the general solution is

x(t) = A cosω0t + B sinω0t +
∑
i

Fi

m(ω2
0 − ω2

i )
cosωit . (25)

In our case the forcing function −k2 cos
2 ω0t is not sinusoidal, but we can write it a linear

combination of sinusoidals by exploiting the trig identity cos2 θ = (1 + cos 2θ)/2: we get

f(t) = −k2 cos
2 ω0t = −1

2
k2 − 1

2
k2 cos 2ω0t , (26)

i.e. a linear combination of sinusoidals at frequencies 0 and 2ω0. (Both of which are luckily
̸= ω0!) The general solution of the differential equation (21) is therefore

x2(t) = A cosω0t + B sinω0t − k2
2k

+
k2
6k

cos 2ω0t . (27)

Imposing the initial conditions x2(0) = ẋ2(0) = 0, we find A = k2/(3k) and B = 0, hence

x2(t) =
k2
6k

(−3 + 2 cosω0t+ cos 2ω0t) (28)

So, what happens at order ϵ2 is that the frequency of oscillation is unchanged (i.e., it is
still ω0), but the shape of the oscillation is no longer precisely sinusoidal: the main term
ϵx1(t) = ϵ cosω0t is perturbed by a smaller term ϵ2x2(t) that contains oscillatory terms at
frequency 0 (i.e., shifting the center-point of the oscillation slightly away from x = 0) and
frequency 2ω0 (i.e., a second harmonic).

We can now give a partial answer the question: How small does ϵ have to be so that
our Taylor-series approach is reasonable? The idea of a Taylor series is, of course, that
the leading term should be large compared to the second term, which should in turn
be large compared to the third term, and so forth. So let us compare the magnitude
of the second term ϵ2x2(t) to that of the leading term ϵx1(t). Those magnitudes are
roughly ϵ2k2/k and ϵ, respectively (I am ignoring small constant factors like 2, 3 or
6); so the ratio of these magnitudes is roughly ϵk2/k. It is important that ϵk2/k is a
dimensionless number: that is, it is a pure number whose value does not depend on the
choice of units of length, time and mass. (Can you see why ϵk2/k is dimensionless?).
It therefore makes sense to say whether |ϵk2/k| is small compared to 1, or not. A
necessary condition for our Taylor-series approach to be sensible is that |ϵk2/k| should
be fairly small compared to 1. (How small? That depends on the details of the Taylor
series and also on the level of accuracy we are seeking. 10−2 is almost certainly “small
enough”; 10−1 probably is; 1/3 might be; under some circumstances even 1 or 3 might
be. But 102 is almost certainly not “small enough”.)

This is a necessary condition, not a sufficient one, because we also have to worry
about higher-order terms in the Taylor series. For instance, k2 might even be zero —
as it would, for instance, if the force law has the symmetry F (x) = −F (−x) — but we
would still want to make sure that ϵ2k3/k (which is the dimensionless quantity that
arises in the next order) is also small compared to 1.
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The next step is obviously to compute the terms of order ϵ3. And it turns out that
some very interesting and novel things happen at this order! But instead of pursuing this
computation, I will show you an alternative and slightly quicker way of obtaining these novel
phenomena.

2 Perturbation theory: A slightly more general view

Before continuing the perturbation calculations in the anharmonic oscillator, it is worth
taking a step back and reflecting a bit more generally on what it is that we are doing.

The basic principle underlying perturbation theory is this: Start from a problem that
we know how to solve (we call this the “zeroth-order problem”); then exploit our knowledge
of the zeroth-order problem in order to solve “nearby” problems by a systematic method of
successive approximations. There are two main cases in which this can arise:

1) The force law F (x, ẋ, t) in which we are interested is in some sense “near” to a force
law F0(x, ẋ, t) for which we know how to solve the equation of motion. [Example: The
anharmonic oscillator F = −kx − ϵx3 is “near” to the harmonic oscillator F0 = −kx,
if ϵ is “small”.]

2) For a given force law F (x, ẋ, t), the particular motion x(t) in which we are interested
is in some sense “near” to a motion x0(t) that we can calculate exactly and that solves
the equation of motion for the same force law — or in other words, we are interested in
the motion satisfying initial conditions that are “near” to the initial conditions yielding
x0(t). [Example: Let x0(t) be rest at some stable equilibrium position, and let x(t) be
small oscillations about that stable equilibrium.]

Thus far we have been considering situation (2); but it is also of interest to consider situation
(1). Indeed, we can imagine a problem in which situations (1) and (2) occur simultaneously.

So the general method is to consider a family of problems parametrized by a parameter ϵ:
the problem we know how to solve corresponds to ϵ = 0; and we will seek an approximate
solution of the whole family of problems (at least for small enough ϵ) by expanding every-
thing in Taylor series in ϵ.3 Thus, for each (sufficiently small) ϵ we are given a force law
F (x, ẋ, t; ϵ) and initial conditions x(0; ϵ) and ẋ(0; ϵ); our goal is to find the solution x(t; ϵ) to
the differential equation

mẍ(t; ϵ) = F (x(t; ϵ), ẋ(t; ϵ), t; ϵ) (29)

that satisfies the given initial conditions.
Most likely we are not going to be able to find x(t; ϵ) exactly for arbitrary ϵ; if we could,

then we would have no need for perturbation theory! Rather, the idea of perturbation theory
is to build on the fact that we can find the exact solution when ϵ = 0; our goal is then to
find an approximate solution that is decently accurate for “small” ϵ and that becomes more
and more accurate as ϵ becomes smaller. The natural way to do this is to expand everything

3We might, in fact, only be interested in one particular value of ϵ, but no matter: after we get our solution
for arbitrary ϵ, we can plug in our particular value if we like.
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— force law, initial conditions, and solution — in Taylor series in ϵ. That is, we write

F (x, ẋ, t; ϵ) = F0(x, ẋ, t) + ϵF1(x, ẋ, t) + ϵ2F2(x, ẋ, t) + . . . (30a)

x(0; ϵ) = a0 + ϵa1 + ϵ2a2 + . . . (30b)

ẋ(0; ϵ) = b0 + ϵb1 + ϵ2b2 + . . . (30c)

and we seek a solution of the form

x(t) = x0(t) + ϵx1(t) + ϵ2x2(t) + . . . . (31)

To do this, we plug the solution Ansatz (31) into the differential equation (30a) and initial
conditions (30b,c), and compare the coefficients of each power of ϵ, starting at order ϵ0 and
working successively upwards. If we are skillful (and patient) enough, we will be able to
compute as many of the coefficient functions xi(t) as we desire.

For now we are considering our Taylor series as formal power series, or as asymptotic
expansions that we truncate at some finite order and which are supposed to give better
and better approximations (valid to the order claimed) as ϵ → 0: that is, the series
(31) truncated at order ϵN is supposed to differ from the exact solution x(t; ϵ) by an
error that is of order ϵN+1 or smaller as ϵ → 0. We shall avoid here the much more
difficult question of whether the series (31) actually converges, and if so, whether it
converges to the correct solution, and for what range of ϵ it does so — for this you
are referred to more advanced books such as Coddington and Levinson, Theory of
Ordinary Differential Equations. These are by no means frivolous questions; indeed,
much contemporary research in differential equations is motivated by them. But it is
worth observing that in practice we are unlikely to be able to compute infinitely many
terms in the series anyway! Rather, we will compute a few terms — maybe 2, maybe
3 or 4, maybe 100 if we are skillful at a symbolic-algebra computer language such as
Mathematica orMaple— and we will hope that the truncated series supplies a good
approximation for “small enough” ϵ. So the question of the conditions under which
the series may be expected to be a “good” approximation is very important; we have
already discussed this in a rough way in connection with the condition |ϵk2/k| ∼< 1,
and we will discuss it a bit more later.

3 Perturbation theory for cubic anharmonic oscillator

Let us consider a problem that is typical of situation (1) in the preceding section: we
consider a force law

F (x) = −kx − ϵx2 (32)

or equivalently a potential energy

U(x) =
1

2
kx2 +

ϵ

3
x3 . (33)

We call this the cubic anharmonic oscillator because the non-quadratic term in the po-
tential energy is cubic. The idea of perturbation theory is to consider ϵ to be a “small”
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parameter, and to expand everything in power series in ϵ. So we are considering the differ-
ential equation

mẍ = −kx − ϵx2 (34)

with initial conditions

x(0) = A (35a)

ẋ(0) = 0 (35b)

where A is a fixed number independent of ϵ (namely, the amplitude of oscillation). As usual
we make the Ansatz

x(t) = x0(t) + ϵx1(t) + ϵ2x2(t) + . . . (36)

for the solution, insert this into (34)/(35), and compare powers of ϵ.
Extracting the terms of order ϵ0, we have the differential equation

mẍ0 + kx0 = 0 (37)

with initial conditions
x0(0) = A , ẋ0(0) = 0 . (38)

This is just a linear harmonic oscillator, with solution

x0(t) = A cosω0t (39)

Note that in this approach the harmonic-oscillator solution arises at order ϵ0. By
contrast, in our previous approach the motion at order ϵ0 was simply rest at the
equilibrium position, and the harmonic-oscillator solution arose at order ϵ1. So one
slight advantage of the present approach is that the interesting behavior arises one
order earlier.

Now we come to the real meat of the problem. Extracting the terms of order ϵ1, we
have the differential equation

mẍ1 + kx1 = −x2
0 (40)

with initial conditions
x1(0) = 0 , ẋ1(0) = 0 . (41)

Here the x0 occurring on the right-hand side of (40) is a function that we have already
computed , namely (39). The differential equation (40) thus reads

mẍ1 + kx1 = −A2 cos2 ω0t . (42)

Mathematically, this is once again a forced linear harmonic oscillator, with a forcing function
−A2 cos2 ω0t that comes from passing the zeroth-order solution (39) through the quadratic
term in the force law. As before, we use the trig identity cos2 θ = (1 + cos 2θ)/2 to rewrite
the forcing function as a sum of sinusoidals:

f(t) = −A2 cos2 ω0t = −1

2
A2 − 1

2
A2 cos 2ω0t , (43)
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i.e. a linear combination of sinusoidals at frequencies 0 and 2ω0. (Both of which are luckily
̸= ω0!) The general solution of the differential equation (21) is therefore

x1(t) = α cosω0t + β sinω0t − A2

2k
+

A2

6k
cos 2ω0t . (44)

Imposing the initial conditions x1(0) = ẋ1(0) = 0, we find α = A2/(3k) and β = 0, hence

x1(t) =
A2

6k
(−3 + 2 cosω0t+ cos 2ω0t) (45)

This is basically the same solution as was found in (28) using our previous approach.
So the next step is to carry the computation to order ϵ2; and as I mentioned earlier,

it turns out that some very interesting and novel things happen at this order! But I will
leave this to you for the problem set, and instead turn to a variant problem where the novel
phenomena occur already at order ϵ1.

4 Perturbation theory for quartic anharmonic oscillator

Let us now consider a problem identical to the one considered in the preceding section,
with the only change being that the first nonlinear term in the force law is cubic rather than
quadratic:

F (x) = −kx − ϵx3 . (46)

Since the potential energy is

U(x) =
1

2
kx2 +

ϵ

4
x4 , (47)

we call this the quartic anharmonic oscillator. The quartic anharmonic oscillator, unlike
the cubic one, obeys the symmetry F (x) = −F (−x) or equivalently U(x) = U(−x), so it is
in some sense an even “nicer” problem to consider.

So we apply perturbation theory in the small parameter ϵ to the differential equation

mẍ = −kx − ϵx3 (48)

with initial conditions

x(0) = A (49a)

ẋ(0) = 0 (49b)

where A is a fixed number independent of ϵ (namely, the amplitude of oscillation). Once
again we make the Ansatz

x(t) = x0(t) + ϵx1(t) + ϵ2x2(t) + . . . (50)

for the solution, insert this into (48)/(49), and compare powers of ϵ.
Extracting the terms of order ϵ0, we have once again the differential equation

mẍ0 + kx0 = 0 (51)
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with initial conditions
x0(0) = A , ẋ0(0) = 0 . (52)

This is just a linear harmonic oscillator, with solution

x0(t) = A cosω0t (53)

Extracting the terms of order ϵ1, we have the differential equation

mẍ1 + kx1 = −x3
0 (54)

with initial conditions
x1(0) = 0 , ẋ1(0) = 0 . (55)

Here the x0 occurring on the right-hand side of (54) is a function that we have already
computed , namely (53). The differential equation (54) thus reads

mẍ1 + kx1 = −A3 cos3 ω0t . (56)

Mathematically, this is once again a forced linear harmonic oscillator, with a forcing function
−A3 cos3 ω0t that comes from passing the zeroth-order solution (53) through the cubic term
in the force law. Once again, we use a trig identity to reduce cos3 ω0t to a sum of sinusodials:
now what we need is cos3 θ = 3

4
cos θ + 1

4
cos 3θ, so that our forcing function is

f(t) = −A3 cos3 ω0t = −3A3

4
cosω0t −

A3

4
cos 3ω0t . (57)

And we plug this in to the general solution (25) of the forced linear oscillator with a sum-of-
sinusoidals forcing. But now there is a big problem: one of the terms in the forcing function
f(t) has frequency exactly ω0, so that in the solution (25) we have division by zero! Oops!

Obviously we have to go back to the derivation of (25) — which we stressed was valid
only when the forcing frequencies ωi are different from ω0 — and see what happens when the
forcing frequency ω equals the natural frequency ω0. Clearly the particular solution to the
inhomogeneous equation in this case cannot be a linear combination of cosω0t and sinω0t,
since these are solutions of the homogeneous equation, i.e. they will produce zero right-hand
side!

So let us try to guess what might work as the particular solution in our case. You may
recall that a closely related problem occurs already with homogeneous linear differential
equations with constant coefficients: if after making the Ansatz x(t) = eαt and finding
the roots of the characteristic polynomial p(α), we find that the characteristic polynomial
has a multiple root (say, of multiplicity k), then the solutions of the differential equation
corresponding to this root are not just eαt but also teαt, t2eαt, . . . , tk−1eαt. Along similar lines
we might guess that in our present case the needed particular solution to the inhomogeneous
differential equation

m(ẍ+ ω2
0x) = C cosω0t (58)

is going to be something of the form

x(t) = αt cosω0t + βt sinω0t , (59)
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i.e. sinusoidals at the natural frequency ω0 multiplied by t. Having made such a guess, it is
then routine to compute its second derivative and see whether α and β can be chosen so
that the differential equation (58) is satisfied. I leave the straightforward calculus to you
(you should do it!); the result is

ẍ+ ω2
0x = −2αω0 sinω0t + 2βω0 cosω0t . (60)

Therefore (58) can indeed be satisfied if we choose α = 0 and β = C/(2mω0), hence

x(t) =
C

2mω0

t sinω0t . (61)

In our application we have C = −3A3/4 [see (57)], hence the needed particular solution is

x(t) = − 3A3

8mω0

t sinω0t . (62)

We also have to find the particular solution corresponding to the term −(A3/4) cos 3ω0t in
the forcing (57); from (25) it is A3/(32mω2

0) cos 3ω0t. Putting these together, we have the
particular solution

x(t) =
A3

mω2
0

(
1

32
cos 3ω0t −

3

8
ω0t sinω0t

)
. (63)

This solution has initial conditions x(0) = A3/(32mω2
0) and ẋ(0) = 0. We therefore need

to subtract a solution of the homogeneous equation that has these same initial conditions,
in order to obtain an x1(t) that has the desired initial conditions x1(0) = 0, ẋ1(0) = 0. We
therefore have as our final answer

x1(t) =
A3

mω2
0

(
1

32
cos 3ω0t −

1

32
cosω0t −

3

8
ω0t sinω0t

)
. (64)

Let us show how to obtain this result in a systematic way, without having to engage
in guessing.

To start with, recall that we can solve a first-order linear inhomogeneous ordinary
differential equation (ODE)

dx

dt
+ a(t)x = b(t) (65)

[where a(t) and b(t) are given functions and x(t) is the unknown function] by the
method of integrating factors: namely, multiply both sides by the integrating
factor

I(t) = exp

[ t∫
a(t′) dt′

]
(66)

and notice that the left-hand side is exactly
d

dt
[I(t)x(t)]; then integrate both sides.

Now, what about a second-order linear inhomogeneous ODE

d2x

dt2
+ a1(t)

dx

dt
+ a0(t)x = b(t) ? (67)
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In general this is very difficult; but in case of constant coefficients, i.e.

d2x

dt2
+ c1

dx

dt
+ c0x = b(t) , (68)

we can factor the equation into a pair of first-order ODEs, which can then be solved in
succession. You probably recall the method: let α and β be the roots of the quadratic
polynomial λ2+ c1λ+ c0 (the so-called characteristic polynomial of this ODE), so that

λ2 + c1λ+ c0 = (λ− α)(λ− β) . (69)

Then we rewrite (68) in the form( d2

dt2
+ c1

d

dt
+ c0

)
x = b(t) (70)

(where the operator c0 simply means “multiplication by c0”), and we factor the differ-
ential operator as

d2

dt2
+ c1

d

dt
+ c0 =

( d

dt
− α

)( d

dt
− β

)
, (71)

so that the equation (68) becomes( d

dt
− α

)( d

dt
− β

)
x = b(t) . (72)

If we then define

y =
( d

dt
− β

)
x , (73)

we can rewrite the second-order equation (72) as the pair of first-order equations( d

dt
− α

)
y = b(t) (74a)( d

dt
− β

)
x = y (74b)

So we can first solve (74a) for the unknown function y(t), and then solve (74b) for the
unknown function x(t).

So consider, for instance, the problem of a homogeneous second-order linear ODE
with constant coefficients in which the characteristic polynomial has a multiple root,
i.e. α = β. Then the equation (74a) with b(t) = 0 gives as a solution y(t) = C1e

αt.
And to solve the equation (74b) with β = α and y(t) = C1e

αt, we use the integrating
factor I(t) = e−αt, so that

d

dt
[e−αt x(t)] = C1 (75)

and hence
e−αt x(t) = C1t+ C2 , (76)

so that
x(t) = C1te

αt + C2e
αt (77)

— which is the result you knew (but whose derivation you had perhaps not seen).
A similar method can be applied to an inhomogeneous second-order linear ODE

with constant coefficients in which the characteristic polynomial has two distinct roots
(i.e. α ̸= β) but the forcing occurs at one of the characteristic frequencies (e.g. b(t) =
Ceαt). I leave it as a valuable exercise for you to work out the details!
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The solution (64) is mathematically correct, but something is nevertheless very fishy
about it. We know from our qualitative analysis (or simply from common sense) that the
behavior of this system is oscillatory : the position oscillates back and forth periodically
between −A and +A. And yet, the solution (64) has a term t sinω0t that is not periodic;
rather, it corresponds to an oscillation whose amplitude grows linearly with time. If this were
to be taken seriously, it would mean that the solution x(t) = x0(t) + ϵx1(t) + . . . likewise
has an amplitude that grows linearly with time, becoming arbitrarily large as t → ∞ (and
in particular vastly exceeding ±A) — which is of course total nonsense. [Granted, the
contribution x1(t) has an ϵ in front of it, so we will have to wait a time of order 1/ϵ before
the “bad” term t sinω0t makes a large contribution to x(t); but it will eventually do so, in
violation of what we know to be the behavior of the exact solution x(t).] What on earth is
going on here?

The term t sinω0t is called a secular term — from the Latin saecularis, meaning “of
or belonging to a long period of time”4 — because this term becomes large only after
a long time (of order 1/ϵ) has elapsed.

We can illustrate what is going on here by considering an even simpler problem: instead
of considering a linear force law −kx plus a cubic perturbation −ϵx3, let us consider a linear
force law −kx plus a linear perturbation −ϵx. Of course this problem is exactly soluble: it
is just a simple harmonic oscillator with spring constant k + ϵ. But let us pretend that we
didn’t know this obvious fact, and instead naively carry out perturbation theory in the small
parameter ϵ, just as we did for the nontrivial anharmonic oscillator. The terms of order
ϵ0 give the equation (51) and the solution (53) as before. Then the terms of order ϵ1 give

mẍ1 + kx1 = −x0 (78)

with initial conditions
x1(0) = 0 , ẋ1(0) = 0 . (79)

Once again the x0 occurring on the right-hand side of (78) is a function that we have already
computed, namely (53), so that the differential equation (78) reads

mẍ1 + kx1 = −A cosω0t . (80)

And this is once again a linear harmonic oscillator being forced at its natural frequency !
(This time we don’t even need a trig identity to see that.) From (61) we see that the needed
particular solution is

x1(t) = − A

2mω0

t sinω0t . (81)

And this also satisfies the initial conditions (79). So we have found the desired x1(t). And
it contains, once again, a secular term: our computations give

x(t) = x0(t) + ϵx1(t) + O(ϵ2) (82a)

= A cosω0t − ϵA

2mω0

t sinω0t + O(ϵ2) . (82b)

4Compare French siècle, Italian secolo, Spanish siglo, etc., which mean “century” (and which for most of
us is a long period of time!).
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To help us understand what is going on, let us now use our knowledge that the exact
solution is

x(t) = A cos

√
k + ϵ

m
t (83)

— that is, the solution is a pure sinewave but at the perturbed frequency

ω =

√
k + ϵ

m
=

√
ω2
0 +

ϵ

m
= ω0 +

ϵ

2mω0

+ O(ϵ2) (84)

rather than at the unperturbed frequency ω0. [You should verify the Taylor-series expansion
contained in the last equality: just pull a factor ω2

0 out of the square root, and then use√
1 + u = 1+ 1

2
u+O(u2).] What happens if we now expand the exact solution (83) in Taylor

series in ϵ, through order ϵ1? I claim that what we get is exactly (82)! [You should verify
this as well.]

So now we can see what is going on: The exact solution x(t) is an oscillation at the per-
turbed frequency ω, while the zeroth-order solution x0(t) is an oscillation at the unperturbed
frequency ω0. Since ω ̸= ω0, these two solutions drift farther and farther out of phase as
time goes on; indeed, their phase difference grows linearly with time. That leads to a secular
term t sinω0t — and at higher orders, even-more-disastrously diverging secular terms such
as t2 cosω0t, t

3 sinω0t, etc. — when the exact solution x(t) is expanded as a power series in
ϵ.

So the result of naive perturbation theory is mathematically correct, but in practice it is
useful only for small t (roughly, |t| ≪ mω0/ϵ) — after that the zeroth-order solution x0(t)
has drifted so far out of phase from the exact solution x(t) that it can no longer serve as
a decent starting point for an approximate solution. Clearly, if we want to find a modified
perturbation theory that is valid uniformly in time, then we should reformulate perturbation
theory so that the zeroth-order solution x0(t) is an oscillation at the perturbed frequency ω,
not the unperturbed frequency ω0.

This explanation of the origin of the secular terms leads directly to a procedure for
eliminating them: the Lindstedt renormalization procedure.5 The idea is to expand
the actual frequency of oscillation ω, which of course depends on ϵ, a power series in ϵ:

ω = ω(ϵ) = ω0 + ϵω1 + ϵ2ω2 + . . . . (85)

Of course the coefficients ω1, ω2, . . . are unknown; our goal is to compute them! (The zeroth-
order term is clearly ω0, because that is the frequency of oscillation when ϵ = 0.) We now
turn the above equation around, and rewrite it as

ω0 = ω − ϵω1 − ϵ2ω2 − . . . . (86)

(This “turn things around” step is the main clever idea in Lindstedt’s method.) We then
insert this expression for ω0 into the force law; since k = mω2

0, the equation of motion
becomes

mẍ + m(ω − ϵω1 − ϵ2ω2 − . . .)2x = −ϵx3 . (87)

5Also known as the Lindstedt–Poincaré method. Named after the Swedish mathematician/
astronomer Anders Lindstedt (1854–1939) and the very important French mathematician/physicist Henri
Poincaré (1854–1912).

14



We then carry out perturbation theory as before, comparing coefficients of each power of ϵ
and working our way upwards:

Extracting the terms of order ϵ0, we have the differential equation

mẍ0 + mω2x0 = 0 (88)

with initial conditions
x0(0) = A , ẋ0(0) = 0 . (89)

This is just a linear harmonic oscillator, with solution

x0(t) = A cosωt (90)

Note that the frequency here is the (as-yet-unknown) true frequency ω — not the unper-
turbed frequency ω0 as it was previously. That is a good sign: it means that the zeroth-order
motion x0(t) remains a good approximation to the exact motion x(t) even as t → ±∞; the
two functions do not drift farther and farther out of phase, as they did previously.

Extracting the terms of order ϵ1, we have the differential equation

mẍ1 + mω2x1 = −x3
0 + 2mωω1x0 (91)

with initial conditions
x1(0) = 0 , ẋ1(0) = 0 . (92)

Here the x0 occurring on the right-hand side of (91) is the function x0(t) = A cosωt that we
have just computed in (90). Using the trig identity as before, (91) becomes

mẍ1 + mω2x1 = −A3

4
cos 3ωt−

(
3A3

4
− 2mωω1A

)
cosωt . (93)

Now remember where the secular term came from: it came from forcing a harmonic oscillator
at its resonant frequency, which would here be the frequency ω. The constant ω1 is still
unknown. But if we choose it wisely — in particular, if we choose

ω1 =
3A2

8mω
(94)

— then the secular term will have disappeared! Indeed, this must be the correct choice —
that is, the choice that yields the actual first-order frequency shift — because we know that
there will always be secular terms if the frequency of the zeroth-order motion differs from
the correct perturbed frequency, and that conversely if the zeroth-order frequency is correct
there cannot be any secular terms. Having made this choice of ω1, we can now proceed to
solve (93), which now has only the cos 3ωt term on the right-hand side; the solution with
the given initial conditions is

x1(t) =
A3

mω2

(
1

32
cos 3ωt − 1

32
cosωt

)
(95)
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Recapitulating what we have found: the motion is

x(t) = A cosωt + ϵ
A3

mω2

(
1

32
cos 3ωt − 1

32
cosωt

)
+ O(ϵ2) (96)

The perturbed frequency can be found from

ω = ω0 + ϵω1 + O(ϵ2) (97a)

= ω0 + ϵ
3A2

8mω
+ O(ϵ2) (97b)

= ω0 + ϵ
3A2

8m[ω0 +O(ϵ)]
+ O(ϵ2) (97c)

= ω0 + ϵ
3A2

8mω0

+ O(ϵ2) . (97d)

(Please make sure you understand why ω rather than ω0 appeared in the second term on the
right-hand side. At this order we were able to just replace it by ω0, throwing the error into
the O(ϵ2) term; but if we were to carry this calculation through order ϵ2 we would have to
be more careful here.) So the actual frequency of oscillation is

ω = ω0

[
1 +

3

8

ϵA2

mω2
0

+ O(ϵ2)

]
(98)

In summary, two effects take place as a result of the perturbation: the frequency is shifted
as in (98), and the shape of the oscillation acquires a third-harmonic Fourier component as
in (96). Of course, at higher orders in ϵ (i.e. ϵ2, ϵ3, etc.) there will be further contributions
to the frequency shift, as well as higher odd harmonics in the shape of the oscillation.6

Some remarks on dimensional analysis. Note that it is the quantity
ϵA2

mω2
0

that

appears in the first-order frequency shift, confirming our intuitive expectation that it would
be some product-like combination of ϵ and A that determines the size of the nonlinear effects.

Indeed, it will be

(
ϵA2

mω2
0

)2

,

(
ϵA2

mω2
0

)3

, etc. that appear in higher-order frequency shifts; and

it is also
ϵA2

mω2
0

that appears in the first-order motion shift, i.e. the ratio of the amplitude of

ϵx1 to that of x0 [cf. (96)].
And in retrospect we should have realized from the beginning that it would be precisely

this combination of ϵ and A that would be important. Can you see why? We have always
said that ϵ is “small” — but small compared to what? After all, ϵ is a dimensionful quantity:
in terms of mass (M), length (L) and time (T) its dimensions are (you should check this!)

[ϵ] = ML−2T−2 (99)

6In the quartic anharmonic oscillator the potential energy U(x) is symmetric, so that there only odd
harmonics occur. In an asymmetric potential such as the cubic anharmonic oscillator, both odd and even
harmonics occur.
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(where the square brackets mean “dimensions of”). And when we say that ϵ is “small”, what
we must mean is that it is small compared to some other quantity of the same dimensions
which is in some way characteristic of the problem. But it is easy enough to see that there
is only one quantity of dimensions ML−2T−2 that can be formed from the quantities m, k,A:

it is kA−2 = mω2A−2. And so the relevant dimensionless ratio is ϵ/(mω2A−2), i.e.
ϵA2

mω2
0

as

claimed. (Indeed, the only dimensionless quantities that can be formed from ϵ,m, k, A are

functions of
ϵA2

mω2
0

.)

Or we can look at it in another way: when we say that ϵ is “small”, what we really mean
is that the contribution ϵx3 to the force is small, compared to the other term in the force
law, namely kx. But no matter how small ϵ is, ϵx3 can always become arbitrarily larger
than kx simply by looking at x large enough. This means that even the tiniest nonlinearity
in the force law (if it is precisely and purely cubic, which is of course an unlikely situation
in any practical application) becomes dominant if one considers oscillations of sufficiently
large amplitude. When we say that ϵ is “small”, what we mean is that |ϵx3| ≪ |kx| for x
in the range reached by the motion we are studying. But we are studying an oscillation of
amplitude A; so throughout this motion we em always have |x| ≤ A. So what we mean

is that |ϵA3| ≪ |kA|, or in other words that
∣∣∣ϵA3

kA

∣∣∣ =
∣∣∣ ϵA2

mω2
0

∣∣∣ ≪ 1. Once again it is the

dimensionless quantity
ϵA2

mω2
0

that appears.

From the very beginning, therefore, we could have put together our knowledge that

(1) powers of
ϵA2

mω2
0

are the only dimensionless quantities occurring in our prob-

lem, and

(2) we are seeking to expand everything in nonnegative powers of ϵ

to deduce, without any calculation whatsoever, that our solution must be of the form

ω = ω0

[
1 + c1

(
ϵA2

mω2
0

)
+ c2

(
ϵA2

mω2
0

)2

+ . . .

]
(100)

and

x(t) = A

[
f0(t) +

(
ϵA2

mω2
0

)
f1(t) +

(
ϵA2

mω2
0

)2

f2(t) + . . .

]
(101)

where c1, c2, . . . are dimensionless constants (i.e. pure numbers) and f0(t), f1(t), f2(t), . . . are
dimensionless functions of time, all independent of ϵ. Morover, a dimensionless constant
usually comes out to be something whose magnitude is of order 1: perhaps something like
3/8 or 2π or 3 log 2, but not very likely anything of order 1010 or 10−10. Of course, the exact
calculation of c1, c2, . . . and f0(t), f1(t), f2(t), . . . is what perturbation theory is all about.
But much can be learned from “crude” dimensional analysis alone.

A final remark. The Lindstedt renormalization procedure is actually a prototype for
renormalization in quantum field theory — a procedure that was developed in the 1940s for
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quantum electrodynamics (by Feynman, Schwinger, Tomonaga and Dyson) and later adapted
in the 1970s to the Standard Model (by ’t Hooft and Veltman) and plays a central role in
elementary-particle theory. However, renormalization in quantum field theory has a peculiar
feature that is different from Lindstedt renormalization in classical mechanics: namely, the
shifts ω1, ω2, . . . turn out to be infinite! (More precisely, they depend on the ultraviolet cutoff
Λ and diverge as Λ → ∞.) This is bizarre, and is not completely understood even today.
For an overview, see https://en.wikipedia.org/wiki/Renormalization In fact, similar
problems occur already in classical electrodynamics: see the Feynman lectures, volume II,
chapter 28 for an excellent introduction.
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